Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
1.
Religion Brain Behav ; 14(3): 231-244, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39296490

RESUMO

Recent years have seen renewed interest in the role of religious systems as drivers of the evolution of cooperation in human societies. One suggestion is that a cultural tradition of ancestor worship might have evolved as a "descendant-leaving strategy" of ancestors by encouraging increased altruism particularly between distant kin. Specifically, Coe and others have suggested a mechanism of cultural transmission exploiting social learning biases, whereby ancestors have been able to establish parental manipulation of kin recognition and perceived relatedness as a traditional behavior, leading to increased altruism among co-descendants and thereby maximizing the ancestor's long-term inclusive fitness. Here, we develop a demographically explicit model in order to quantify the resulting increase in altruism and concomitant "ancestor-descendant conflict", and to determine the evolutionary feasibility of religiously motivated cultural norms that promote altruism among co-descendants. Our analysis reveals that such norms could indeed drive an overall increase in altruism with potential for ancestor-descendant conflict, particularly in low-dispersal settings. Moreover, we find that natural selection can favor traditions encouraging increased altruism towards co-descendants under a range of conditions, with the inclusive-fitness costs of enacting an inappropriately high level of altruism being offset by inclusive-fitness benefits derived from the cultural tradition facilitating kin recognition.

2.
Trends Genet ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39327101

RESUMO

All extant life is descended from a common ancestor, which, despite being very ancient, appears to have been a complex cellular organism. A new study by Moody et al. shows that this ancestor was not only a complex cell, but also lived within a microbial ecology likely inhabited by other complex cells.

3.
Biosystems ; 244: 105287, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39127441

RESUMO

I analyzed the polyphyletic origin of glycyl-tRNA synthetase (GlyRS) and lysyl-tRNA synthetase (LysRS), making plausible the following implications. The fact that the genetic code needed to evolve aminoacyl-tRNA synthetases (ARSs) only very late would be in perfect agreement with a late origin, in the main phyletic lineages, of both GlyRS and LysRS. Indeed, as suggested by the coevolution theory, since the genetic code was structured by biosynthetic relationships between amino acids and as these occurred on tRNA-like molecules which were evidently already loaded with amino acids during its structuring, this made possible a late origin of ARSs. All this corroborates the coevolution theory of the origin of the genetic code to the detriment of theories which would instead predict an early intervention of the action of ARSs in organizing the genetic code. Furthermore, the assembly of the GlyRS and LysRS protein domains in main phyletic lineages is itself at least evidence of the possibility that ancestral genes were assembled using pieces of genetic material that coded these protein domains. This is in accordance with the exon theory of genes which postulates that ancestral exons coded for protein domains or modules that were assembled to form the first genes. This theory is exemplified precisely in the evolution of both GlyRS and LysRS which occurred through the assembly of protein domains in the main phyletic lineages, as analyzed here. Furthermore, this late assembly of protein domains of these proteins into the two main phyletic lineages, i.e. a polyphyletic origin of both GlyRS and LysRS, appears to corroborate the progenote evolutionary stage for both LUCA and at least the first part of the evolutionary stages of the ancestor of bacteria and that of archaea. Indeed, this polyphyletic origin would imply that the genetic code was still evolving because at least two ARSs, i.e. proteins that make the genetic code possible today, were still evolving. This would imply that the evolutionary stages involved were characterized not by cells but by protocells, that is, by progenotes because this is precisely the definition of a progenote. This conclusion would be strengthened by the observation that both GlyRS and LysRS originating in the phyletic lineages leading to bacteria and archaea, would demonstrate that, more generally, proteins were most likely still in rapid and progressive evolution. Namely, a polyphyletic origin of proteins which would qualify at least the initial phase of the evolutionary stage of the ancestor of bacteria and that of archaea as stages belonging to the progenote.


Assuntos
Evolução Molecular , Código Genético , Glicina-tRNA Ligase , Lisina-tRNA Ligase , Filogenia , Código Genético/genética , Lisina-tRNA Ligase/genética , Lisina-tRNA Ligase/metabolismo , Glicina-tRNA Ligase/genética , Glicina-tRNA Ligase/metabolismo , Archaea/genética , Archaea/enzimologia , Bactérias/genética , Bactérias/enzimologia
4.
J Mol Evol ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122826
5.
Front Genet ; 15: 1433548, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39130749

RESUMO

Members of the genus Hemerocallis have significant value as ornamental, edible, and medicinal plants, particularly in China, where they have been utilized for thousands of years as both a vegetable and Traditional Chinese Medicine. Hemerocallis species exhibit strict control over flowering time, with individuals flowering either diurnally or nocturnally. However, our understanding of the evolutionary history of this genus, especially concerning important horticultural traits, remains limited. In this study, sequencing and assembly efforts were conducted on 73 samples within the Hemerocallis genus. All accessions were classified into two distinct groups based on their diurnal (daylilies) or nocturnal (nightlilies) flowering habits. Comparative analysis of the chloroplast genomes from these two groups identified fifteen variant hotspot regions, including fourteen SNPs and one deletion, which hold promise for the development of molecular markers for interspecific identification. Phylogenetic trees, generated through both maximum-likelihood and Bayesian inference methods using 76 shared protein-coding sequences, revealed that diurnal flowering evolved prior to nocturnal flowering. The divergence between the two groups is estimated to have occurred approximately 0.82 MYA (95% CI: 0.35-1.45 MYA). The ancestral state of Hemerocallis is hypothesized to have featured diurnal flowering with orange yellow petals. This study marks the first reconstruction of the evolutionary history and ancestral state of the genus Hemerocallis. The findings contribute significantly to our understanding of the adaptation and speciation history within the genus.

6.
Omega (Westport) ; : 302228241276239, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39163887

RESUMO

The meaning ascribed to death differs from one society to the other. This study adopts the descriptive method in unraveling the ritual of burial practices among the Ilaje people of Nigeria's Niger delta. Based on linguistic similarities, Ilaje people are part of the Yoruba ethnic group of Nigeria's Southwest area. Among the people, burial accorded to the dead is based on how the deceased died. The Ilaje groups death into five distinctive categories - death due to old-age, death caused by witchcraft or evil spirit, death through drowning by accident, death through curse, and death due to suicide. For the people, adult's death has two layers of meaning: sorrow and merriment. We conclude that physical death is viewed as part of the continuum of life's circle; it is the point when the dead pass to the realm of the ancestor who may be reborn into the family in the future.

7.
Microbiol Mol Biol Rev ; 88(3): e0000624, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-38995044

RESUMO

SUMMARYCilia and the nucleus were two defining features of the last eukaryotic common ancestor. In early eukaryotic evolution, these structures evolved through the diversification of a common membrane-coating ancestor, the protocoatomer. While in cilia, the descendants of this protein complex evolved into parts of the intraflagellar transport complexes and BBSome, the nucleus gained its selectivity by recruiting protocoatomer-like proteins to the nuclear envelope to form the selective nuclear pore complexes. Recent studies show a growing number of proteins shared between the proteomes of the respective organelles, and it is currently unknown how ciliary transport proteins could acquire nuclear functions and vice versa. The nuclear functions of ciliary proteins are still observable today and remain relevant for the understanding of the disease mechanisms behind ciliopathies. In this work, we review the evolutionary history of cilia and nucleus and their respective defining proteins and integrate current knowledge into theories for early eukaryotic evolution. We postulate a scenario where both compartments co-evolved and that fits current models of eukaryotic evolution, explaining how ciliary proteins and nucleoporins acquired their dual functions.


