RESUMO
BACKGROUND/AIM: High-risk/refractory neuro-blastoma (NBL) treatments include anti-GD2-monoclonal antibodies (mAbs). Several immunoliposomes (ILs) covered with anti-GD2-mAbs (GD2-ILs) have been tested pre-clinically. We aimed to review literature on GD2-IL for characteristics of nanoparticles/payloads, conjugation of mAb/fragments and preclinical data, as well as to explore the feasibility of a recently proposed GD2-IL loaded with the antimetabolite oxamate. MATERIALS AND METHODS: Initial PubMed search was generalized for immunoliposomes in cancer. Further search was focused on papers for GD2-IL [keywords: "Immunoliposomes and cancer (or neuroblastoma)"]. RESULTS: There were 811 results on "immunoliposomes"; >50% were on "immunoliposomes, cancer" (n=439, June 2024). Seventeen items resulted from "immunoliposomes, neuroblastoma" (one was "publishers' correction"). Sixteen GD2-IL references were reviewed (1993-current). The mean±SD GD2-ILs size was 124.8±31 nm (range=86-171). Six papers described GD2-ILs with DNA-damaging agents [doxorubicin (n=4), etoposide (n=1), irinotecan+HDAC inhibitor (n=1)]. Other payloads included: fenretinide (n=4 papers), C-myb antisense (n=2), survivin inhibitor (n=1), tyrosine kinase inhibitor (n=1), IL15 (n=1), and oxamate (n=1). These 9 drug-loads included both hydrophilic and hydrophobic molecules. Except for IL15 and C-myb antisense with high molecular weights (MWs), and oxamate with low MW, the remaining compounds had comparable MWs (496±100 g/mol, range=349-588.6). The overall encapsulation efficiency was 66.2±25.6%. There were 17-30 mAb molecules attached to an IL with PEGylation. Experiments with GD2-positive/GD2-negative cells demonstrated selective efficacy/tropism of GD2-ILs. Mouse models confirmed efficacy, GD2-specific tumor accumulation, decreased toxicity, and improved pharmacokinetic-pharmacodynamics. CONCLUSION: PEGylated anti-GD2-IL may allow NBL tropism. A size of approximately 100 nm could allow vascular permeability and packaging of oxamate in amounts needed for profound/selective lactate dehydrogenase-A inhibition. Thus, oxamate-loaded GD2-ILs may allow exploring the great translational potential of Warburg effect inhibition in GD2-positive cancers.
Assuntos
Lipossomos , Nanopartículas , Neuroblastoma , Humanos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/imunologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Lipossomos/química , Nanopartículas/química , Animais , Gangliosídeos/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/farmacologiaRESUMO
Natural killer (NK) cells have multifaceted roles within the complex tumor milieu. They are pivotal components of innate immunity and shape the dynamic landscape of tumor-immune cell interactions, and thus can be leveraged for use in therapeutic interventions. NK-based immunotherapies have had remarkable success in hematological malignancies, but these therapies are met with many challenges in solid tumors, including neuroblastoma (NB), a childhood tumor arising from the sympathetic nervous system. With a focus on NB, this review outlines the mechanisms employed by NK cells to recognize and eliminate malignant cells, delving into the dynamic relationship between ligand-receptor interactions, cytokines, and other molecules that facilitate the cross talk between NK and NB cells. We discuss the immunomodulatory functions of NK cells and the mechanisms that contribute to loss of this immunosurveillance in NB, with a focus on how this dynamic has been utilized in recent immunotherapy advancements for NB.
RESUMO
PURPOSE: This study aims to investigate the effect of Niraparib in combination with an Anti-GD2 Antibody on osteosarcoma cells. METHODS: Scratch test was utilized to assess cell migration capacity, while the Transwell experiment was utilized to evaluate cell invasion potential. Cell proliferation was measured using the CCK8 experiment. The affinity between the anti-GD2 antibody and its antigen was determined via ELISA. Tumor growth was evaluated through animal experiments. Western blotting, QRT-PCR, and histological analysis were conducted to examine the expression of relevant proteins and mRNAs. RESULTS: MG63 cell line was used for an example. The scratch test showed that the migration rate of osteosarcoma cells in Niraparib + Anti-GD2 group was 1.07 ± 0.04 after 48 h, and 0.34 ± 0.04 in the Control group. Transwell experiment showed that the invasion ability of osteosarcoma cells in Niraparib + Anti-GD2 group was 21.0 ± 1.5, and that in Control group was 87.7 ± 2.9. CCK8 experiment showed that the absorbance value of Niraparib + Anti-GD2 group was 0.16 ± 0.10 on day 5, and that of the Control group was 0.76 ± 0.09. Western blotting showed that the expression levels of BALP and CICP in Niraparib + Anti-GD2 group were 0.751 ± 0.135 and 1.086 ± 0.115, respectively, and those in Control group were 1.025 ± 0.143 and 1.216 ± 0.168, respectively. QRT-PCR results showed that the absorbance values of Niraparib + Anti-GD2 group were 0.173 ± 0.065 and 0.170 ± 0.078 on day 14. The results of animal experiments showed that on day 5, the tumor volume of the Control group was 2433 ± 391, and that of the Niraparib + Anti-GD2 group was 1137 ± 148. Histological analysis showed that the mean density values of Niraparib + Anti-GD2 group were 0.19 ± 0.08 and 0.22 ± 0.07, and those of Control group were 0.26 ± 0.09 and 0.29 ± 0.10. CONCLUSION: The combination of Niraparib and Anti-GD2 antibody significantly inhibits Osteosarcoma cells.
RESUMO
PURPOSE: Current treatments for osteosarcoma (OS) have a poor prognosis, particularly for patients with metastasis and recurrence, underscoring an urgent need for new targeted therapies to improve survival. Targeted alpha-particle therapy selectively delivers cytotoxic payloads to tumors with radiolabeled molecules that recognize tumor-associated antigens. We have recently demonstrated the potential of an FDA approved, humanized anti-GD2 antibody, hu3F8, as a targeted delivery vector for radiopharmaceutical imaging of OS. The current study aims to advance this system for alpha-particle therapy of OS. METHODS: The hu3F8 antibody was radiolabeled with actinium-225, and the safety and therapeutic efficacy of the [225Ac]Ac-DOTA-hu3F8 were evaluated in both orthotopic murine xenografts of OS and spontaneously occurring OS in canines. RESULTS: Significant antitumor activity was proven in both cases, leading to improved overall survival. In the murine xenograft's case, tumor growth was delayed by 16-18 days compared to the untreated cohort as demonstrated by bioluminescence imaging. The results were further validated with magnetic resonance imaging at 33 days after treatment, and microcomputed tomography and planar microradiography post-mortem. Histological evaluations revealed radiation-induced renal toxicity, manifested as epithelial cell karyomegaly and suggestive polyploidy in the kidneys, suggesting rapid recovery of renal function after radiation damage. Treatment of the two canine patients delayed the progression of metastatic spread, with an overall survival time of 211 and 437 days and survival beyond documented metastasis of 111 and 84 days, respectively. CONCLUSION: This study highlights the potential of hu3F8-based alpha-particle therapy as a promising treatment strategy for OS.
Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Camundongos , Animais , Cães , Estudo de Prova de Conceito , Microtomografia por Raio-X , Anticorpos Monoclonais Humanizados , Osteossarcoma/diagnóstico por imagem , Osteossarcoma/radioterapia , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/radioterapia , Linhagem Celular TumoralRESUMO
BACKGROUND/AIM: Using the tyrosine hydroxylase (TH)-MYCN mouse neuroblastoma (NB) model, we have previously reported the accumulation of mouse mesenchymal stem cells (mMSCs) on tumors in vivo and the antitumor effect of mMSCs transfected with a small molecule (IFN-ß) expression gene. In this study, we have developed novel MSCs secreting anti-disialoganglioside GD2 antibody (anti-GD2-MSCs) and evaluated their antitumor effects in vitro. MATERIALS AND METHODS: We generated an anti-GD2 antibody construct (14.G2a-Fcx2-GFP) incorporating FLAG-tagged single-chain fragment variable against GD2 fused to a linker sequence, a fragment of the constant portion of human IgG1, and GFP protein. The construct was lentivirally transduced into mMSCs and the transduction efficiency was assessed by GFP expression. The secretion of FLAG-tagged anti-GD2 antibody was detected by Western blotting using anti-FLAG antibody. Antibody binding capacity was confirmed by flow cytometry. Antibody-dependent cellular cytotoxicity (ADCC) was evaluated using human NB cells and human natural killer (NK) cells to assess whether the antitumor activity was enhanced in the presence of the produced antibodies. RESULTS: The transduction efficiency of anti-GD2-MSCs was more than 90%. anti-GD2-MSCs secreted antibodies extracellularly and these antibodies had high affinity to GD2-expressing human NB cells. ADCC assays showed that the addition of antibodies secreted from anti-GD2-MSCs significantly increased the cytotoxic activity of NK cells against NB cells. CONCLUSION: Newly developed anti-GD2-MSCs produced functional antibodies that have affinity to the GD2 antigen on NB cells and can induce ADCC-mediated cytotoxicity. Anti-GD2-MSCs based cellular immunotherapy has the potential to be a novel therapeutic option for intractable NB.
Assuntos
Anticorpos Monoclonais , Células-Tronco Mesenquimais , Camundongos , Humanos , Animais , Anticorpos Monoclonais/farmacologia , Células Matadoras Naturais , Citotoxicidade Celular Dependente de Anticorpos , Imunoterapia , Gangliosídeos/genética , Gangliosídeos/metabolismoRESUMO
PURPOSE: Mouse IgG anti-disialoganglioside GD2 antibody-secreting mouse mesenchymal stem cells (anti-GD2-MSCs) were developed, and their anti-tumor effects were validated in an in vivo neuroblastoma mouse model. METHODS: Anti-GD2 antibody constructs were generated, incorporating FLAG-tagged single-chain fragment variables against GD2 fused to a linker sequence, and a fragment of a stationary portion was changed from human IgG to mouse IgG and GFP protein. The construct was lentivirally introduced into mouse MSCs. A syngeneic mouse model was established through the subcutaneous transplantation of a tumor tissue fragment from a TH-MYCN transgenic mouse, and the homing effects of anti-GD2-MSCs were validated by In vivo imaging system imaging. The syngeneic model was divided into three groups according to topical injection materials: anti-GD2-MSCs with IL-2, IL-2, and PBS. The tumors were removed, and natural killer (NK) cells were counted. RESULTS: Anti-GD2-MSCs showed homing effects in syngeneic models. The growth rate of subcutaneous tumors was significantly suppressed by anti-GD2-MSCs with IL-2 (p < 0.05). Subcutaneous tumor immunostaining showed an increased NK cell infiltration in the same group (p < 0.01). CONCLUSION: Anti-GD2-MSCs using mouse IgG showed a homing effect and significant tumor growth suppression in syngeneic models. Anti-GD2-MSC-based cellular immunotherapy could be a novel therapeutic strategy for intractable neuroblastoma.
Assuntos
Células-Tronco Mesenquimais , Neuroblastoma , Humanos , Camundongos , Animais , Gangliosídeos/uso terapêutico , Interleucina-2/uso terapêutico , Neuroblastoma/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Imunoglobulina G/uso terapêuticoRESUMO
Neurotoxicity is an off-tumour, on-target side effect of GD2-directed immunotherapy with monoclonal antibodies. Here, we report the frequency, management and outcome of patients enrolled in two prospective clinical trials who experienced severe neurotoxicity during immunotherapy with the anti-GD2 antibody dinutuximab beta (DB) administered as short-term infusion (HR-NBL1/SIOPEN study, randomisation R2, EudraCT 2006-001489-17) or as long-term infusion (HR-NBL1/SIOPEN study, randomisation R4, EudraCT 2006-001489-17 and LTI/SIOPEN study, EudraCT 2009-018077-31), either alone or with subcutaneous interleukin-2 (scIL-2). The total number of patients included in this analysis was 1102. Overall, 44/1102 patients (4.0%) experienced Grade 3/4 neurotoxicities (HR-NBL1 R2, 21/406; HR-NBL1 R4, 8/408; LTI study, 15/288), including 27 patients with severe neurotoxicities (2.5%). Events occurred predominantly in patients receiving combined treatment with DB and scIL-2. Neurotoxicity was treated using dexamethasone, prednisolone, intravenous immunoglobulins and, in two patients, plasmapheresis, which was highly effective. While neurological recovery was observed in 16 of 21 patients with severe neurotoxicities, 5/1102 (0.45%) patients experienced persistent and severe neurological deficits. In conclusion, severe neurotoxicity is most commonly observed in patients receiving DB with scIL-2. Considering the lack of clinical benefit for IL-2 in clinical trials so far, the administration of IL-2 alongside DB is not recommended.
RESUMO
Beta glucans, complex polysaccharides, prime leukocyte dectin-1 and CR3-receptors and enhance anti-tumor cytotoxicity of complement-activating monoclonal antibodies. We conducted a phase I study (clinicaltrials.gov NCT00492167) to determine the safety of the combination of yeast-derived beta glucan (BG) and anti-GD2 murine monoclonal antibody 3F8 in patients with relapsed or refractory high-risk neuroblastoma. Patients received intravenous 3F8 (fixed dose of 10 mg/m2/day × 10 days) and oral BG (dose-escalated from 10-200 mg/kg/day × 17 days in cohorts of 3-6 patients each). Forty-four patients completed 141 cycles. One patient developed DLT: transient self-limiting hepatic transaminase elevation 5 days after starting BG (120 mg/kg/day). Overall, 1, 3, 12 and 24 evaluable patients had complete response, partial response, stable and progressive disease, respectively, at the end of treatment. Positive human anti-mouse antibody response and dectin-1 rs3901533 polymorphism were associated with better overall survival. BG dose level and serum BG levels did not correlate with response. Progression-free and overall survival at 2 years were 28% and 61%, respectively. BG lacked major toxicity. Treatment with 3F8 plus BG was associated with anti-neuroblastoma responses in patients with resistant disease. Although the maximal tolerated dose for yeast BG was not reached, considering the large volume of oral BG, we recommended 40 mg/kg/day as the phase II dose.
RESUMO
Targeted immunotherapy has improved the outcome of patients with high-risk neuroblastoma (NB). However, immune escape of tumor cells still occurs and about 40% of NB patients relapse and die from their disease. We previously showed that natural killer (NK) cell stimulation by Toll-like receptor (TLR)-activated plasmacytoid dendritic cells (pDC) increases the efficacy of dinutuximab-based immunotherapy against NB cell lines via the TRAIL death-receptor pathway. With the aim to translate our findings into a novel adoptive therapy of TLR-activated pDC, we investigated the pDC/NK cell axis in NB patients undergoing dinutuximab-based immunotherapy. We show that pDC counts were low at the beginning of immunotherapy but reached normal levels over time. Blood NK cell counts were normal in all patients, although a high proportion of CD56bright CD16low/- cells was observed. The stimulation of patient's blood cells with a TLR9 ligand led to IFN-α production by pDC, and TRAIL expression on NK cell surface. Patient's NK cells expressed high levels of CD69 and TRAIL after stimulation with activated pDC. Both CD56bright CD16low/- and CD56dim CD16+ NK cells degranulated against autologous target cells in the presence of dinutuximab. Importantly, pDC-induced NK cell activation increased the dinutuximab mediated autologous killing of patient-derived NB cells. Altogether, our study demonstrates that TLR-activated pDC strongly increase the cytotoxic functions of NK cells in high-risk NB patients undergoing immunotherapy. These results, therefore, support pDC adoptive immunotherapy as a novel approach to decrease the risk of relapse in patients with high-risk NB.
Assuntos
Anticorpos Monoclonais/farmacologia , Células Dendríticas/imunologia , Células Matadoras Naturais/imunologia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/imunologia , Adolescente , Anticorpos Monoclonais/imunologia , Apresentação de Antígeno/imunologia , Criança , Pré-Escolar , Citotoxicidade Imunológica/imunologia , Feminino , Humanos , Imunoterapia/métodos , Imunoterapia Adotiva/métodos , Ativação Linfocitária/imunologia , Masculino , Recidiva Local de Neoplasia/imunologia , Receptores Toll-Like/imunologiaRESUMO
The introduction of immunotherapy using an anti-GD2 antibody (dinutuximab, ch14.18) has significantly improved survival rates for high-risk neuroblastoma patients. However, this improvement in survival is accompanied by a substantial immunotherapy-related toxicity burden. The primary objective of this study was to describe treatment-related toxicities during immunotherapy with dinutuximab, IL-2, GM-CSF, and isotretinoin. A retrospective, single center analysis of immunotherapy-related toxicities was performed in twenty-six consecutive high-risk neuroblastoma patients who received immunotherapy as maintenance therapy in the Princess Máxima Center (Utrecht, Netherlands). Toxicities were recorded and graded according to the CTCAE. Particular attention was drawn to pain and fever management and toxicities leading to dose modifications of dinutuximab and IL-2. Twenty-three patients (88%) completed all six courses of immunotherapy. Disease progression, isotretinoin-associated liver toxicity, and catheter-related infection in combination with peripheral neuropathy were reasons for immunotherapy discontinuation. The most common grade ≥3 toxicities for courses 1-5, respectively, were pain, catheter-related infections, and fever. In total, 310 grade ≥3 toxicities were recorded in 124 courses. Thirty-three grade 4 toxicities in 19/26 patients and no grade 5 toxicities (death) were seen. Fifty-nine percent of grade ≥3 toxicities were recorded in the two courses with IL-2. Catheter-related bloodstream infections were identified in 81% of patients. Four of these episodes led to intensive care admission followed by full recovery (grade 4).
RESUMO
Neuroblastoma (NB) is one of the most common extracranial, solid, pediatric malignancies. Despite improvements in conventional therapies, including surgery, chemotherapy and radiation therapy, the prognosis of stage IV NB remains poor, indicating that novel treatment strategies are required. Immunotherapies, such as anti-GD2 monoclonal antibodies, used alone or in combination with cytokines, and peripheral blood mononuclear cells or cord blood mononuclear cells (CBMNCs), have been indicated to cause NB cell death and to prolong patient survival in high-risk NB; however, they remain limited by severe cytotoxicity and side effects. In the present study, it was determined that anti-GD2 monoclonal antibody alone or CBMNC-isolated cytokine-induced killer (CIK)/natural killer (NK) cells alone significantly induced cell death of NB SK-N-SH cells, and the combination of anti-GD2 antibody and CIK/NK cells could significantly increase the cell death rate compared with either treatment alone. In addition, based on a method referred to our previous study, it was identified that a two-cytokine culture system, using interleukin IL-2 and IL-7, effectively stimulated the proliferation of CIK/NK cells. These results serve to suggest a novel treatment strategy for relapsed/refractory NB with high efficiency and few side effects.
RESUMO
Although anti-disialoganglioside (GD2) antibodies are successfully used for neuroblastoma therapy, a third of patients with neuroblastoma experience treatment failure or serious toxicity. Various strategies have been employed in the clinic to improve antibody-dependent cell-mediated cytotoxicity (ADCC), such as the addition of interleukin (IL)-2 to enhance natural killer (NK) cell function, adoptive transfer of allogeneic NK cells to exploit immune surveillance, and retinoid-induced differentiation therapy. Nevertheless, these mechanisms are not fully understood. We developed a quantitative assay to test ADCC induced by the anti-GD2 antibody Hu14.18K322A in nine neuroblastoma cell lines and dissociated cells from orthotopic patient-derived xenografts (O-PDXs) in culture. IL-2 improved ADCC against neuroblastoma cells, and differentiation with all-trans retinoic acid stabilized GD2 expression on tumor cells and enhanced ADCC as well. Degranulation was highest in licensed NK cells that expressed CD158b (P < 0.001) and harbored a killer-cell immunoglobulin-like receptor (KIR) mismatch against the tumor-specific human leukocyte antigen (HLA; P = 0.016). In conclusion, IL-2 is an important component of immunotherapy because it can improve the cytolytic function of NK cells against neuroblastoma cells and could lower the antibody dose required for efficacy, thereby reducing toxicity. The effect of IL-2 may vary among individuals and a biomarker would be useful to predict ADCC following IL-2 activation. Sub-populations of NK cells may have different levels of activity dependent on their licensing status, KIR expression, and HLA-KIR interaction. Better understanding of HLA-KIR interactions and the molecular changes following retinoid-induced differentiation is necessary to delineate their role in ADCC.
Assuntos
Anticorpos Monoclonais/administração & dosagem , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Gangliosídeos/imunologia , Células Matadoras Naturais/imunologia , Neuroblastoma/terapia , Terapia Combinada , Humanos , Interleucina-2/administração & dosagem , Neuroblastoma/imunologia , Neuroblastoma/patologia , Tretinoína/administração & dosagem , Células Tumorais CultivadasRESUMO
Immunotherapy with short term infusion (STI) of monoclonal anti-GD2 antibody (mAb) ch14.18 (4 × 25 mg/m2/d; 8-20 h) in combination with cytokines and 13-cis retinoic acid (RA) prolonged survival in high-risk neuroblastoma (NB) patients. Here, we investigated long-term infusion (LTI) of ch14.18 produced in Chinese hamster ovary cells (ch14.18/CHO; 10 × 10 mg/m2; 24 h) in combination with subcutaneous (s.c.) interleukin-2 (IL-2) in a single center program and report clinical response, toxicity and survival. Fifty-three high-risk NB patients received up to 6 cycles of 100 mg/m2 ch14.18/CHO (d8-17) as LTI combined with 6 × 106 IU/m2 s.c. IL-2 (d1-5; 8-12) and 160 mg/m2 oral RA (d19-32). Pain toxicity was documented with validated pain scores and intravenous (i.v.) morphine usage. Response was assessed in 37/53 evaluable patients following International Neuroblastoma Risk Group criteria. Progression-free (PFS) and overall survival (OS) was analyzed by the Kaplan-Meier method and compared to a matched historical control group from the database of AIEOP, the "Italian Pediatric Ematology and Oncology Association". LTI of ch14.18/CHO showed acceptable toxicity profile indicated by low pain scores, reduced i.v. morphine usage and low frequency of Grade ≥3 adverse events that allowed outpatient treatment. We observed a best response rate of 40.5% (15/37; 5 CR, 10 PR), 4-year (4 y) PFS of 33.1% (observation 0.1- 4.9 y, mean: 2.2 y) and a 4 y OS of 47.7% (observation 0.27 - 5.20 y, mean: 3.6 y). Survival of the entire cohort (53/53) and the relapsed patients (29/53) was significantly improved compared to historical controls. LTI of ch14.18/CHO thus shows an acceptable toxicity profile, objective clinical responses and a strong signal of clinical efficacy in NB patients.
Assuntos
Anticorpos Monoclonais/administração & dosagem , Antineoplásicos Imunológicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Gangliosídeos/imunologia , Imunoterapia/métodos , Neuroblastoma/terapia , Adolescente , Adulto , Anticorpos Monoclonais/efeitos adversos , Antineoplásicos Imunológicos/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Criança , Pré-Escolar , Esquema de Medicação , Feminino , Humanos , Imunoterapia/efeitos adversos , Lactente , Infusões Intravenosas , Interleucina-2/administração & dosagem , Isotretinoína/administração & dosagem , Masculino , Neuroblastoma/imunologia , Neuroblastoma/mortalidade , Neuroblastoma/patologia , Intervalo Livre de Progressão , Fatores de Tempo , Resultado do Tratamento , Adulto JovemRESUMO
High-risk neuroblastoma (HR-NB) includes MYCN-amplified stage 2/3, but reports covering anti-GD2 immunotherapy, which recently became standard for HR-NB, do not provide details on this subset. We now report on all 20 MYCN-amplified stage 2/3 patients who received induction chemotherapy at our center during the era of consolidation with anti-GD2 antibody 3F8/ granulocyte-macrophage colony-stimulating factor (GM-CSF) (2000-2015). Early in this period, consolidation included autologous stem-cell transplantation (ASCT). Event-free survival (EFS) and overall survival (OS) were estimated using Kaplan-Meier analyses. With induction, 19/20 (95%) patients achieved complete/very good partial remission (CR/VGPR) but one had progressive disease with early death. One responder did not receive consolidation and died of relapse. Five-year post-diagnosis EFS/OS rates for all 20 patients were 72%/84%. The 18 CR/VGPR patients who received consolidation had EFS/OS 81%/94% at five years from starting 3F8/GM-CSF: 4/4 ASCT patients remained relapse-free, while 11/14 non-ASCT patients remained relapse-free and two of the three relapsed patients achieved 2nd CR (consolidated by retreatment with 3F8/GM-CSF) and remained in 2nd CR at 36+ and 95+ months post-relapse. The 14 non-ASCT patients had EFS/OS 73.5%/93% at five years from starting 3F8/GM-CSF. This subset appears to have a good prognosis with contemporary multi-modality therapy, possibly even without ASCT.
RESUMO
Fifty-seven stage 4 patients with refractory/relapsed neuroblastoma were enrolled in a phase I trial (Clinicaltrials.gov NCT01757626) using humanized anti-GD2 monoclonal antibody hu3F8 in combination with granulocyte-macrophage colony-stimulating factor. The influence of body weight and human anti-human antibody (HAHA) on the pharmacokinetics (PK) of hu3F8, and the effect of de novo anti-GD2 response on patient outcome were explored. Serum samples before hu3F8 infusion, and serially up to day 12 during treatment cycle #1, and at 5 min after each hu3F8 infusion for all subsequent cycles were collected. PK was analyzed using non-compartmental modeling. Immunogenicity was assayed by HAHA response, and vaccination effect by induced host anti-GD2 response measured periodically until disease progression or last followup. Progression-free and overall survival was estimated by the Kaplan-Meier method. Despite dosing being based on body weight, smaller patients had consistently lower area-under-the-curve and faster clearance over the 15 dose levels (0.9 to 9.6 mg/kg per treatment cycle) in this trial. Positive HAHA, defined by the upper limit of normal, when measured within 10 days from the last hu3F8 dose received, was associated with significantly lower serum hu3F8. Despite prior sensitization to other anti-GD2 antibody, e.g. mouse 3F8 or ch14.18, 75% of the patients never developed HAHA response even after getting more treatment cycles. Hu3F8 induced a de novo anti-GD2 response in patients, which was prognostic of progression-free survival. We conclude that hu3F8 had low immunogenicity. During treatment, positive HAHA and low body weight affected PK adversely, whereas induced anti-GD2 response was an outcome predictor.
RESUMO
Since 2003, high-risk neuroblastoma (HR-NB) patients at our center received anti-GD2 antibody 3F8/GM-CSF + isotretinoin - but not myeloablative therapy with autologous stem-cell transplantation (ASCT). Post-ASCT patients referred from elsewhere also received 3F8/GM-CSF + isotretinoin. We therefore accrued a study population of two groups treated during the same period and whose consolidative therapy, aside from ASCT, was identical. We analyzed patients enrolled in 1st complete/very good partial remission (CR/VGPR). Their event-free survival (EFS) and overall survival (OS) were calculated from study entry. Large study size allowed robust statistical analyses of key prognosticators including MYCN amplification, minimal residual disease (MRD), FCGR2A polymorphisms, and killer immunoglobulin-like receptor genotypes of natural killer cells. The 170 study patients included 60 enrolled following ASCT and 110 following conventional chemotherapy. The two cohorts had similar clinical and biological features. Five-year rates for ASCT and non-ASCT patients were, respectively: EFS 65% vs. 51% (p = .128), and OS 76% vs. 75% (p = .975). In multivariate analysis, ASCT was not prognostic and only MRD-negativity after two cycles of 3F8/GM-CSF correlated with significantly improved EFS and OS. Although a trend towards better EFS is seen with ASCT, OS is near identical. Cure rates may be similar, as close surveillance detects localized relapse and effective salvage treatments are applied. ASCT may not be needed to improve outcome when anti-GD2 immunotherapy is used for consolidation after dose-intensive conventional chemotherapy.
Assuntos
Anticorpos Monoclonais/farmacologia , Gangliosídeos/imunologia , Imunoterapia/mortalidade , Isotretinoína/uso terapêutico , Recidiva Local de Neoplasia/mortalidade , Neuroblastoma/mortalidade , Transplante de Células-Tronco/mortalidade , Adolescente , Criança , Pré-Escolar , Terapia Combinada , Fármacos Dermatológicos/uso terapêutico , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/administração & dosagem , Humanos , Técnicas Imunoenzimáticas , Lactente , Recém-Nascido , Masculino , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/terapia , Estadiamento de Neoplasias , Neuroblastoma/patologia , Neuroblastoma/terapia , Prognóstico , Taxa de Sobrevida , Transplante AutólogoRESUMO
Relapse of high-risk neuroblastoma (HR-NB) is deemed invariably fatal yet increasing numbers of HR-NB patients achieve a second complete/very good partial remission (CR/VGPR), hence the urgency to find a successful consolidative therapy. Identifying efficacy in patients without assessable disease, however, is problematic. We report the first study providing outcome data for this group of patients with poor prognosis. To prevent another relapse, HR-NB patients in second or later CR/VGPR received the anti-GD2 murine antibody 3F8 plus granulocyte-macrophage colony-stimulating factor plus isotretinoin in a Phase II trial. Upon meeting the target aim for progression-free survival (PFS) in the initial cohort of 33 patients, the trial was amended to allow patients who developed human anti-mouse antibody (HAMA) to receive rituximab to ablate HAMA with or without low-dose maintenance chemotherapy until immunotherapy could resume. For the total of 101 study patients, 5-year PFS and overall survival (OS) rates were 33% ± 5% and 48% ± 5%, respectively. Among the 33 long-term progression-free survivors, 19 had MYCN amplification, 19 had previously received anti-GD2 immunotherapy plus isotretinoin (as first-line therapy), and 15 never received maintenance chemotherapy. In a multivariate analysis of prognostic factors, only absence of minimal residual disease in bone marrow after 2 cycles of immunotherapy and before initiation of isotretinoin or anti-HAMA therapy was significantly favorable for both PFS and OS. Therefore, long-term PFS is possible for HR-NB patients who achieve at least a second CR/VGPR and receive consolidation that includes anti-GD2 immunotherapy plus isotretinoin, even if the patients received these biological treatments before relapse. Results from this prospective study will aid in the development of future Phase II studies for this growing ultra high-risk patient population.