RESUMO
BACKGROUND: Chagas disease is a parasitic infection transmitted by "kissing bugs" (Hemiptera: Reduviidae: Triatominae) that has a huge economic impact in Latin American countries. The vector species with the upmost epidemiological importance in Ecuador are Rhodnius ecuadoriensis (Lent & Leon, 1958) and Triatoma dimidiata (Latreille, 1811). However, other species such as Panstrongylus howardi (Neiva, 1911) and Panstrongylus chinai (Del Ponte, 1929) act as secondary vectors due to their growing adaptation to domestic structures and their ability to transmit the parasite to humans. The latter two taxa are distributed in two different regions, they are allopatric and differ mainly by their general color. Their relative morphological similarity led some authors to suspect that P. chinai is a melanic form of P. howardi. METHODS: The present study explored this question using different approaches: antennal phenotype; geometric morphometrics of heads, wings and eggs; cytogenetics; molecular genetics; experimental crosses; and ecological niche modeling. RESULTS: The antennal morphology, geometric morphometrics of head and wing shape and cytogenetic analysis were unable to show distinct differences between the two taxa. However, geometric morphometrics of the eggs, molecular genetics, ecological niche modeling and experimental crosses including chromosomal analyses of the F1 hybrids, in addition to their coloration and current distribution support the hypothesis that P. chinai and P. howardi are separate species. CONCLUSIONS: Based on the evidence provided here, P. howardi and P. chinai should not be synonymized. They represent two valid, closely related species.
Assuntos
Panstrongylus/classificação , Animais , Doença de Chagas/transmissão , Citogenética , Equador , Insetos Vetores/classificação , Insetos Vetores/parasitologia , Panstrongylus/parasitologia , Patologia Molecular , FenótipoRESUMO
BACKGROUND: In Brazil, Triatoma maculata is only found in the State of Roraima and is a vector of Trypanosoma cruzi, the etiological agent of Chagas disease. It occurs in wild, peridomestic and domestic habitats, with an urban infestation in Boa Vista, the capital of this Brazilian state. The aim of this study was to assess the morphological variability of the T. maculata antennal phenotype in three populations of Roraima State, using the antennal sensilla pattern analyzed under optical microscopy. METHODS: The number and distribution of four antennal sensilla types (bristles, thin and thick walled trichoidea, and basiconic) of three Brazilian populations of T. maculata from Roraima State were compared. Univariate and multivariate analyses were performed. RESULTS: The antenna of T. maculata presented the four types of sensilla. According to the density and distribution of the antennal sensilla characteristics, the multivariate analyses showed that the laboratory population is morphologically structured. Urban specimens showed a pronounced phenotypic variability. The main differences were observed in the pedicel segment, and between males and females. CONCLUSIONS: We determined the antennal phenotype in three Roraima populations of T. maculata. These results support the idea that the patterns of antennal sensilla are sensitive markers for distinct populations in the Triatominae. The infestations of T. maculata in different habitats reinforces the ability of this vector to become adapted to a variety of environments, which, could have eco-epidemiological implications for the T. cruzi transmission that are still not well understood.
Assuntos
Variação Biológica da População , Insetos Vetores/anatomia & histologia , Triatoma/anatomia & histologia , Distribuição Animal , Animais , Feminino , Insetos Vetores/fisiologia , Masculino , Densidade Demográfica , Sensilas/anatomia & histologia , Triatoma/fisiologiaRESUMO
Members of the Triatoma dimidiata complex are vectors of the protozoan parasite Trypanosoma cruzi, the etiologic agent of Chagas disease. Morphological and genetic studies indicate that T. dimidiata complex has three principal haplogroups in Mexico. However, whether there are differences in the olfactory physiology among the haplogroups of this complex and a possible correlation with their antennal phenotype are not yet known. Antennal responses to 13 compounds released from the metasternal and Brindley´s glands, which are involved in the alarm and mating-related behaviours of T. dimidiata were investigated using electroantennography (EAG). Overall, of the 13 compounds tested, seven triggered EAG responses in both sexes of three Mexican haplogroups. The sensitivity of the EAG responses show some relationship with the total number of chemo-sensilla present on the antennae. Antennal sensitivity was different between sexes and haplogroups of the T. dimidiata complex. Discriminant analysis of EAG sensitivity was significant, separating the three haplogroups. Our finding is consistent with morphological and genetic evidence for haplogroups distinction within the complex.
Assuntos
Doença de Chagas/transmissão , Glândulas Exócrinas/fisiologia , Insetos Vetores/fisiologia , Triatoma/fisiologia , Animais , Feminino , Insetos Vetores/genética , Masculino , Fenótipo , Triatoma/genéticaRESUMO
Triatoma dimidiata (Latreille) is a species complex that spans North, Central, and South America and which is a key vector of all known discrete typing units (DTU) of Trypanosoma cruzi, the etiologic agent of Chagas disease. Morphological and genetic studies indicate that T. dimidiata is a species complex with three principal haplogroups (hg) in Mexico. Different markers and traits are still inconclusive regarding if other morphological differentiation may indicate probable behavioral and vectorial divergences within this complex. In this paper we compared the antennae of three Mexican haplogroups (previously verified by molecular markers ND4 and ITS-2) and discussed possible relationships with their capacity to disperse and colonized new habitats. The abundance of each type of sensillum (bristles, basiconics, thick- and thin-walled trichoids) on the antennae of the three haplogroups, were measured under light microscopy and compared using Kruskal-Wallis non-parametric and multivariate non-parametric analyses. Discriminant analyses indicate significant differences among the antennal phenotype of haplogroups either for adults and some nymphal stages, indicating consistency of the character to analyze intraspecific variability within the complex. The present study shows that the adult antennal pedicel of the T. dimidiata complex have abundant chemosensory sensilla, according with good capacity for dispersal and invasion of different habitats also related to their high capacity to adapt to conserved as well as modified habitats. However, the numerical differences among the haplogroups are suggesting variations in that capacity. The results here presented support the evidence of T. dimidiata as a species complex but show females and males in a different way. Given the close link between the bug's sensory system and its habitat and host-seeking behavior, AP characterization could be useful to complement genetic, neurological and ethological studies of the closely related Dimidiata Complex haplogroups for a better knowledge of their vectorial capacity and a more robust species differentiation.
Assuntos
Antenas de Artrópodes/anatomia & histologia , Doença de Chagas/transmissão , Triatoma/fisiologia , Animais , Análise Discriminante , Ecossistema , Feminino , Masculino , México , Fenótipo , Caracteres Sexuais , Triatoma/anatomia & histologia , Triatoma/classificaçãoRESUMO
The presence of Triatoma infestans in habitats treated with insecticides constitutes a frequent problem in endemic areas. Basing our study on the hypothesis that descendants of a residual population should be more similar to the pre-treatment population than to any other, we compared the indications of two quantitative morphological approaches. This study seeks to find the origin of 247 T. infestans from three populations found in two chicken coops and a goat corral after treatment with insecticides. The results obtained by quantitative morphology suggest that the T. infestans found between three-34 months after the application of insecticides formed mixed populations with insects derived from residual foci and neighbouring habitats. Our analyses also showed the presence of a phenotype which does not resemble neither the pre-treatment phenotype nor the one from neighbouring populations, suggesting the presence of a particular post-treatment phenotype. The heads size showed some variations in males from different populations and remained unchanged in females, which reinforces the hypothesis of an intraspecific competition for food with priority for females. This article presents, for the first time, the combined analysis of geometric morphometry of heads and antennal phenotypes to identify the composition of reinfesting populations.