RESUMO
Background: Acute ischemic stroke (AIS) is a leading cause of death and disability worldwide. This study aimed to evaluate the efficacy and safety of anisodine hydrobromide (Ani) injection in the treatment of AIS. Methods: Randomized controlled trials (RCTs) based on Ani injection for the treatment of AIS were retrieved from both Chinese and English databases. The retrieval period was from the databases' inception to May 2023. The Cochrane Collaboration Risk of Bias Tool was used to assess the methodological quality. The outcome indicators were analyzed using RevMan 5.3 software. Results: We included the findings of 11 RCTs encompassing 1,337 patients with AIS. Our meta-analysis revealed that Ani injection supplementation significantly reduced the National Institutes of Health Stroke Scale [MD = -1.53, 95%CI = (-1.94, -1.12), p < 0.00001], modified Rankin Scale [MD = -0.89, 95%CI = (-0.97, -0.81), p < 0.00001], and the relative time to peak [SMD = -0.81, 95%CI = (-1.08, -0.55), p < 0.00001] significantly. Additionally, Ani injection significantly increased the Barthel Index [MD = 10.65, 95%CI = (4.30, 17.00), p = 0.001], relative cerebral blood volume [SMD = 0.28, 95%CI = (0.02, 0.53), p = 0.03], and clinical efficacy [RR = 1.2, 95%CI = (1.08, 1.34), p = 0.001]. No statistically significant difference in the rate of adverse events was observed between the Ani injection supplemental group and the control group. Conclusion: Based on currently published evidence, Ani injection was found to be effective and safe in improving AIS outcome. Nevertheless, limitations of the included RCTs still exist, and thus, more multi-center, large-sample, high-quality RCTs are required to further verify the efficacy and safety of Ani injection in patients with AIS. Systematic Review Registration: [https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023427591], identifier [PROSPERO 2023 CRD42023427591].
RESUMO
PURPOSE: Anisodine hydrobromide (Ani) is isolated from the medicinal plant Anisodus tanguticus (Maxim.) Pascher for clinical use. Although considerable research regarding Ani has been reported, the safety profiles of Ani are currently unknown. This study investigated the cardiorespiratory effects of Ani in conscious dogs to provide clinicians a detailed safety profile of Ani on the cardiorespiratory system. MATERIALS AND METHODS: Using the Latin square design, the study was divided into six phases, where in each phase, six telemetered beagle dogs received one dose of normal saline or sotalol hydrochloride or Ani (0.1, 0.4, 1.6, or 6.4 mg/kg). Electrocardiogram, blood pressure (BP) and respiratory parameters were collected before and after administration for 24 hours. Statistical comparisons were performed at scheduled time-points. RESULTS: The heart rate was significantly increased, PR and QTCV intervals were significantly shortened in Ani 0.4, 1.6, 6.4 mg/kg treatment group after drug administration. Compared with the saline group, a significant increase in heart rate and shortening of PR, QTCV intervals were observed in the Ani 1.6, 6.4 mg/kg treatment groups from 5 min to 4 h time-points. Diastolic and mean BP were significantly increased in Ani 1.6, 6.4 mg/kg from 1 h to 2 h time-points compared to those of the saline control. Accelerated breathing was observed in the first 20 min after Ani 0.4, 1.6, and 6.4 mg/kg treatment, although not statistically significant. Furthermore, no significant differences were observed in any of the corresponding indexes of Ani 0.1 mg/kg treatment group at different time-points compared to those of the saline group. CONCLUSION: Ani may have adverse effects on the cardio-respiratory systems of dogs at doses above 0.4 mg/kg, whereas Ani 0.1 mg/kg was devoid of potentially deleterious effects on cardiorespiratory function.
Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Sistema Cardiovascular/efeitos dos fármacos , Respiração/efeitos dos fármacos , Derivados da Escopolamina/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Anti-Inflamatórios não Esteroides/toxicidade , Pressão Sanguínea/efeitos dos fármacos , Estado de Consciência , Cães , Eletrocardiografia , Feminino , Frequência Cardíaca/efeitos dos fármacos , Masculino , Derivados da Escopolamina/toxicidade , Sotalol/farmacologia , TelemetriaRESUMO
BACKGROUND: Chronic cerebral hypoperfusion is a common pathophysiological state in various cerebrovascular diseases. Anisodine has been reported to exert neuroprotective effects in cerebral ischemia/reperfusion (I/R) animal model. However, it is unclear whether anisodine hydrobromide, the hydrobromide format of anisodine, one of the tropic alkanes alkaloids, exhibits the same neuroprotective effect on chronic cerebral hypoperfusion(CCH) rats. Herein, we tried to unravel these issues. METHODS: CCH model in adult male Sprague-Dawley rats was established by permanent ligation of the bilateral common carotid arteries [two-vessel occlusion (2-VO)] surgery. Rats were randomly divided into six groups: sham, 2-VO, 2-VO + Butyl phthalide and sodium chloride injection (NBP, as positive control group), 2-VO + anisodine hydrobromide (AH)1.2mg/kg, 2-VO +AH0.6mg/kg, 2-VO +AH0.3mg/kg. Cognitive behavior was examined by Morris Water Maze Test. Neuronal survival and apoptosis were evaluated by Nissl staining and Terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL staining). The relative monoamine neurotransmitter (5-hydroxytryptamine (5-HT), norepinephrine (NA)), the content of Ach, the activity of acetylcholin esterase (AchE) were measured in cholinergic system, and the protein expressions of Bcl-2, Bax, p-Akt and p-GSK-3ßwere detected by Western blot assay. RESULTS: The results showed that there is significant memory impairment and a remarkable neuron necrosis and apoptosis, along with the dysfunction of the neurotransmitter systems and central cholinergic system in CCH rats. AH treatment could significantly improve cognitive deficits, while reducing neuron necrosis and apoptosis, apart from increasing the content of 5-HT and decreasing the activity of AchE markedly. Further study revealed that AH could promote the protein expression of Bcl-2, phosphorylation of Akt and GSK-3ß, and downregulate the protein of Bax. CONCLUSION: AH was demonstrated to ameliorate memory deficits by revising the imbalance of the monoamine neurotransmitter and cholinergic dysfunction. Moreover, AH can attenuate neuronal cell death and apoptosis by activating the Akt/GSK-3ßsignaling pathway.