Assuntos
Núcleo Celular , Cílios , Cílios/metabolismo , Animais , Humanos , Núcleo Celular/metabolismo , Evolução Molecular , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Evolução Biológica , Eucariotos/metabolismo , Eucariotos/genética
8.
Front Plant Sci ; 15: 1410554, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974983

RESUMO

Introduction: Several studies of MADS-box transcription factors in flowering plants have been conducted, and these studies have indicated that they have conserved functions in floral organ development; MIKC-type MADS-box genes has been proved to be expanded in ferns, however, few systematic studies of these transcription factors have been conducted in non-seed plants. Although ferns and seed plants are sister groups, they exhibit substantial morphological differences. Methods: Here, we clarified the evolution of MADS-box genes across 71 extant fern species using available transcriptome, genome, and gene expression data. Results: We obtained a total of 2,512 MADS-box sequences, ranging from 9 to 89 per species. The most recent common ancestor (MRCA) of ferns contained approximately three type I genes and at least 5-6 type II MADS-box genes. The domains, motifs, expression of type I and type II proteins, and the structure of the both type genes were conserved in ferns as to other land plants. Within type II genes, MIKC*-type proteins are involved in gametophyte development in ferns; MIKCC-type proteins have broader expression patterns in ferns than in seed plants, and these protein sequences are likely conserved in extant seed plants and ferns because of their diverse roles in diploid sporophyte development. More than 90% of MADS-box genes are type II genes, and MIKCC genes, especially CRM1 and CRM6-like genes, have undergone a large expansion in leptosporangiate ferns; the diverse expression patterns of these genes might be related to the fuctional diversification and increased complexity of the plant body plan. Tandem duplication of CRM1 and CRM6-like genes has contributed to the expansion of MIKCC genes. Conclusion or Discussion: This study provides new insights into the diversity, evolution, and functions of MADS-box genes in extant ferns.

9.
J Mol Evol ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020132

RESUMO

Current evidence suggests that some form of cellular organization arose well before the time of the last universal common ancestor (LUCA). Standard phylogenetic analyses have shown that several protein families associated with membrane translocation, membrane transport, and membrane bioenergetics were very likely present in the proteome of the LUCA. Despite these cellular systems emerging prior to the LUCA, extant archaea, bacteria, and eukaryotes have significant differences in cellular infrastructure and the molecular functions that support it, leading some researchers to argue that true cellularity did not evolve until after the LUCA. Here, we use recently reconstructed minimal proteomes of the LUCA as well as the last archaeal common ancestor (LACA) and the last bacterial common ancestor (LBCA) to characterize the evolution of cellular systems along the first branches of the tree of life. We find that a broad set of functions associated with cellular organization were already present by the time of the LUCA. The functional repertoires of the LACA and LBCA related to cellular organization nearly doubled along each branch following the divergence of the LUCA. These evolutionary trends created the foundation for similarities and differences in cellular organization between the taxonomic domains that are still observed today.

10.
Int J Mol Sci ; 25(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39000014

RESUMO

Based on the nucleotide sequences of the mitochondrial genome (mitogenome) of specimens taken from two mussel species (Arcuatula senhousia and Mytilus coruscus), an investigation was performed by means of the complex approaches of the genomics, molecular phylogenetics, and evolutionary genetics. The mitogenome structure of studied mussels, like in many other invertebrates, appears to be much more variable than in vertebrates and includes changing gene order, duplications, and deletions, which were most frequent for tRNA genes; the mussel species' mitogenomes also have variable sizes. The results demonstrate some of the very important properties of protein polypeptides, such as hydrophobicity and its determination by the purine and pyrimidine nucleotide ratio. This fact might indirectly indicate the necessity of purifying natural selection for the support of polypeptide functionality. However, in accordance with the widely accepted and logical concept of natural cutoff selection for organisms living in nature, which explains its action against deleterious nucleotide substitutions in the nonsynonymous codons (mutations) and its holding of the active (effective) macromolecules of the polypeptides in a population, we were unable to get unambiguous evidence in favor of this concept in the current paper. Here, the phylogeny and systematics of mussel species from one of the largest taxons of bivalve mollusks are studied, the family known as Mytilidae. The phylogeny for Mytilidae (order Mytilida), which currently has no consensus in terms of systematics, is reconstructed using a data matrix of 26-27 mitogenomes. Initially, a set of 100 sequences from GenBank were downloaded and checked for their gender: whether they were female (F) or male (M) in origin. Our analysis of the new data confirms the known drastic differences between the F/M mitogenome lines in mussels. Phylogenetic reconstructions of the F-lines were performed using the combined set of genetic markers, reconstructing only protein-coding genes (PCGs), only rRNA + tRNA genes, and all genes. Additionally, the analysis includes the usage of nucleotide sequences composed of other data matrices, such as 20-68 mitogenome sequences. The time of divergence from MRCA, estimated via BEAST2, for Mytilidae is close to 293 Mya, suggesting that they originate in the Silurian Period. From all these data, a consensus for the phylogeny of the subfamily of Mytilinae and its systematics is suggested. In particular, the long-debated argument on mussel systematics was resolved as to whether Mytilidae, and the subfamily of Mytilinae, are monophyletic. The topology signal, which was strongly resolved in this paper and in the literature, has refuted the theory regarding the monophyly of Mytilinae.


Assuntos
Evolução Molecular , Genoma Mitocondrial , Filogenia , Animais , Genoma Mitocondrial/genética , Mytilidae/genética , Mytilidae/classificação , RNA de Transferência/genética , Bivalves/genética , Bivalves/classificação , Mytilus/genética , Mytilus/classificação
11.
Genome Biol Evol ; 16(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39058319

RESUMO

Membrane intrinsic proteins (MIPs), including aquaporins (AQPs) and aquaglyceroporins (GLPs), form an ancient family of transporters for water and small solutes across biological membranes. The evolutionary history and functions of MIPs have been extensively studied in vertebrates and land plants, but their widespread presence across the eukaryotic tree of life suggests both a more complex evolutionary history and a broader set of functions than previously thought. That said, the early evolution of MIPs remains obscure. The presence of one GLP and four AQP clades across both bacteria and archaea suggests that the first eukaryotes could have possessed up to five MIPs. Here, we report on a previously unknown richness in MIP diversity across all major eukaryotic lineages, including unicellular eukaryotes, which make up the bulk of eukaryotic diversity. Three MIP clades have likely deep evolutionary origins, dating back to the last eukaryotic common ancestor (LECA), and support the presence of a complex MIP repertoire in early eukaryotes. Overall, our findings highlight the growing complexity of the reconstructed LECA genome: the dynamic evolutionary history of MIPs was set in motion when eukaryotes were in their infancy followed by radiative bursts across all main eukaryotic lineages.


Assuntos
Aquaporinas , Eucariotos , Evolução Molecular , Filogenia , Eucariotos/genética , Eucariotos/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Aquaporinas/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/química
12.
Virus Genes ; 60(3): 275-286, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38594489

RESUMO

LesaNPV (Leucoma salicis nucleopolyhedrovirus) is an alphabaculovirus group Ib. Potentially, it can be an eco-friendly agent to control the white satin moth Leucoma salicis population. In this study, we have established the relationship between LesaNPV and other closely related alphabaculoviruses. Environmental samples of late instar of white satin moth collected in Poland infected with baculovirus have been homogenized, polyhedra were purified and subjected to scanning and transmission electron microscopy. Viral DNA was sequenced using the Illumina platform and the whole-genome sequence was established by de novo assembly of paired reads. Genome annotation and phylogenetic analyses were performed with the use of bioinformatics tools. The genome of LesaNPV is 132 549 bp long with 154 ORFs and 54.9% GC content. Whole-genome sequencing revealed deletion of dUTPase as well as ribonucleoside reductases small and large subunits region in LesaNPV genome compared to Dasychira pudibunda nucleopolyhedrovirus (DapuNPV) and Orgyia pseudotsugata multiple nucleopolyhedrovirus (OpMNPV) where this region is complete. Phylogenetic analysis of Baculoviridae family members showed that LesaNPV is less divergent from a common ancestor than closely related species DapuNPV and OpMNPV. This is interesting because their hosts do not occur in the same area. The baculoviruses described in this manuscript are probably isolates of one species and could be assigned to recently denominated species Alphabaculovirus orpseudotsugatae, historically originating from OpMNPV. This finding could have significant implications for the classification and understanding of the phylogeographical spread of baculoviruses.


Assuntos
Genoma Viral , Mariposas , Nucleopoliedrovírus , Filogenia , Nucleopoliedrovírus/genética , Nucleopoliedrovírus/classificação , Nucleopoliedrovírus/isolamento & purificação , Genoma Viral/genética , Animais , Mariposas/virologia , Fases de Leitura Aberta , Sequenciamento Completo do Genoma , DNA Viral/genética , Composição de Bases
13.
Biosystems ; 239: 105199, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641198

RESUMO

Over the past quarter-century, the field of evolutionary biology has been transformed by the emergence of complete genome sequences and the conceptual framework known as the 'Net of Life.' This paradigm shift challenges traditional notions of evolution as a tree-like process, emphasizing the complex, interconnected network of gene flow that may blur the boundaries between distinct lineages. In this context, gene loss, rather than horizontal gene transfer, is the primary driver of gene content, with vertical inheritance playing a principal role. The 'Net of Life' not only impacts our understanding of genome evolution but also has profound implications for classification systems, the rapid appearance of new traits, and the spread of diseases. Here, we explore the core tenets of the 'Net of Life' and its implications for genome-scale phylogenetic divergence, providing a comprehensive framework for further investigations in evolutionary biology.


Assuntos
Evolução Molecular , Fluxo Gênico , Genoma , Animais , Humanos , Transferência Genética Horizontal , Genoma/genética , Modelos Genéticos , Filogenia
14.
Artigo em Inglês | MEDLINE | ID: mdl-38666693

RESUMO

Some candidates of a new circulating recombinant form (CRF) of HIV-1 were found in northern Vietnam in our previous study. We succeeded in near full-length sequencing using MinION with plasma samples from 12 people living with HIV. Three of the samples were CRF109_0107, which was recently reported in China. Three others were the newly identified CRF127_07109, while six of them were considered to be CRF127_07109-related unique recombinant forms (URFs). The time to the most recent common ancestor of CRF127_07109 was estimated to be between 2015 and 2019. Our findings showed that CRF127_07109 and related URFs were generated recently in northern Vietnam, rather than migrated independently to northern Vietnam.

15.
Astrobiology ; 24(S1): S107-S123, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498818

RESUMO

All organisms living on Earth descended from a single, common ancestral population of cells, known as LUCA-the last universal common ancestor. Since its emergence, the diversity and complexity of life have increased dramatically. This chapter focuses on four key biological innovations throughout Earth's history that had a significant impact on the expansion of phylogenetic diversity, organismal complexity, and ecospace habitation. First is the emergence of the last universal common ancestor, LUCA, which laid the foundation for all life-forms on Earth. Second is the evolution of oxygenic photosynthesis, which resulted in global geochemical and biological transformations. Third is the appearance of a new type of cell-the eukaryotic cell-which led to the origin of a new domain of life and the basis for complex multicellularity. Fourth is the multiple independent origins of multicellularity, resulting in the emergence of a new level of complex individuality. A discussion of these four key events will improve our understanding of the intertwined history of our planet and its inhabitants and better inform the extent to which we can expect life at different degrees of diversity and complexity elsewhere.


Assuntos
Evolução Biológica , Planeta Terra , Filogenia , Oxigênio , Fotossíntese
16.
Biosystems ; 237: 105159, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38373543

RESUMO

I support the hypothesis that the origin of the genetic code occurred simultaneously with the evolution of cellularity. That is to say, I favour the hypothesis that the origin of the genetic code is a very, very late event in the history of life on Earth. I corroborate this hypothesis with observations favouring the progenote's stage for the Last Universal Common Ancestor (LUCA), for the ancestor of bacteria and that of archaea. Indeed, these progenotic stages would imply that - at that time - the origin of the genetic code was still ongoing simply because this origin would fall within the very definition of progenote. Therefore, if the evolution of cellularity had truly been coeval with the origin of the genetic code - at least in its terminal part - then this would favour theories such as the coevolution theory of the origin of the genetic code because this theory would postulate that this origin must have occurred in extremely complex protocellular conditions and not concerning stereochemical or physicochemical interactions having to do with other stages of the origin of life. In this sense, the coevolution theory would be corroborated while the stereochemical and physicochemical theories would be damaged. Therefore, the origin of the genetic code would be linked to the origin of the cell and not to the origin of life as sometimes asserted. Therefore, I will discuss the late hypothesis of the origin of the genetic code in the context of the theories proposed to explain this origin and more generally of its implications for the early evolution of life.


Assuntos
Evolução Molecular , Código Genético , Código Genético/genética , Bactérias/genética , Archaea/genética
17.
Orphanet J Rare Dis ; 19(1): 26, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38279137

RESUMO

BACKGROUND: Hereditary leiomyomatosis and renal cell cancer syndrome is a rare autosomal dominant hereditary syndrome. Previously, we published the largest cohort of FH mutation carriers in Spain and observed a highly recurrent missense heterozygous variant, FH(NM_000143.4):c.1118A > G p.(Asn373Ser), in 104 individuals from 31 apparently unrelated families. Here, we aimed to establish its founder effect and characterize the associated clinical phenotype. RESULTS: Haplotype analysis confirmed that families shared a common haplotype (32/38 markers) spanning 0.61-0.82 Mb, indicating this recurrent variant was inherited from a founder ancestor. Cutaneous and uterine leiomyomatosis were diagnosed in 64.6% (64/99) and 98% (50/51) of patients, respectively, and renal cell cancer was present in 10.4% (10/96). The pathogenic FH_c.1118A > G variant is a Spanish founder mutation that originated 12-26 generations ago. We estimate that the variant may have appeared between 1370 and 1720. Individuals carrying this founder mutation had similar frequency of renal cell cancer and a higher frequency of renal cysts and leiomyomas than those in other cohorts of this syndrome. CONCLUSIONS: In the Spanish province of Alicante there is a high prevalence of HLRCC because of the founder mutation FH c.1118A > G; p.(Asn373Ser). The characterization of founder mutations provides accurate and specific information regarding their penetrance and expressivity. In individuals with suspected HLRCC from the province of Alicante, genetic testing by direct analysis of the founder FH c.1118A > G; p.(Asn373Ser) mutation may be a faster and more efficient diagnostic tool compared with complete gene sequencing.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Leiomiomatose , Síndromes Neoplásicas Hereditárias , Neoplasias Cutâneas , Neoplasias Uterinas , Feminino , Humanos , Leiomiomatose/genética , Leiomiomatose/patologia , Neoplasias Renais/genética , Neoplasias Cutâneas/patologia , Mutação/genética , Síndrome
18.
BMC Genom Data ; 25(1): 4, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166646

RESUMO

BACKGROUND: We tackle the problem of estimating species TMRCAs (Time to Most Recent Common Ancestor), given a genome sequence from each species and a large known phylogenetic tree with a known structure (typically from one of the species). The number of transitions at each site from the first sequence to the other is assumed to be Poisson distributed, and only the parity of the number of transitions is observed. The detailed phylogenetic tree contains information about the transition rates in each site. We use this formulation to develop and analyze multiple estimators of the species' TMRCA. To test our methods, we use mtDNA substitution statistics from the well-established Phylotree as a baseline for data simulation such that the substitution rate per site mimics the real-world observed rates. RESULTS: We evaluate our methods using simulated data and compare them to the Bayesian optimizing software BEAST2, showing that our proposed estimators are accurate for a wide range of TMRCAs and significantly outperform BEAST2. We then apply the proposed estimators on Neanderthal, Denisovan, and Chimpanzee mtDNA genomes to better estimate their TMRCA with modern humans and find that their TMRCA is substantially later, compared to values cited recently in the literature. CONCLUSIONS: Our methods utilize the transition statistics from the entire known human mtDNA phylogenetic tree (Phylotree), eliminating the requirement to reconstruct a tree encompassing the specific sequences of interest. Moreover, they demonstrate notable improvement in both running speed and accuracy compared to BEAST2, particularly for earlier TMRCAs like the human-Chimpanzee split. Our results date the human - Neanderthal TMRCA to be [Formula: see text] years ago, considerably later than values cited in other recent studies.


Assuntos
Hominidae , Homem de Neandertal , Animais , Humanos , Homem de Neandertal/genética , Filogenia , Pan troglodytes/genética , Teorema de Bayes , Hominidae/genética , DNA Mitocondrial/genética
19.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38271287

RESUMO

DNA polymerases synthesize DNA from deoxyribonucleotides in a semiconservative manner and serve as the core of DNA replication and repair machinery. In eukaryotic cells, there are 2 genome-containing organelles, mitochondria, and plastids, which were derived from an alphaproteobacterium and a cyanobacterium, respectively. Except for rare cases of genome-lacking mitochondria and plastids, both organelles must be served by nucleus-encoded DNA polymerases that localize and work in them to maintain their genomes. The evolution of organellar DNA polymerases has yet to be fully understood because of 2 unsettled issues. First, the diversity of organellar DNA polymerases has not been elucidated in the full spectrum of eukaryotes. Second, it is unclear when the DNA polymerases that were used originally in the endosymbiotic bacteria giving rise to mitochondria and plastids were discarded, as the organellar DNA polymerases known to date show no phylogenetic affinity to those of the extant alphaproteobacteria or cyanobacteria. In this study, we identified from diverse eukaryotes 134 family A DNA polymerase sequences, which were classified into 10 novel types, and explored their evolutionary origins. The subcellular localizations of selected DNA polymerases were further examined experimentally. The results presented here suggest that the diversity of organellar DNA polymerases has been shaped by multiple transfers of the PolI gene from phylogenetically broad bacteria, and their occurrence in eukaryotes was additionally impacted by secondary plastid endosymbioses. Finally, we propose that the last eukaryotic common ancestor may have possessed 2 mitochondrial DNA polymerases, POP, and a candidate of the direct descendant of the proto-mitochondrial DNA polymerase I, rdxPolA, identified in this study.


Assuntos
Cianobactérias , Organelas , Organelas/genética , Filogenia , DNA Polimerase Dirigida por DNA/genética , Plastídeos/genética , Mitocôndrias , Cianobactérias/genética , Simbiose
20.
Dev Dyn ; 253(4): 370-389, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37837337

RESUMO

A previously unknown reference to the Russian ethnologist, biologist, and traveler Nikolai N. Miklucho-Maclay (1846-1888) was discovered in correspondence between Charles Darwin (1809-1882) and Ernst Haeckel (1834-1919). This reference has remained unknown to science, even to Miklucho-Maclay's biographers, probably because Darwin used the Russian nickname "Mikluska" when alluding to this young scientist. Here, we briefly outline the story behind the short discussion between Darwin and his German counterpart Haeckel, and highlight its importance for the history of science. Miklucho-Maclay's discovery of a putative swim bladder anlage in sharks, published in 1867, was discussed in four letters between the great biologists. Whereas, Haeckel showed enthusiasm for the finding because it supported (his view on) evolutionary theory, Darwin was less interested, which highlights the conceptual differences between the two authorities. We discuss the scientific treatment of Miklucho-Maclay's observation in the literature and discuss the homology, origin, and destiny of gas organs-swim bladders and lungs-in vertebrate evolution, from an ontogenetic point of view. We show that the conclusions reached by Miklucho-Maclay and Haeckel were rather exaggerated, although they gave rise to fundamental insights, and we illustrate how tree-thinking may lead to differences in the conceptualization of evolutionary change.


Assuntos
Desenvolvimento Embrionário , População Europeia , Humanos , Evolução Biológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA