Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.861
Filtrar
1.
Huan Jing Ke Xue ; 45(7): 4074-4081, 2024 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-39022955

RESUMO

The application of ANAMMOX technology is constrained by sluggish growth and difficulty in enriching ANAMMOX bacteria. Long-term starvation of functioning bacteria due to limited substrate supply makes the steady operation of ANAMMOX reactors more difficult. Re-examining the start-up and recovery performance of the ANAMMOX reactor and identifying its resistance mechanism are important from the standpoint of long-term starvation. By inoculating nitrifying and denitrifying sludge under various operating circumstances, the ANAMMOX reactors were successfully started. Under various start-up procedures, the tolerance mechanism and recovery performance were examined. The outcomes demonstrated that the denitrifying sludge-inoculated reactor operated steadily with a high substrate concentration and low flow rate. After 85 days of operation, the removal efficiencies of NH4+-N, NO2--N, and total nitrogen reached 98.7%, 99.3%, and 89.3%, respectively. After 144 days of starvation and 30 days of recovery, the better nitrogen removal performance was achieved at a low substrate concentration and high flow rate, and the removal efficiencies were 99.8% (NH4+-N), 99.8% (NO2--N), and 93.6% (total nitrogen). During the starvation, extracellular polymeric substances wrapped the ANAMMOX bacteria and kept them intact to resist long-term starvation stress. The expression of nirS, hzsA, and hdh genes ensured the synthesis of nitrite/nitric oxide oxidoreductase, hydrazine synthase, and hydrazine dehydrogenase to maintain ANAMMOX activity. There was no significant difference in the relative abundance of ANAMMOX bacteria before and after starvation recovery. Candidatus Kuenenia had better anti-hunger ability, and the relative abundance increased by more than 86% after 30 days of recovery, confirming its tolerance to long-term starvation.


Assuntos
Reatores Biológicos , Nitrogênio , Eliminação de Resíduos Líquidos , Reatores Biológicos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Nitrogênio/metabolismo , Nitrogênio/isolamento & purificação , Compostos de Amônio/metabolismo , Oxirredução , Esgotos/microbiologia , Anaerobiose , Bactérias/metabolismo , Desnitrificação , Bactérias Anaeróbias/metabolismo , Amônia/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-39023746

RESUMO

This study evaluated the roles of two common sources of Fe(III)-minerals-volcanic rock (VR) and synthetic banded iron formations from waste iron tailings (BIF-W)-in vertical flow-constructed wetlands (VFCWs). The evaluation was conducted in the absence of critical environmental factors, including Fe(II), Fe(III), and soil organic matter (SOM), using metagenomic analysis and integrated correlation networks to predict nitrogen removal pathways. Our findings revealed that Fe(III)-minerals enhanced metabolic activities and cellular processes related to carbohydrate decomposition, thereby increasing the average COD removal rates by 10.7% for VR and 5.90% for BIF-W. Notably, VR improved nitrogen removal by 1.70% and 5.40% compared to BIF-W and the control, respectively. Fe(III)-mineral amendment in bioreactors also improved the retention of denitrification and nitrification bacteria (phylum Proteobacteria) and anammox bacteria (phylum Planctomycetes), with increases of 3.60% and 3.20% using VR compared to BIF-W. Metagenomic functional prediction indicated that the nitrogen removal mechanisms in VFCWs with low C/N ratios involve simultaneous partial nitrification, ANAMMOX, and denitrification (SNAD). Network-based analyses and correlation pathways further suggest that the advantages of Fe(III)-minerals are manifested in the enhancement of denitrification microorganisms. Microbial communities may be activated by the functional dissolution of Fe(III)-minerals, which improves the stability of SOM or the conversion of Fe(III)/Fe(II). This study provides new insights into the functional roles of Fe(III)-minerals in VFCWs at the microbial community level, and provides a foundation for developing Fe-based SNAD enhancement technologies.

3.
J Hazard Mater ; 476: 135074, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38954855

RESUMO

Sulfamethoxazole (SMX) is frequently detected in wastewater where anammox applications are promising. While it has been demonstrated that anammox consortia can adapt to SMX stress, the underlying community adaptation strategy has not yet been fully addressed. Therefore, in this study, we initially ascertained anammox consortia's ability to co-metabolize SMX in batch tests. Then, a 200-day domestication process of anammox consortia under SMX stress was carried out with community variations and transcriptional activities monitored by metagenomic and metatranscriptomic sequencing techniques. Despite the initial drop to 41.88 %, the nitrogen removal efficiency of the anammox consortia rebounded to 84.64 % post-domestication under 5 mg/L SMX. Meanwhile, a 4.85-fold accumulation of antibiotic resistance genes (ARGs) under SMX stress was observed as compared to the control group. Interestingly, the anammox consortia may unlock the SMX-inhibited folate synthesis pathway through a novel interspecies cooperation triangle among Nitrospira (NAA), Desulfobacillus denitrificans (DSS1), and the core anammox population Candidatus Brocadia sinica (AMX1), in which the modified dihydropteroate synthase (encoded by sul1) of NAA reconnected the symbiotic cooperation between AMX1 and DSS1. Overall, this study provides a new model for the adaptation strategies of anammox consortia to SMX stress.

4.
Bioresour Technol ; : 131090, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986880

RESUMO

To reveal the key enzymes in the nitrogen removal pathway and to further elucidate the mechanism of the catalytic reaction, this study utilized metaproteomics combined with molecular dynamics and density functional theory calculation. K. stuttgartiensis provided the proteins up to 88.37 % in the anammox-based system. Hydrazine synthase (HZS) and hydrazine dehydrogenase (HDH) accounted for 15.94 % and 3.45 % of the total proteins expressed by K. stuttgartiensis, thus were considered as critical enzymes in the nitrogen removal pathway. The process of HZSγ binding to NO with lowest binding free energy of -4.91 ±â€¯1.33 kJ/mol. The reaction catalyzed by HZSα was calculated to be the rate-limiting catalyzing step, because it transferred the proton from NH3 to ·OH by crossing an energy barrier of up to 190.29 kJ/mol. This study provided molecular level insights to enhance the performance of nitrogen removal in anammox-based system.

5.
Bioresour Technol ; : 131091, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986883

RESUMO

The reuse of hydroxyapatite particles (HAPs) as a granulation activator for anammox sludge was explored to address the remaining issues of time-consuming and unstable granular structure in anammox granulation. During the granulation, nitrogen removal capacity from 2.8 to 13.7 gN/L/d was obtained within 193 days, accompanied by an enhancement in bio-activity from 0.23 to 0.52 gN/gVSS/d. HAPs and anammox microorganisms coupled well to aggregate into granules for denser biomass, higher settleability, and stronger mechanical properties, which effectively improved the biomass retention capacity and structural strength of the sludge system. A skeleton structure formed by the HAPs was characterized during the transformation of the granules, playing a crucial role in strengthening the stability of the sludge. The intermediate processes of granulation were thus clarified to propose an evolutionary pathway for anammox-HAP granules. The pre-addition of HAPs is conducive to achieving faster anammox granulation and rapid process start-up for high-strength wastewater treatment.

6.
J Environ Manage ; 366: 121797, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38996605

RESUMO

To overcome the significant challenges associated with nitrite supply and nitrate residues in mainstream anaerobic ammonium oxidation (anammox)-based processes, this study developed a combined solid-phase denitrification (SPD) and anammox process for low-strength nitrogen removal without the addition of nitrite. The SPD step was performed in a packed-bed reactor containing poly-3-hydroxybutyrate-co-3-hyroxyvelate (PHBV) prior to employing the anammox granular sludge reactor in the continuous-flow mode. The removal efficiency of total inorganic nitrogen reached 95.7 ± 1.2% under a nitrogen loading rate of 0.18 ± 0.01 kg N·m3·d-1, and it required 1.02 mol of nitrate to remove 1 mol of ammonium nitrogen. The PHBV particles not only served as biofilm carriers for the symbiosis of hydrolytic bacteria (HB) and denitrifying bacteria (DB), but also carbon sources that facilitated the coupling of partial denitrification and anammox in the granules. Metagenomic sequencing analysis indicated that Burkholderiales was the most abundant HB genus in SPD. The metabolic correlations between DB (Betaproteobacteria, Rhodocyclaceae, and Anaerolineae) and anammox bacteria (Candidatus Brocadiac and Kuenenia) in the granules were confirmed through microbial co-occurrence networks analysis and functional gene annotations. Additionally, the genes encoding nitrate reductase (Nap) and nitrite reductase (Nir) in DB primarily facilitated nitrate reduction, thereby supplying nitric oxide to anammox bacteria for subsequent nitrogen removal with hydrazine synthase (Hzs) and hydrazine dehydrogenase (Hdh). The findings provide insights into microbial metabolism within combined SPD and anammox processes, thus advancing the development of mainstream anammox-based processes in engineering applications.

7.
Sci Total Environ ; : 174658, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992357

RESUMO

Effluent quality deterioration caused by seasonal low temperature is a great challenge to the application of anammox technology. Here, the effects of different graphene materials on anammox process were investigated under both optimal temperature and low-temperature. The batch tests showed that at 30 °C, 300 mg/L of reduced graphene oxide­sodium alginate gel (RGOSA) had the most significant promoting effect, reaching nitrogen removal efficiency (NRE) and nitrogen removal rate (NRR) of 95 % and 8.88 mgN/L/d, respectively. The changes of EPS secretion patterns and increasing of key enzymes activity might contribute to the enhanced anammox activity. During the long-term operation of anammox reactor, the NRE and NRR of the reactor decreased when the temperature dropped to 15 °C, showing an NRE of 50 %-57 % with the addition of 200 mg/L of reduced graphene oxide (RGO) and 40 %-45 % with the addition of 20 mg/L of RGO. Furthermore, specific anammox activity (SAA) of the RGO200 reactor at 15 °C increased by 57.1 % compared to the UASB reactor without graphene addition. Additionally, 16S rRNA and metagenomic analysis results revealed anammox bacteria Ca. Kuenenia was the dominant bacteria. Moreover, the RGO can significantly increase the relative abundance of N-converting functional genes. This study demonstrates the graphene materials can help anammox process adapting to low temperatures, providing a possible solution for the application of anammox technology.

8.
Bioresour Technol ; 407: 131092, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986879

RESUMO

The extremely slow growth rate of anaerobic ammonia oxidation (anammox) bacteria limits full-scale application of anammox process worldwide. In this study, extracellular polymeric substances (EPS)-coated polypropylene (PP) carriers were prepared for biofilm formation. The biomass adhesion rate of EPS-PP carrier was 12 times that of PP carrier, and EPS-PP achieved significant enrichment of E. coli BY63. The 120-day continuous flow experiment showed that the EPS-PP carrier accelerated the formation of anammox biofilm, and the nitrogen removal efficiency increased by 10.5 %. In addition, the abundance of Candidatus Kuenenia in EPS-PP biofilm was 27.1%. Simultaneously, amino acids with high synthesis cost and the metabolites of glycerophospholipids related to biofilm formation on EPS-PP biofilm were significantly up-regulated. Therefore, EPS-PP carriers facilitated the rapid formation of anammox biofilm and promoted the metabolic activity of functional bacteria, which further contributed to the environmental and economic sustainability of anammox process.

9.
Environ Sci Technol ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001848

RESUMO

Leveraging comammox Nitrospira and anammox bacteria for shortcut nitrogen removal can drastically lower the carbon footprint of wastewater treatment facilities by decreasing aeration energy, carbon, alkalinity, and tank volume requirements while also potentially reducing nitrous oxide emissions. However, their co-occurrence as dominant nitrifying bacteria is rarely reported in full-scale wastewater treatment. As a result, there is a poor understanding of how operational parameters, in particular, dissolved oxygen, impact their activity and synergistic behavior. Here, we report the impact of dissolved oxygen concentration (DO = 2, 4, 6 mg/L) on the microbial community's transcriptomic expression in a full-scale integrated fixed film activated sludge (IFAS) municipal wastewater treatment facility where nitrogen removal is predominantly performed by comammox Nitrospira and anammox bacterial populations. 16S rRNA transcript compositions revealed anammox bacteria and Nitrospira were significantly more active in IFAS biofilms compared to suspended sludge biomass. In IFAS biofilms, anammox bacteria significantly increased hzo expression at lower dissolved oxygen concentrations and this increase was highly correlated with the amoA expression levels of comammox bacteria. Interestingly, the genes involved in nitrite oxidation by comammox bacteria were significantly more upregulated, relative to the genes involved in ammonia oxidation with decreasing dissolved oxygen concentrations. Ultimately, our findings suggest that comammox Nitrospira supplies anammox bacteria with nitrite via ammonia oxidation and that this synergistic behavior is dependent on dissolved oxygen concentrations.

10.
J Environ Manage ; 366: 121803, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39002458

RESUMO

In this work, a novel polyurethane carrier modified with biochar and tourmaline/zeolite powder at ratio of 1:1 and 1:2 was developed to promote the formation of biofilms and the synergy of overall bacterial activity for Partial Denitrification/Anammox to treat low-nitrogen contaminated surface water. Based on the batch experiment, the modified biocarrier, BTP2 (biochar: tourmaline = 2: 1), exhibited the highest total nitrogen removal efficiency (83.63%) under influent total nitrogen of 15 mg/L and COD/NO3- of 3. The dense biofilm was formed in inner side of biocarrier owing to the increased surface roughness and various functional groups suggested by scanning electron microscopy and Fourier-transform infrared analysis. The EPS content increased from 200.15 to 220.26 mg/g VSS in BTP2 system. Besides, the rapid NH4+ capture and organics release of the modified carrier fueled the growth of anammox and denitrification bacteria, with the activity of 2.13 ± 0.52 mg N/gVSS/h and 6.70 ± 0.52 mg N/gVSS/h (BTP2). High-throughput sequencing unraveled the increased abundances of Candidatus_Competibacter (0.82%), Thauera (0.60%) and Candidatus_Brocadia (0.55%) which was responsible for the synergy of incomplete reduction of NO3- to NO2- and NH4+ oxidation. Overall, this study provided a valid and simple-control guide for biofilm formation towards rapid enrichment and great collaboration of Anammox and denitrification bacteria.

11.
Water Sci Technol ; 90(1): 270-286, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007319

RESUMO

The completely autotrophic nitrogen removal over nitrite (CANON) process is significantly hindered by prolonged start-up periods and unstable nitrogen removal efficiency. In this study, a novel umbrella basalt fiber (BF) carrier with good biological affinity and adsorption performance was used to initiate the CANON process. The CANON process was initiated on day 64 in a sequencing batch reactor equipped with umbrella BF carriers. During this period, the influent NH4+-N concentration gradually increased from 100 to 200 mg·L-1, and the dissolved oxygen was controlled below 0.8 mg L-1. Consequently, an average ammonia nitrogen removal efficiency (ARE) and total nitrogen removal efficiency (TNRE) of ∼90 and 80% were achieved, respectively. After 130 days, ARE and TNRE remained stable at 92 and 81.1%, respectively. This indicates a reliable method for achieving rapid start-up and stable operation of the CANON process. Moreover, Candidatus Kuenenia and Candidatus Brocadia were identified as dominant anammox genera on the carrier. Nitrosomonas was the predominant genus among ammonia-oxidizing bacteria. Spatial differences were observed in the microbial population of umbrella BF carriers. This arrangement facilitated autotrophic nitrogen removal in a single reactor. This study indicates that the novel umbrella BF carrier is a highly suitable biocarrier for the CANON process.


Assuntos
Processos Autotróficos , Reatores Biológicos , Nitritos , Nitrogênio , Nitrogênio/química , Nitritos/química , Eliminação de Resíduos Líquidos/métodos , Bactérias/metabolismo
12.
J Environ Sci (China) ; 146: 3-14, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969459

RESUMO

Bacillus velezensis M3-1 strain isolated from the sediment of Myriophyllum aquatium constructed wetlands was found to efficiently convert NO3--N to NO2--N, and the requirements for carbon source addition were not very rigorous. This work demonstrates, for the first time, the feasibility of using the synergy of anammox and Bacillus velezensis M3-1 microorganisms for nitrogen removal. In this study, the possibility of M3-1 that converted NO3--N produced by anammox to NO2--N was verified in an anaerobic reactor. The NO3--N reduction ability of M3-1 and denitrifying bacteria in coupling system was investigated under different C/N conditions, and it was found that M3-1 used carbon sources preferentially over denitrifying bacteria. By adjusting the ratio of NH4+-N to NO2--N, it was found that the NO2--N converted from NO3--N by M3-1 participated in the original anammox.The nitrogen removal efficacy (NRE) of the coupled system was increased by 12.1%, compared to the control group anammox system at C/N = 2:1. Functional gene indicated that it might be a nitrate reducing bacterium.This study shows that the nitrate reduction rate achieved by the Bacillus velezensis M3-1 can be high enough for removing nitrate produced by anammox process, which would enable improve nitrogen removal from wastewater.


Assuntos
Amônia , Bacillus , Nitratos , Nitrogênio , Oxirredução , Bacillus/metabolismo , Nitrogênio/metabolismo , Nitratos/metabolismo , Amônia/metabolismo , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Desnitrificação
13.
Bioresour Technol ; 406: 131070, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971392

RESUMO

In this study, two bioprocess models were first constructed with the newly-discovered comammox process described as one-step and two-step nitrification and evaluated against relevant experimental data. The validated models were then applied to reveal the potential effect of comammox bacteria on the granular bioreactor particularly suitable for undertaking partial nitritation/anammox (PN/A) under different operating conditions of bulk dissolved oxygen (DO) and influent NH4+. The results showed although comammox bacteria-based PN/A could achieve > 80.0 % total nitrogen (TN) removal over a relatively wider range of bulk DO and influent NH4+ (i.e., 0.25-0.40 g-O2/m3 and 470-870 g-N/m3, respectively) without significant nitrous oxide (N2O) production (< 0.1 %), the bulk DO should be finely controlled based on the influent NH4+ to avoid the undesired full nitrification by comammox bacteria. Comparatively, conventional ammonium-oxidizing bacteria (AOB)-based PN/A not only required higher bulk DO to achieve > 80.0 % TN removal but also suffered from 1.7 %∼2.8 % N2O production.

14.
Sci Total Environ ; 946: 174497, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38969131

RESUMO

Partial nitrification (PN) is crucial for anaerobic ammonium oxidation (ANAMMOX), but faces challenges such as high energy demands and process control. Recent research has highlighted additives like magnetite as potential alternatives to conventional electron acceptors (O2 and NO2-) for enhancing ammonium (NH4+) oxidation with lower energy consumption. This study investigated the effect of adding 50 mg/L of magnetite to ANAMMOX reactors, resulting in improved nitrogen (N) removal efficiency. The magnetite-added ANAMMOX (M-ANA) reactor yielded N removal efficiencies of 71 %, 66 %, and 57 % for NH4+:NO2- molar ratios of 1:1.3, 1:0.8, and 1:0.5, respectively. The M-ANA reactor operated under a 0.5 mol lower NO2- concentration achieved similar performance to the control ANAMMOX (C-ANA) reactor operated with a theoretical amount of NO2-. Moreover, the M-ANA reactor showed the potential to remove NH4+ by 56 % without any NO2- supplementation. Metagenomic analysis showed that the addition of magnetite significantly improved the relative abundance of microorganisms involved in the FEAMMOX reaction, such as Fimbriimonas ginsengisoli and Pseudomonas stutzeri. It also facilitated positive mutualism between ANAMMOX and FEAMMOX reactions. In addition, M-ANA granules exhibited a dense and compact structure compared with C-ANA, and the presence of magnetite facilitated the formation of resilient granules. Notably, the useful protein (Heme C) concentration and specific microbial activity in the M-ANA reactor were 1.3 and 2.2 times higher than those in the C-ANA reactor. Overall, the results demonstrate that an appropriate amount of magnetite can enhance the N removal efficiency while reducing the energy input requirements and associated carbon emissions. These findings can guide the future development of carbon- and energy-neutral N removal processes.


Assuntos
Compostos de Amônio , Reatores Biológicos , Óxido Ferroso-Férrico , Nitritos , Oxirredução , Eliminação de Resíduos Líquidos , Reatores Biológicos/microbiologia , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Nitritos/metabolismo , Compostos de Amônio/metabolismo , Nitrificação , Bactérias/metabolismo
15.
Microb Ecol ; 87(1): 82, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831142

RESUMO

Denitrification and anaerobic ammonium oxidation (anammox) are key processes for nitrogen removal in aquaculture, reducing the accumulated nitrogen nutrients to nitrogen gas or nitrous oxide gas. Complete removal of nitrogen from aquaculture systems is an important measure to solve environmental pollution. In order to evaluate the nitrogen removal potential of marine aquaculture ponds, this study investigated the denitrification and anammox rates, the flux of nitrous oxide (N2O) at the water-air interface, the sediment microbial community structure, and the gene expression associated with the nitrogen removal process in integrated multi-trophic aquaculture (IMTA) ponds (Apostistius japonicus-Penaeus japonicus-Ulva) with different culture periods. The results showed that the denitrification and anammox rates in sediments increased with the increase of cultivation periods and depth, and there was no significant difference in nitrous oxide gas flux at the water-air interface between different cultivation periods (p > 0.05). At the genus and phylum levels, the abundance of microorganisms related to nitrogen removal reactions in sediments changed significantly with the increase of cultivation period and depth, and was most significantly affected by the concentration of particulate organic nitrogen (PON) in sediments. The expression of denitrification gene (narG, nirS, nosZ) in surface sediments was significantly higher than that in deep sediments (p < 0.05), and was negatively correlated with denitrification rate. All samples had a certain anammox capacity, but no known anammox bacteria were found in the microbial diversity detection, and the expression of gene (hzsB) related to the anammox process was extremely low, which may indicate the existence of an unknown anammox bacterium. The data of this study showed that the IMTA culture pond had a certain potential for nitrogen removal, and whether it could make a contribution to reducing the pollution of culture wastewater still needed additional practice and evaluation, and also provided a theoretical basis for the nitrogen removal research of coastal mariculture ponds.


Assuntos
Aquicultura , Bactérias , Desnitrificação , Microbiota , Nitrogênio , Óxido Nitroso , Penaeidae , Lagoas , Nitrogênio/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Lagoas/microbiologia , Animais , Penaeidae/microbiologia , Óxido Nitroso/metabolismo , Óxido Nitroso/análise , Sedimentos Geológicos/microbiologia , Oxirredução , Compostos de Amônio/metabolismo
16.
Environ Res ; 258: 119456, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906445

RESUMO

Anaerobic biological treatment technology, especially denitrification and anaerobic ammonia oxidation (anammox) technology as mainstream process, played dominant role in the field of biological wastewater treatment. However, the above process was prone to sludge floating during high load operation and thereby affecting the efficient and stable operation of the system. Excessive production of extracellular polymeric substance (EPS) was considered to be the main reason for anaerobic granular sludge flotation, but the summaries in this area were not comprehensive enough. In this review, the potential mechanisms of denitrification and anammox sludge floatation were discussed from the perspective of granular sludge structural characteristics, nutrient transfer, and microbial flora change respectively, and the corresponding control strategies were also summarized. Finally, this paper indicated that future research on sludge flotation should focus on reducing the negative effects of EPS in sludge particles.

17.
Bioresour Technol ; 406: 130962, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38876278

RESUMO

Effluent from anammox granular sludge (AnGS) bioreactor contains microbes and microbial products. This study explored mechanisms of utilizing AnGS-effluent as biostimulant for anammox process enhancement. Compared with no AnGS-effluent supplemented control reactor, 5.0 and 1.3 times higher ammonium nitrogen and total inorganic nitrogen removal rates, respectively were obtained with continuous AnGS-effluent supplementation after 98 days' operation. Anammox bacteria from Candidatus Brocadia accounted for 0.1 % (DNA level) and 1.3 %-1.5 % (RNA level) in control reactor, and 2.9 % (DNA level) and 54.5 %-55.4 % (RNA level) in the AnGS-effluent-fed reactor. Influent microbial immigration evaluation showed that bacterial immigration via AnGS-effluent supplementation was not the main contributor to active anammox community development. Amino acids biosynthesis, B-vitamins and coenzymes metabolism related pathways were facilitated by AnGS-effluent supplementation. AnGS-effluent supplementation aided anammox metabolic activity by shaping microenvironment and microbial interactions. This study provides insights into enhancing anammox bacterial metabolism with AnGS-effluent microbial products as biostimulant.

18.
Bioresour Technol ; 406: 131011, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901751

RESUMO

Predicting thermodynamic adhesion energies was a critical strategy for mitigating membrane fouling. This study utilized a backpropagation (BP) neural network model to predict the thermodynamic adhesion energies associated with membrane fouling in a planktonic anammox MBR. Acid-base (ΔGAB), electrostatic double layer (ΔGEL), and Lifshitz-van der Waals (ΔGLW) energies were selected as output variables, the training dataset was collected by the advanced Derjaguin-Landau-Verwey-Overbeek (XDLVO) method. Optimization results identified "7-10-3″ as the optimal network structure for the BP model. The prediction results demonstrated a high degree of fit between the predicted and experimental values of thermodynamic adhesion energy (R2 ≥ 0.9278), indicating a robust predictive capability of the model in this study. Overall, the study presented a practical BP neural network model for predicting thermodynamic adhesion energies, significantly enhancing the prediction tool for adhesive fouling behavior in anammox MBRs.

19.
J Hazard Mater ; 476: 135070, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38944986

RESUMO

Dialkyldimethyl ammonium compound (DADMAC) is widely used in daily life as a typical disinfectant and often co-exists with the heavy metal zinc in sewage environments. This study investigated the effects of co-exposure to zinc (1 mg/L) and DADMAC (0.2-5 mg/L) on the performance, bacterial community, and resistance genes (RGs) in a partial sulfur autotrophic denitrification coupled with anaerobic ammonium oxidation (PSAD-Anammox) system in a sequencing batch moving bed biofilm reactor for 150 days. Co-exposure to zinc and low concentration (0.2 mg/L) DADMAC did not affect the nitrogen removal ability of the PASD-Anammox system, but increased the abundance and transmission risk of free RGs in water. Co-exposure to zinc and medium-to-high (2-5 mg/L) DADMAC led to fluctuations in and inhibition of nitrogen removal, which might be related to the enrichment of heterotrophic denitrifying bacteria dominated by Denitratisoma. Co-exposure to zinc and high concentration DADMAC (5 mg/L) stimulated the secretion of extracellular polymeric substances and increased the proliferation risk of intracellular RGs in sludge. This study provided insights into the application of PSAD-Anammox system and the ecological risks of wastewater containing zinc and DADMAC.

20.
mSystems ; : e0024324, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940525

RESUMO

The Mariana Trench (MT) is the deepest part of the ocean on Earth. Previous studies have described the microbial community structures and functional potential in the seawater and surface sediment of MT. Still, the metabolic features and adaptation strategies of the microorganisms involved in nitrogen cycling processes are poorly understood. In this study, comparative metagenomic approaches were used to study microbial nitrogen cycling in three MT habitats, including hadal seawater [9,600-10,500 m below sea level (mbsl)], surface sediments [0-46 cm below seafloor (cmbsf) at a water depth between 7,143 and 8,638 mbsl], and deep sediments (200-306 cmbsf at a water depth of 8,300 mbsl). We identified five new nitrite-oxidizing bacteria (NOB) lineages that had adapted to the oligotrophic MT slope sediment, via their CO2 fixation capability through the reductive tricarboxylic acid (rTCA) or Calvin-Benson-Bassham (CBB) cycle; an anammox bacterium might perform aerobic respiration and utilize sedimentary carbohydrates for energy generation because it contains genes encoding type A cytochrome c oxidase and complete glycolysis pathway. In seawater, abundant alkane-oxidizing Ketobacter species can fix inert N2 released from other denitrifying and/or anammox bacteria. This study further expands our understanding of microbial life in the largely unexplored deepest part of the ocean. IMPORTANCE: The metabolic features and adaptation strategies of the nitrogen cycling microorganisms in the deepest part of the ocean are largely unknown. This study revealed that anammox bacteria might perform aerobic respiration in response to nutrient limitation or O2 fluctuations in the Mariana Trench sediments. Meanwhile, an abundant alkane-oxidizing Ketobacter species could fix N2 in hadal seawater. This study provides new insights into the roles of hadal microorganisms in global nitrogen biogeochemical cycles. It substantially expands our understanding of the microbial life in the largely unexplored deepest part of the ocean.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA