Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 845
Filtrar
1.
Indian J Microbiol ; 64(2): 548-557, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39010993

RESUMO

Scientific researches on the synthesis, characterisation, and biological activity of potassium nanoparticles (K NPs) are extremely rare. In our study, we successfully synthesised a novel form of K NPs using Capparis spinosa (C. spinosa) flower extract as a reducing and capping agent. The formation of K NPs in new form (K2O NPs) was confirmed by UV-vis and XRD spectra. Furthermore, the FTIR results indicated the presence of specific active biomolecules in the C. spinosa extract which played a crucial role in reducing and stabilising K2O NPs. SEM imaging demonstrated that the K2O NPs exhibited irregular shapes with nanosizes ranging between 25 and 95 nm. Remarkably, the biosynthesised K2O NPs displayed considerable antibacterial activity against a wide range of multidrug-resistant (MDR) pathogenic bacteria. K2O NPs demonstrated considerable anti-biofilm activity against preformed biofilms produced by MDR bacteria. Combining K2O NPs with conventional antibiotics greatly improved their efficacy in compacting the MDR bacterial strains. Industrially, bulk form of potassium oxides was commonly used in the preparation of various antimicrobial compounds such as detergents, bleach, and oxidising solutions. The synthesis of potassium oxide in nanoform has shown remarkable biological efficacy, making it a promising therapeutic approach for pharmaceutical and medical applications.

2.
Microb Pathog ; 193: 106771, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38969185

RESUMO

Despite modern advances in food hygiene, food poisoning due to microbial contamination remains a global problem, and poses a great threat to human health. Especially, Listeria monocytogenes and Staphylococcus aureus are gram-positive bacteria found on food-contact surfaces with biofilms. These foodborne pathogens cause a considerable number of food poisoning and infections annually. Ovomucin (OM) is a water-insoluble gel-type glycoprotein in egg whites. Enzymatic hydrolysis can be used to improve the bioactive properties of OM. This study aimed to investigate whether ovomucin hydrolysates (OMHs) produced using five commercial enzymes (Alcalase®, Bromelain, α-Chymotrypsin, Papain, and Pancreatin) can inhibit the biofilm formation of L. monocytogenes ATCC 15313, L. monocytogenes H7962, S. aureus KCCM 11593, and S. aureus 7. Particularly, OMH prepared with papain (OMPP; 500 µg/mL) significantly inhibited biofilm formation in L. monocytogenes ATCC 15313, L. monocytogenes H7962, S. aureus KCCM 11593, and S. aureus 7 by 85.56 %, 80.28 %, 91.70 %, and 79.00 %, respectively. In addition, OMPP reduced the metabolic activity, exopolysaccharide production (EPS), adhesion ability, and gene expression associated with the biofilm formation of these bacterial strains. These results suggest that OMH, especially OMPP, exerts anti-biofilm effects against L. monocytogenes and S. aureus. Therefore, OMPP can be used as a natural anti-biofilm agent to control food poisoning in the food industry.

3.
Microb Pathog ; 193: 106789, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972365

RESUMO

Urinary tract infections (UTIs) by Uropathogenic Escherichia coli (UPEC) are a significant health concern, especially due to the increasing prevalence of antibiotic resistance. This study focuses on isolating and characterizing bacteriophages specific to UPEC strains isolated from UTI samples. The isolated phages were assessed for their ability to target and lyse UPEC in vitro, focusing on their efficacy in disrupting biofilms, a key virulence factor contributing to UTI recurrence and antibiotic resistance. The morphological structure observed by TEM belongs to Myoviridae, the phage exhibited icosahedral symmetry with a long non-constricting tail, the approximate measurement of the phage head was 39 nm in diameter, and the phage tail was 105.317 nm in length. One-step growth experiments showed that the latent period was approximately 20 min, followed by a rise period of 40 min, and a growth plateau was reached within 20 min and the burst size observed was 26 phages/infected bacterial cells. These phages were capable of killing cells within the biofilms, leading to a reduction in living cell counts after a single treatment. This study highlights the potential of phages to play a significant role in disrupting, inactivating, and destroying Uropathogenic Escherichia coli (UPEC) biofilms. Such findings could be instrumental in developing treatment strategies that complement antibiotics and disinfectants. The phage-antibiotic synergistic activity was compared to have the possibility to facilitate the advancement of focused and enduring alternatives to traditional antibiotic therapies for UTIs.

4.
Int J Biol Macromol ; 275(Pt 2): 133559, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38955300

RESUMO

pH could play vital role in the wound healing process due to the bacterial metabolites, which is one essential aspect of desirable wound dressings lies in being pH-responsive. This work has prepared a degradable hyaluronic acid hydrogel dressing with wound pH response-ability. The aldehyde-modified hyaluronic acid (AHA) was obtained, followed by complex mixture formation of eugenol and oregano antibacterial essential oil in the AHA-CMCS hydrogel through the Schiff base reaction with carboxymethyl chitosan (CMCS). This hydrogel composite presents pH-responsiveness, its disintegration mass in acidic environment (pH = 5.5) is 4 times that of neutral (pH = 7.2), in which the eugenol release rate increases from 37.6 % to 82.1 %. In vitro antibacterial and in vivo wound healing investigations verified that hydrogels loaded with essential oils have additional 5 times biofilm removal efficiency, and significantly accelerate wound healing. Given its excellent anti-biofilm and target-release properties, the broad application of this hydrogel in bacteria-associated wound management is anticipated.

5.
Helicobacter ; 29(4): e13110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39001634

RESUMO

BACKGROUND: Antimicrobial-resistant Helicobacter pylori (H. pylori) poses a significant public health concern, especially given the limited therapeutic options for azithromycin-resistant strains. Hence, there is a necessity for new studies to reconsider the use of azithromycin, which has diminished in effectiveness against numerous strains. Thus, we aimed to augment azithromycin's anti-Helicobacter properties by combining it with curcumin in different formulations, including curcumin in clove oil, curcumin nano-gold emulsion, and curcumin nanoemulsion. METHODS: The antimicrobial activities of the investigated compounds, both individually and in combination with other anti-Helicobacter drugs, were evaluated. Their antibiofilm and anti-virulence properties were assessed using both phenotypic and genotypic methods, alongside molecular docking studies. Our findings were further validated through mouse protection assays and histopathological analysis. RESULTS: We observed high anti-Helicobacter activities of curcumin, especially curcumin nanoemulsion. A synergistic effect was detected between curcumin nanoemulsion and azithromycin with fraction inhibitory concentration index (FICI) values <0.5. The curcumin nanoemulsion was the most active anti-biofilm and anti-virulence compound among the examined substances. The biofilm-correlated virulence genes (babA and hopQ) and ureA genes were downregulated (fold change <1) post-treatment with curcumin nanoemulsion. On the protein level, the anti-virulence activities of curcumin nanoemulsion were documented based on molecular docking studies. These findings aligned with histopathological scoring of challenge mice, affirming the superior efficacy of curcumin nanoemulsion/azithromycin combination. CONCLUSION: The anti-Helicobacter activities of all curcumin physical forms pose significant challenges due to their higher  minimum inhibitory concentration (MIC) values exceeding the maximum permissible level. However, using curcumin nanoemulsion at sub-MIC levels could enhance the anti-Helicobacter activity of azithromycin and exhibit anti-virulence properties, thereby improving patient outcomes and addressing resistant pathogens. Therefore, more extensive studies are necessary to assess the safety of incorporating curcumin nanoemulsion into H. pylori treatment.


Assuntos
Antibacterianos , Azitromicina , Biofilmes , Curcumina , Infecções por Helicobacter , Simulação de Acoplamento Molecular , Azitromicina/farmacologia , Azitromicina/química , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Camundongos , Biofilmes/efeitos dos fármacos , Curcumina/farmacologia , Curcumina/química , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/genética , Testes de Sensibilidade Microbiana , Sinergismo Farmacológico , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Virulência/efeitos dos fármacos , Feminino
6.
Braz J Microbiol ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028533

RESUMO

Actinobacteria, pervasive in aquatic and terrestrial environments, exhibit a filamentous morphology, possess DNA with a specific G + C content and production of numerous secondary metabolites. This study, focused on actinobacteria isolated from marine seagrass, investigating their antibacterial activity against fish pathogens. Among 28 isolates, Streptomyces argenteolus TMA13 displayed the maximum zone of inhibition against fish pathogens-Aeromonas hydrophila (10 mm), Aeromonas caviae (22 mm), Edwardsiella tarda (17 mm), Vibrio harveyi (22 mm) and Vibrio anguillarum (12 mm) using the agar plug method. Optimization of this potent strain involved with various factors, including pH, temperature, carbon source and salt condition to enhance both yield production and antibacterial efficacy. In anti-biofilm assay shows the maximum percentage of inhibition while increasing concentration of TMA13 extract. Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) assays with TMA13 crude extract demonstrated potent activity against fish pathogens at remarkably low concentrations. Time-kill kinetics assay showcased growth curve variations over different time intervals for all fish pathogens treated with a 100 µg/ml concentration of crude extract, indicating a decline in cells viability and progression into the death phase. Additionally, fluorescence microscopic visualization of bacterial cells exposed to the extracts emitting green and red fluorescence, enabling live-dead cell differentiation was also studied. Further characterization of the crude extract through GC-MS and FT-IR analyses performed and identified secondary metabolites with functional groups exhibiting significant antibacterial activity. This study elucidates the capacity of Streptomyces argenteolus TMA13 to enhance the production of antibiotic compounds effective against fish pathogens.

7.
Braz J Microbiol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954220

RESUMO

Biosurfactants, sustainable alternatives to petrochemical surfactants, are gaining attention for their potential in medical applications. This study focuses on producing, purifying, and characterizing a glycolipid biosurfactant from Candida sp. UFSJ7A, particularly for its application in biofilm prevention on siliconized latex catheter surfaces. The glycolipid was extracted and characterized, revealing a critical micellar concentration (CMC) of 0.98 mg/mL, indicating its efficiency at low concentrations. Its composition, confirmed through Fourier transform infrared spectroscopy (FT-IR) and thin layer chromatography (TLC), identified it as an anionic biosurfactant with a significant ionic charge of -14.8 mV. This anionic nature contributes to its biofilm prevention capabilities. The glycolipid showed a high emulsification index (E24) for toluene, gasoline, and soy oil and maintained stability under various pH and temperature conditions. Notably, its anti-adhesion activity against biofilms formed by Escherichia coli, Enterococcus faecalis, and Candida albicans was substantial. When siliconized latex catheter surfaces were preconditioned with 2 mg/mL of the glycolipid, biofilm formation was reduced by up to 97% for E. coli and C. albicans and 57% for E. faecalis. These results are particularly significant when compared to the efficacy of conventional surfactants like SDS, especially for E. coli and C. albicans. This study highlights glycolipids' potential as a biotechnological tool in reducing biofilm-associated infections on medical devices, demonstrating their promising applicability in healthcare settings.

8.
Exploration (Beijing) ; 4(1): 20230092, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38854496

RESUMO

Colorectal cancer (CRC) is generally characterized by a high prevalence of Fusobacterium nucleatum (F. nucleatum), a spindle-shaped, Gram-negative anaerobe pathogen derived from the oral cavity. This tumor-resident microorganism has been closely correlated with the occurrence, progression, chemoresistance and immunosuppressive microenvironment of CRC. Furthermore, F. nucleatum can specifically colonize CRC tissues through adhesion on its surface, forming biofilms that are highly resistant to commonly used antibiotics. Accordingly, it is crucial to develop efficacious non-antibiotic approaches to eradicate F. nucleatum and its biofilms for CRC treatment. In recent years, various antimicrobial strategies, such as natural extracts, inorganic chemicals, organic chemicals, polymers, inorganic-organic hybrid materials, bacteriophages, probiotics, and vaccines, have been proposed to combat F. nucleatum and F. nucleatum biofilms. This review summarizes the latest advancements in anti-F. nucleatum research, elucidates the antimicrobial mechanisms employed by these systems, and discusses the benefits and drawbacks of each antimicrobial technology. Additionally, this review also provides an outlook on the antimicrobial specificity, potential clinical implications, challenges, and future improvements of these antimicrobial strategies in the treatment of CRC.

9.
Drug Des Devel Ther ; 18: 1917-1932, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828022

RESUMO

The oral cavity is an excellent place for various microorganisms to grow. Spectrococcus mutans and Spectrococcus sanguinis are Gram-negative bacteria found in the oral cavity as pioneer biofilm formers on the tooth surface that cause caries. Caries treatment has been done with antibiotics and therapeutics, but the resistance level of S. mutans and S. sanguinis bacteria necessitates the exploration of new drug compounds. Black cumin (Nigella sativa Linn.) is known to contain secondary metabolites that have antioxidant, antibacterial, anti-biofilm, anti-inflammatory and antifungal activities. The purpose of this review article is to present data on the potential of Nigella sativa Linn seeds as anti-biofilm. This article will discuss biofilm-forming bacteria, the resistance mechanism of antibiotics, the bioactivity of N. sativa extracts and seed isolates together with the Structure Activity Relationship (SAR) review of N. sativa compound isolates. We collected data from reliable references that will illustrate the potential of N. sativa seeds as anti-biofilm drug.


Assuntos
Antibacterianos , Biofilmes , Cárie Dentária , Nigella sativa , Compostos Fitoquímicos , Sementes , Biofilmes/efeitos dos fármacos , Nigella sativa/química , Sementes/química , Cárie Dentária/microbiologia , Cárie Dentária/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
10.
Front Cell Infect Microbiol ; 14: 1414861, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938883

RESUMO

Introduction: Recent studies have demonstrated a positive role of hyaluronic acid (HA) on periodontal clinical outcomes. This in-vitro study aimed to investigate the impact of four different HAs on interactions between periodontal biofilm and immune cells. Methods: The four HAs included: high-molecular-weight HA (HHA, non-cross-linked), low-molecular-weight HA (LHA), oligomers HA (OHA), and cross-linked high-molecular-weight HA (CHA). Serial experiments were conducted to verify the influence of HAs on: (i) 12-species periodontal biofilm (formation and pre-existing); (ii) expression of inflammatory cytokines and HA receptors in monocytic (MONO-MAC-6) cells and periodontal ligament fibroblasts (PDLF) with or without exposure to periodontal biofilms; (iii) generation of reactive oxygen species (ROS) in MONO-MAC-6 cells and PDLF with presence of biofilm and HA. Results: The results indicated that HHA and CHA reduced the bacterial counts in a newly formed (4-h) biofilm and in a pre-existing five-day-old biofilm. Without biofilm challenge, OHA triggered inflammatory reaction by increasing IL-1ß and IL-10 levels in MONO-MAC cells and IL-8 in PDLF in a time-dependent manner, whereas CHA suppressed this response by inhibiting the expression of IL-10 in MONO-MAC cells and IL-8 in PDLF. Under biofilm challenge, HA decreased the expression of IL-1ß (most decreasing HHA) and increased IL-10 levels in MONO-MAC-6 cells in a molecular weight dependent manner (most increasing CHA). The interaction between HA and both cells may occur via ICAM-1 receptor. Biofilm stimulus increased ROS levels in MONO-MAC-6 cells and PDLF, but only HHA slightly suppressed the high generation of ROS induced by biofilm stimulation in both cells. Conclusion: Overall, these results indicate that OHA induces inflammation, while HHA and CHA exhibit anti-biofilm, primarily anti-inflammatory, and antioxidant properties in the periodontal environment.


Assuntos
Biofilmes , Citocinas , Fibroblastos , Ácido Hialurônico , Espécies Reativas de Oxigênio , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Ácido Hialurônico/farmacologia , Ácido Hialurônico/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Fibroblastos/efeitos dos fármacos , Citocinas/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/metabolismo , Ligamento Periodontal/citologia , Ligamento Periodontal/microbiologia , Ligamento Periodontal/efeitos dos fármacos , Linhagem Celular , Interleucina-1beta/metabolismo , Interleucina-10/metabolismo
11.
ACS Infect Dis ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922179

RESUMO

Antimicrobial peptides (AMPs) are becoming next-generation alternative antibacterial agents because of the rapid increase in resistance in bacteria against existing antibiotics, which can also be attributed to the formation of resilient biofilms. However, their widespread use is limited because of their poor absorption, higher dosage requirements, and delayed onset of the bioactivity to elicit a desired response. Here we developed a short AMP that specifically targeted Fusobacterium nucleatum. We conjugated 23R to a statherin-derived peptide (SDP) through rational design; this conjugate binds to FomA, a major porin protein of F. nucleatum. The SDP-tagged 23R exhibited rapid and highly specific bactericidal efficacy against F. nucleatum. Further, IC50 values were in the nanomolar range, and they were 100-fold lower than those obtained with unconjugated 23R. In a human gut microbiota model, 0.1 nM SDP-23R achieved 99% clearance of F. nucleatum ATCC 25586 without markedly altering resident microbiota. Here we demonstrated that binding-peptide-coupled AMPs show increased killing efficacy and specificity for the target pathogen without affecting the resident microbiota.

12.
Nanomaterials (Basel) ; 14(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38921893

RESUMO

Tetrahedral amorphous carbon (taC) is a hydrogen-free carbon with extensive properties such as hardness, optical transparency, and chemical inertness. taC coatings have attracted much attention in recent times, as have coatings doped with a noble metal. A known antimicrobial metal agent, silver (Ag), has been used as a dopant in taC, with different Ag concentrations on the Ti64 coupons using a hybrid filtered cathodic vacuum arc (FCVA) and magnetron sputtering system. The physiochemical properties of the coated surface were investigated using spectroscopic and electron microscopy techniques. A doping effect of Ag-taC on biofilm formation was investigated and found to have a significant effect on the bacterial-biofilm-forming bacteria Staphylococcus aureus and Pseudomonas aeruginosa depending on the concentration of Ag. Further, the effect of coated and uncoated Ag-taC films on a pathogenic bacterium was examined using SEM. The result revealed that the Ag-taC coatings inhibited the biofilm formation of S. aureus. Therefore, this study demonstrated the possible use of Ag-taC coatings against biofilm-related complications on medical devices and infections from pathogenic bacteria.

13.
Antibiotics (Basel) ; 13(6)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38927206

RESUMO

Dental caries is a global health problem that requires better prevention measures. One of the goals is to reduce the prevalence of the cariogenic Gram-positive bacterium Streptococcus mutans. We have recently shown that naturally occurring arachidonic acid (AA) has both anti-bacterial and anti-biofilm activities against this bacterium. An important question is how these activities are affected by other anti-bacterial compounds commonly used in mouthwashes. Here, we studied the combined treatment of AA with chlorhexidine (CHX), cetylpyridinium chloride (CPC), triclosan, and fluoride. Checkerboard microtiter assays were performed to determine the effects on bacterial growth and viability. Biofilms were quantified using the MTT metabolic assay, crystal violet (CV) staining, and live/dead staining with SYTO 9/propidium iodide (PI) visualized by spinning disk confocal microscopy (SDCM). The bacterial morphology and the topography of the biofilms were visualized by high-resolution scanning electron microscopy (HR-SEM). The effect of selected drug combinations on cell viability and membrane potential was investigated by flow cytometry using SYTO 9/PI staining and the potentiometric dye DiOC2(3), respectively. We found that CHX and CPC had an antagonistic effect on AA at certain concentrations, while an additive effect was observed with triclosan and fluoride. This prompted us to investigate the triple treatment of AA, triclosan, and fluoride, which was more effective than either compound alone or the double treatment. We observed an increase in the percentage of PI-positive bacteria, indicating increased bacterial cell death. Only AA caused significant membrane hyperpolarization, which was not significantly enhanced by either triclosan or fluoride. In conclusion, our data suggest that AA can be used together with triclosan and fluoride to improve the efficacy of oral health care.

14.
J Pharm Bioallied Sci ; 16(Suppl 2): S1554-S1564, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38882883

RESUMO

Wild bitter melon (Momordica charantia) extracts were prepared and their antibacterial and anti-biofilm assay were investigated against two different periodontopathic bacteria (Prevotella intermedia and Porphyromonas gingivalis) for the first time to the best of our knowledge based on the presence of different phytochemical compounds. Momordica charantia solvent extracts were prepared and phytochemical analysis was performed. Minimal inhibitory and bactericidal concentrations were determined. Antibacterial activity was evaluated using the standard well diffusion method. Anti-inflammatory studies on periodontal ligament (PDL) cell viability and lipopolysaccharide (LPS)-induced inflammation were performed. Molecular docking was investigated between the bioactive compound (Charantadiol A) of plant extract and biofilm-expressing genes in each test organism. Phytochemicals from ethanol extract showed promising results; alkaloids, flavonoids, phenols, and tannins were found present at considerable levels. The minimum inhibitory concentration was found to be 400 µg/mL for Prevotella intermedia and Porphyromonas gingivalis. Antibacterial activity expressed in terms of zone of inhibition showed 14 mm to 18 mm zones against the test organisms. The molecular docking report revealed the maximum binding energy of about -6.54 Kcal/Mol of binding energy between Charantadiol A and fimA of Porphyromonas gingivalis. Anti-biofilm study showed that the minimum biofilm eradication concentration (MBEC) of Momordica charantia expressed significantly good results against the test organisms. The PDL cell viability values expressed in percentage indicated the anti-inflammatory properties of Momordica charantia extracts at three different known concentrations. The findings concluded that Momordica charantia extracts have promising prospects as an anti-periodontopathic and anti-inflammatory agent.

15.
J Appl Microbiol ; 135(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38866718

RESUMO

AIM: Isolation, identification, structural and functional characterization of potent anti-Candida compound with specific antagonistic activities against significant human pathogens, Candida albicans and C. auris. METHODS AND RESULTS: The compound (55B3) was purified from the metabolites produced by Streptomyces chrestomyceticus ADP4 by employing column chromatography. The structure of 55B3 was determined from the analyses of spectral data that included LCMS, nuclear magnetic resonance, FTIR, and UV spectroscopies. It was identified as a novel derivative of diterpenic aromatic acid, 3-(dictyotin-11'-oate-15'α, 19'ß-olide)-4-(dictyotin-11'-oate-15″α, 19″ß-olide)-protocatechoic acid. The compound displayed potent antifungal and anti-biofilm activities against C. albicans ATCC 10231 (Minimum Inhibitory Concentration, MIC90:14.94 ± 0.17 µgmL-1 and MBIC90: 16.03 ± 1.1 µgmL-1) and against C. auris CBS 12372 (MIC90: 21.75 ± 1.5 µgmL-1 and Minimum Biofilm Inhibitory Concentration, MBIC90: 18.38 ± 1.78 µgmL-1). Further, pronounced inhibition of important virulence attributes of Candida spp., e.g. yeast-to-hyphae transition, secretory aspartyl proteinase and phospholipase B by 55B3 was noted at subinhibitory concentrations. A plausible mechanism of anti-Candida action of the compound appeared to be the inhibition of ergosterol biosynthesis, which was inhibited by 64 ± 3% at the MIC90 value. The non-cytotoxic attribute of the compound was noted in the liver cell line (HepG2 cells). CONCLUSION: The present work led to the discovery of a novel diterpenic derivative produced by S. chrestomyceticus ADP4. The compound displayed potent anti-Candida activity, particularly against the two most significant human pathogens, C. albicans and C. auris, which underlined its significance as a potential drug candidate for infections involving these pathogens.


Assuntos
Antifúngicos , Biofilmes , Candida albicans , Testes de Sensibilidade Microbiana , Streptomyces , Fatores de Virulência , Biofilmes/efeitos dos fármacos , Streptomyces/metabolismo , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Humanos , Candida/efeitos dos fármacos
16.
AAPS PharmSciTech ; 25(5): 106, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724834

RESUMO

The primary factor underlying the virulence of Candida albicans is its capacity to form biofilms, which in turn leads to recurrent complications. Over-the-counter antifungal treatments have proven ineffective in eliminating fungal biofilms and the inflammatory cytokines produced during fungal infections. Chitosan nanoparticles offer broad and versatile therapeutic potential as both antifungal agents and carriers for antifungal drugs to combat biofilm-associated Candida infections. In our study, we endeavoured to develop chitosan nanoparticles utilising chitosan and the antifungal crosslinker phytic acid targeting C. albicans. Phytic acid, known for its potent antifungal and anti-inflammatory properties, efficiently crosslinks with chitosan. The nanoparticles were synthesised using the ionic gelation technique and subjected to analyses including Fourier transform infrared spectroscopy, dynamic light scattering, and zeta potential analysis. The synthesised nanoparticles exhibited dimensions with a diameter (Dh) of 103 ± 3.9 nm, polydispersity index (PDI) of 0.33, and zeta potential (ZP) of 37 ± 2.5 mV. These nanoparticles demonstrated an antifungal effect with a minimum inhibitory concentration (MIC) of 140 ± 2.2 µg/mL, maintaining cell viability at approximately 90% of the MIC value and reducing cytokine levels. Additionally, the nanoparticles reduced ergosterol content and exhibited a 62% ± 1.2 reduction in biofilm susceptibility, as supported by colony-forming unit (CFU) and XTT assays-furthermore, treatment with nanoparticles reduced exopolysaccharide production and decreased secretion of aspartyl protease by C. albicans. Our findings suggest that the synthesised nanoparticles effectively combat Candida albicans infections. In vivo studies conducted on a mouse model of vaginal candidiasis confirmed the efficacy of the nanoparticles in combating fungal infections in vivo.


Assuntos
Anti-Inflamatórios não Esteroides , Antifúngicos , Biofilmes , Candida albicans , Candidíase Vulvovaginal , Quitosana , Reagentes de Ligações Cruzadas , Nanopartículas , Ácido Fítico , Biofilmes/efeitos dos fármacos , Ácido Fítico/química , Ácido Fítico/farmacologia , Ácido Fítico/uso terapêutico , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia , Reagentes de Ligações Cruzadas/uso terapêutico , Quitosana/química , Quitosana/farmacologia , Quitosana/uso terapêutico , Nanopartículas/química , Nanopartículas/uso terapêutico , Antifúngicos/química , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Testes de Sensibilidade Microbiana , Citocinas/imunologia , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Feminino , Animais , Camundongos , Candidíase Vulvovaginal/tratamento farmacológico , Candidíase Vulvovaginal/metabolismo , Vagina/microbiologia
17.
J Funct Biomater ; 15(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38786632

RESUMO

This study aims to develop multi-functional bio-safe dental resin composites with capabilities for mineralization, high in vitro biocompatibility, and anti-biofilm properties. To address this issue, experimental resin composites consisting of UDMA/TEGDMA-based dental resins and low quantities (1.9, 3.8, and 7.7 vol%) of 45S5 bioactive glass (BAG) particles were developed. To evaluate cellular responses of resin composites, MC3T3-E1 cells were (1) exposed to the original composites extracts, (2) cultured directly on the freshly cured resin composites, or (3) cultured on preconditioned composites that have been soaked in deionized water (DI water), a cell culture medium (MEM), or a simple HEPES-containing artificial remineralization promotion (SHARP) solution for 14 days. Cell adhesion, cell viability, and cell differentiation were, respectively, assessed. In addition, the anti-biofilm properties of BAG-loaded resin composites regarding bacterial viability, biofilm thickness, and biofilm morphology, were assessed for the first time. In vitro biological results demonstrated that cell metabolic activity and ALP expression were significantly diminished when subjected to composite extracts or direct contact with the resin composites containing BAG fillers. However, after the preconditioning treatments in MEM and SHARP solutions, the biomimetic calcium phosphate minerals on 7.7 vol% BAG-loaded composites revealed unimpaired or even better cellular processes, including cell adhesion, cell proliferation, and early cell differentiation. Furthermore, resin composites with 1.9, 3.8, and 7.7 vol% BAG could not only reduce cell viability in S. mutans biofilm on the composite surface but also reduce the biofilm thickness and bacterial aggregations. This phenomenon was more evident in BAG7.7 due to the high ionic osmotic pressure and alkaline microenvironment caused by BAG dissolution. This study concludes that multi-functional bio-safe resin composites with mineralization and anti-biofilm properties can be achieved by adding low quantities of BAG into the resin system, which offers promising abilities to mineralize as well as prevent caries without sacrificing biological activity.

18.
Braz J Microbiol ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789905

RESUMO

This study aims to evaluate the antibacterial activity of Lactobacillus acidophilus, alone and in combination with ciprofloxacin, against otitis media-associated bacteria. L. acidophilus cells were isolated from Vitalactic B (VB), a commercially available probiotic product containing two lactobacilli species, L. acidophilus and Lactiplantibacillus (formerly Lactobacillus) plantarum. The pathogenic bacterial samples were provided by Al-Shams Medical Laboratory (Baqubah, Iraq). Bacterial identification and antibiotic susceptibility testing for 16 antibiotics were performed using the VITEK2 system. The minimum inhibitory concentration of ciprofloxacin was also determined. The antimicrobial activity of L. acidophilus VB1 cell-free supernatant (La-CFS) was evaluated alone and in combination with ciprofloxacin using a checkerboard assay. Our data showed significant differences in the synergistic activity when La-CFS was combined with ciprofloxacin, in comparison to the use of each compound alone, against Pseudomonas aeruginosa SM17 and Proteus mirabilis SM42. However, an antagonistic effect was observed for the combination against Staphylococcus aureus SM23 and Klebsiella pneumoniae SM9. L. acidophilus VB1 was shown to significantly co-aggregate with the pathogenic bacteria, and the highest co-aggregation percentage was observed after 24 h of incubation. The anti-biofilm activities of CFS and biosurfactant (BS) of L. acidophilus VB1 were evaluated, and we found that the minimum biofilm inhibitory concentration that inhibits 50% of bacterial biofilm (MBIC50) of La-CFS was significantly lower than MBIC50 of La-BS against the tested pathogenic bacterial species. Lactobacillus acidophilus, isolated from Vitane Vitalactic B capsules, demonstrated promising antibacterial and anti-biofilm activities against otitis media pathogens, highlighting its potential as an effective complementary/alternative therapeutic strategy to control bacterial ear infections.

19.
Pharmaceuticals (Basel) ; 17(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38794143

RESUMO

The formation of microbial biofilm is a self-organizing process among bacterial cells, regulated by quorum-sensing (QS) mechanisms, contributing to development of infections. These processes, either separately or in combination, significantly contribute to bacterial resistance to antibiotics and disinfectants. A novel approach to addressing the challenge of treating infections due to antibacterial resistance involves the use of plant metabolites. In recent years, there has been increasing recognition of different phytochemicals as potential modulators. In our study, we evaluated the synergistic effect of chloroform and methanol extracts from Inula species against key virulence factors, including biofilm formation, violacein production, and swarming motility. Each of the 11 examined plant extracts demonstrated the ability to reduce biofilms and pigment synthesis in C. violaceum. Two of the extracts from I. britannica exhibited significant anti-biofilm and anti-quorum-sensing effects with over 80% inhibition. Their inhibitory effect on violacein synthesis indicates their potential as anti-QS agents, likely attributed to their high concentration of terpenoids (triterpenoids, sesquiterpene lactones, and diterpenoids). Scanning electron microscopy revealed a notable reduction in biofilm biomass, along with changes in biofilm architecture and cell morphology. Additionally, fluorescence microscopy revealed the presence of metabolically inactive cells, indicating the potent activity of the extracts during treatment. These new findings underscore the effectiveness of the plant extracts from the genus Inula as potential anti-virulent agents against C. violaceum. They also propose a promising strategy for preventing or treating its biofilm formation.

20.
Chemistry ; 30(38): e202401103, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38716707

RESUMO

This review covers the most recent advances in the development of inhibitors for the bacterial enzyme sortase A (SrtA). Sortase A (SrtA) is a critical virulence factor, present ubiquitously in Gram-positive bacteria of which many are pathogenic. Sortases are key enzymes regulating bacterial adherence to host cells, by anchoring extracellular matrix-binding proteins to the bacterial outer cell wall. By targeting virulence factors, effective treatment can be achieved, without inducing antibiotic resistance to the treatment. This is a potentially more sustainable, long-term approach to treating bacterial infections, including ones that display multiple resistance to current therapeutics. There are many promising approaches available for SrtA inhibition, some of which have the potential to advance into further clinical development, with peptidomimetic and in vivo active small molecules being among the most promising. There are currently no approved drugs on the market targeting SrtA, despite its promise, adding to the relevance of this review article, as it extends to the pharmaceutical industry additionally to academic researchers.


Assuntos
Aminoaciltransferases , Antibacterianos , Proteínas de Bactérias , Cisteína Endopeptidases , Peptidomiméticos , Bibliotecas de Moléculas Pequenas , Aminoaciltransferases/antagonistas & inibidores , Aminoaciltransferases/metabolismo , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/química , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Antibacterianos/química , Antibacterianos/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Humanos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Bactérias Gram-Positivas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA