Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.600
Filtrar
1.
Food Chem ; 462: 140920, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39208732

RESUMO

The use of direct injection ion mobility mass spectrometry (DI-IM-MS) to detect and identify betacyanin pigments in A. hortensis 'rubra' extracts was explored for the first time, with results compared to conventional LC-MS/MS analysis. The anti-inflammatory activities of leaf and seed extracts, alongside purified amaranthin and celosianin pigments, were investigated using a model of lipopolysaccharide (LPS)-activated murine macrophages. Extracts and purified pigments significantly inhibited the production of prostaglandin E2 and NO by up to 90% and 70%, respectively, and reduced the expression of Il6, Il1b, Nos2, and Cox2. Leaf and seed extracts also decreased secretion of Il6 and Il1b cytokines and reduced protein levels of Nos2 and Cox2. Furthermore, extracts and purified pigments demonstrated potent dose-dependent radical scavenging activity in a cellular antioxidant activity assay (CAA) without any cytotoxic effects. Our research highlights the promising biological potential of edible, climate-resilient A. hortensis 'rubra' as a valuable source of bioactive compounds.


Assuntos
Lipopolissacarídeos , Macrófagos , Estresse Oxidativo , Extratos Vegetais , Camundongos , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Células RAW 264.7 , Estresse Oxidativo/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/imunologia , Ciclo-Oxigenase 2/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Espectrometria de Massas em Tandem
2.
Bioorg Chem ; 153: 107864, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39383808

RESUMO

Garciyunnanol A (1), an unprecedented 1,2-seco-bicyclic polyprenylated acylphloroglucinol (BPAP) possessing a unique 6/6/6 tricyclic core, was characterized from Garcinia yunnanensis together with 16 BPAPs, including eight new compounds (garciyunnanols B-I, 2-9). Biogenetically, the bicyclo[3.3.1]nonane-2,4,9-trione moiety of 12 reconstructed the bicyclic δ-lactone core of 2 through Norrish type Ⅰ cleavage and cyclization, followed by a cyclization of two side chains to form an intriguing 6/6/6 tricyclic core of 1. Their structures were elucidated through analysis of spectroscopic data, calculation and comparison of ECD spectra. Bioactivity evaluation manifested that compounds 1, 2, 5, 6 and 14 demonstrated superior inhibition of NO production compared to the positive control dexamethasone. Notably, compound 5 exhibited a dose-dependent inhibitory effect on NO production, with an IC50 value of 0.25 ± 0.87 µM. Furthermore, experiments involving ELISA, Western blotting, and immunofluorescence staining revealed that 5 effectively reduced the secretion of interleukin-1ß in LPS plus nigericin-stimulated THP-1 macrophages by inhibiting the activation of the NLRP3 inflammasome.

3.
Bioorg Chem ; 153: 107871, 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39383809

RESUMO

Bioaspermeroterpenoid A (1), the first meroterpenoid with an unprecedented hexadecahydroacephenanthrylene carbon skeleton, together with two analogues bioaspermeroterpenoids B and C (2 and 3) were co-isolated from the biotransformation extract of aspermeroterpene C by the fungus Penicillium herquei GZU-31-6. On the other hand, bioaspermeroterpenoid Aa (1a) featuring the same hexadecahydroacephenanthrylene carbon skeleton was synthesized from the precursor aspermeroterpene C by the nucleophilic addition reaction in the presence of CH3ONa. Furthermore, bioaspermeroterpenoids A and C showed good inhibitory activities against lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 cells with IC50 values of 26.08 and 7.50 µM, respectively, compared to the positive control (Indomethacin, IC50 24.1 µM). Especially, bioaspermeroterpenoids A and C also significantly suppressed the protein expression of iNOS and COX-2 at the concentration of 12.5 µM.

4.
Front Immunol ; 15: 1455996, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39376562

RESUMO

The focal point of probiotic efficacy and a crucial factor influencing poultry cultivation lies in the level of intestinal inflammation. In conventional farming processes, the reduction of intestinal inflammation generally proves advantageous for poultry growth. This study investigated the impact of Bacillus amyloliquefaciens TL (B.A.-TL) on inflammatory factor expression at both tissue and cellular levels, alongside an exploration of main active secondary metabolites. The results demonstrated that broiler feeding with a basal diet containing 4 × 109 CFU/kg B.A.-TL markedly enhanced chicken growth performance, concomitant with a significant decrease in the expression of genes encoding inflammatory cytokines (e.g., CCL4, CCR5, XCL1, IL-1ß, IL-6, IL-8, LITAF, and LYZ) in jejunum and ileum tissues. The extracellular polysaccharides of B.A.-TL (EPS-TL) exhibited notable suppression of elevated inflammatory cytokine expression induced by Escherichia coli O55 lipopolysaccharides (LPS) in chicken macrophage-like cells (HD11) and primary chicken embryonic small intestinal epithelial cells (PCIECs). Moreover, EPS-TL demonstrated inhibitory effect on NF-κB signaling pathway activation. These findings suggested that the metabolic product of B.A.-TL (i.e., EPS-TL) could partly mitigate the enhanced expression of inflammatory factors induced by LPS stimulation, indicating its potential as a key component contributing to the anti-inflammatory effects of B.A.-TL.


Assuntos
Bacillus amyloliquefaciens , Galinhas , Polissacarídeos Bacterianos , Probióticos , Animais , Bacillus amyloliquefaciens/fisiologia , Polissacarídeos Bacterianos/farmacologia , Probióticos/farmacologia , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Microbioma Gastrointestinal , Macrófagos/imunologia , Macrófagos/metabolismo , Ração Animal , Transdução de Sinais , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/microbiologia
5.
Sci Rep ; 14(1): 22922, 2024 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358402

RESUMO

Green synthesis leverages biological resources such as plant extracts to produce cost-effectively and environmentally friendly NPs. In our study, silver nanoparticles (AgNPs) are biosynthesized using blank roasted grams (Cicer arietinum) as reducing agents. CA-AgNPs were characterized by a characteristic surface plasmon resonance (SPR) peak at 224 nm in the UV-Vis spectrum. FTIR analysis revealed functional groups with O-H stretching at 3410 cm-1, C-H stretching at 2922 cm-1, and C=O stretching at 1635 cm-1. XRD patterns exhibited sharp peaks at 33.2°, 38.4°, 55.7°, and 66.6°, confirming high crystallinity. Morphological analysis through FESEM indicated spherical CA-AgNPs averaging 500 nm in size, with EDS revealing Ag at 97.51% by weight. Antimicrobial assays showed zones of inhibition of 14 mm against Candida albicans, 18 mm against Escherichia coli., and 12 mm against Propionibacterium acnes. The total phenolic content of CA-AgNPs was 26.17 ± 13.54 mg GAE/g, significantly higher than the 11.85 ± 9.57 mg GAE/g in CA extract. The ABTS assay confirmed the antioxidant potential with a lower IC50 value of 1.73 ± 0.41 µg/mL, indicating enhanced radical scavenging activity. Anti-melanogenesis was validated through tyrosinase, showing inhibition rates of 97.97% at the highest concentrations. The anti-inflammatory was evaluated by western blot, which showed decreased expression of iNOS and COX-2. This study demonstrates the green synthesis of CA-AgNPs and its potential biomedical applications. The results of this study demonstrate that biosynthesized CA-AgNPs have key biological applications.


Assuntos
Cicer , Química Verde , Nanopartículas Metálicas , Extratos Vegetais , Prata , Prata/química , Nanopartículas Metálicas/química , Cicer/química , Química Verde/métodos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Testes de Sensibilidade Microbiana , Animais , Candida albicans/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química
6.
Foods ; 13(18)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39335912

RESUMO

Excessive inflammatory reactions are the most important pathological injury factor in acute lung injury (ALI). Our recent study found that sialic acid had an anti-colitis effect. In this study, the effect of sialic acid (SA) on acute lung inflammation was investigated. A lipopolysaccharide (LPS)-induced ALI animal model and LPS-stimulated HUVEC cell model were used to evaluate the anti-inflammatory effect of SA and study its molecular mechanisms. Compared with the LPS group, the lung index of the SA group decreased from 0.79 ± 0.05% to 0.58 ± 0.06% (LPS + 50 SA) and 0.62 ± 0.02% (LPS + 100 SA), with p < 0.01, suggesting that SA could improve the pulmonary edema of mice and alleviate LPS-induced lung injury. Transcriptome research identified 26 upregulated genes and 25 downregulated genes involved in the protection of SA against ALI. These genes are mainly related to the MAPK and NF-κB signaling pathways. Our study also proved that SA markedly downregulated the expression of inflammatory factors and blocked the JNK/p38/PPAR-γ/NF-κB pathway. Meanwhile, SA treatment also upregulated the expression of HO-1 and NQO1 in ALI mice. In vitro, SA obviously repressed the expressions of inflammatory cytokines and the JNK/p38-NF-κB/AP-1 pathway. SA also regulated the expression of oxidative stress-related genes through the Nrf2 pathway. Taken together, SA exhibits a protective role by modulating the anti-inflammatory and anti-oxidation pathways in ALI, and it may be a promising candidate for functional foods to prevent ALI.

7.
Pharmaceutics ; 16(9)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39339257

RESUMO

BACKGROUND: Phosphodiesterase (PDE) inhibitors are gaining interest in the context of pulmonary pathologies. In particular, the PDE3 inhibitor enoximone (ENXM) has shown potential relative to the cure of asthma, chronic obstructive pulmonary disease (COPD), and acute respiratory distress syndrome (ARDS). Despite its administration via inhalation being planned for use against COVID-19 related ARDS (C-ARDS), presently, no inhalable medicine containing ENXM is available. OBJECTIVES: This study aims to develop a new formulation suitable for pulmonary administration of ENXM. METHODS: A solution for nebulization, based on the complex between ENXM and Hydroxypropyl-ß-Cyclodextrin (HPßCD) (ENXM/HPßCD) is developed. The obtained solution is characterized in terms of aerodynamic distributions and biopharmaceutical features. RESULTS: The evaluation of the aerosol droplets indicates a good bronchi-lung distribution of the drug. Biological evaluations of the air-liquid interface (ALI) in an in vitro lung cell model demonstrates that ENXM/HPßCD is capable of a local direct effect, increasing intracellular cyclic adenosine monophosphate (cAMP) levels and protecting from oxidative stress. CONCLUSIONS: This study offers a promising advance in the optimization of enoximone delivery to the lungs.

8.
Molecules ; 29(18)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39339287

RESUMO

In this study, a new secobutanolide, named secosubamolide B (3), along with three previously known secobutanolides (1, 2, and 4), were successfully isolated from a methanol extract of the stem of Lindera obtusiloba. The chemical structures of these compounds were elucidated through the analysis of spectroscopic data, and then compared with the existing literature to confirm their identities. Furthermore, the anti-inflammatory effect of these isolated compounds on bone marrow-derived dendritic cells stimulated by lipopolysaccharide (LPS) was evaluated. Compounds 1-3 showed the significant suppression of LPS-triggered IL-6 and IL-12 p40 production, with IC50 values between 1.8 and 24.1 µM. These findings may provide a scientific foundation for developing anti-inflammatory agents from L. obtusiloba.


Assuntos
Anti-Inflamatórios , Lindera , Lipopolissacarídeos , Caules de Planta , Lindera/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Animais , Camundongos , Lipopolissacarídeos/farmacologia , Caules de Planta/química , Interleucina-6/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Estrutura Molecular , Subunidade p40 da Interleucina-12/metabolismo
9.
Molecules ; 29(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39274880

RESUMO

Lamellarins are natural products with a [3,4]-fused pyrrolocoumarin skeleton possessing interesting biological properties. More than 70 members have been isolated from diverse marine organisms, such as sponges, ascidians, mollusks, and tunicates. There is a continuous interest in the synthesis of these compounds. In this review, the synthetic strategies for the synthesis of the title compounds are presented along with their biological properties. Three routes are followed for the synthesis of lamellarins. Initially, pyrrole derivatives are the starting or intermediate compounds, and then they are fused to isoquinoline or a coumarin moiety. Second, isoquinoline is the starting compound fused to an indole moiety. In the last route, coumarins are the starting compounds, which are fused to a pyrrole moiety and an isoquinoline scaffold. The synthesis of isolamellarins, azacoumestans, isoazacoumestans, and analogues is also described. The above synthesis is achieved via metal-catalyzed cross-coupling, [3 + 2] cycloaddition, substitution, and lactonization reactions. The title compounds exhibit cytotoxic, multidrug resistance (MDR), topoisomerase I-targeted antitumor, anti-HIV, antiproliferative, anti-neurodegenerative disease, and anti-inflammatory activities.


Assuntos
Cumarínicos , Cumarínicos/química , Cumarínicos/síntese química , Cumarínicos/farmacologia , Humanos , Animais , Produtos Biológicos/química , Produtos Biológicos/síntese química , Produtos Biológicos/farmacologia , Isoquinolinas/química , Isoquinolinas/síntese química , Isoquinolinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Pirróis/química , Pirróis/síntese química , Pirróis/farmacologia , Estrutura Molecular , Compostos Heterocíclicos de 4 ou mais Anéis
10.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39273336

RESUMO

The objective of the study was to develop a novel topical gel by mixing Potentilla tormentilla ethanolic extract, thermosensitive poloxamer 407, and carbomer 940 and evaluating its stability and rheological behavior. The irritation potential of the gel was evaluated in accordance with the Organization for Economic Cooperation and Development Guidelines 404. The potential anti-inflammatory effects of the developed gel were evaluated in vivo in rats using the carrageenan-induced paw edema test. Moreover, the in silico binding affinity for chlorogenic and ellagic acid, as dominant components in the extract, against cyclooxygenase (COX) 1 and 2 was also determined. Our findings suggest that the gel containing Potentilla tormentilla extract remained stable throughout the observation period, exhibited pseudoplastic behavior, and caused no irritation in rats, thus being considered safe for topical treatment. Additionally, the developed gel showed the capability to reduce rat paw edema, which highlights significant anti-inflammatory potential. In silico analysis revealed that chlorogenic and ellagic acid exhibited a reduced binding affinity against COX-1 but had a similar inhibitory effect on COX-2 as flurbiprofen, which was confirmed by molecular dynamics results. The study proposes the possible application of Potentilla tormentilla ethanolic extract gel for the alleviation of localized inflammatory diseases; however, future clinical evaluation is required.


Assuntos
Anti-Inflamatórios , Ciclo-Oxigenase 1 , Edema , Extratos Vegetais , Potentilla , Animais , Potentilla/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Edema/tratamento farmacológico , Edema/induzido quimicamente , Masculino , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 1/química , Géis/química , Ácido Elágico/farmacologia , Ácido Elágico/química , Ciclo-Oxigenase 2/metabolismo , Carragenina , Ratos Wistar , Poloxâmero/química , Resinas Acrílicas/química , Ácido Clorogênico/química , Ácido Clorogênico/farmacologia
11.
Mar Drugs ; 22(9)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39330291

RESUMO

Altechromone A, also known as 2,5-dimethyl-7-hydroxychromone, is a hydroxyketone containing one hydroxyl and one ketone group. In this study, we isolated Altechromone A from the marine-derived fungus Penicillium Chrysogenum (XY-14-0-4). Previous reports show that Altechromone A has various activities including tumor suppression, antibacterial, and antiviral activities. However, there is no study about its anti-inflammatory activity in inflammatory bowel disease (IBD). Here, we assess the anti-inflammatory activity, especially in IBD, and its potential mechanism using the zebrafish model. Our results indicated that Altechromone A has anti-inflammatory activity in a CuSO4-, tail-cutting-, and LPS-induced inflammatory model in zebrafish, respectively. In addition, Altechromone A greatly reduced the number of neutrophils, improved intestinal motility and efflux efficiency, alleviated intestinal damage, and reduced reactive oxygen species production in the TNBS-induced IBD zebrafish model. The transcriptomics sequencing and real-time qPCR indicated that Altechromone A inhibited the expression of pro-inflammatory genes including TNF-α, NF-κB, IL-1, IL-1ß, IL-6, and NLRP3. Therefore, these data indicate that Altechromone A exhibits therapeutic effects in IBD by inhibiting the inflammatory response.


Assuntos
Anti-Inflamatórios , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Peixe-Zebra , Animais , NF-kappa B/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Anti-Inflamatórios/farmacologia , Penicillium chrysogenum/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
Curr Res Food Sci ; 9: 100857, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39328390

RESUMO

Anthocyanins are phenolic compounds present in various plant products with interesting functional characteristics studied by science, such as their anti-inflammatory and antioxidant activities, among others. However, anthocyanins are considered unstable to various factors, which can affect their functional capacity. For this reason, some technologies, such as nanoencapsulation, are being applied to ensure their functional capacity effectively. The incorporation of anthocyanins in yogurt has shown various benefits, such as the ability to inhibit pathogenic microorganisms, reduce enzyme activity, and prolong the shelf life of the product. Additionally, the functional effects include their ability to modulate the gut microbiota, generating antioxidant, anti-inflammatory, and even antiproliferative responses, thereby reducing the capacity of tumor progression. For these reasons, this graphic review discussed the functional effects of yogurt enriched with nanoencapsulated anthocyanins on the gut microbiota and its influence on human health.

13.
Foods ; 13(18)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39335790

RESUMO

Discarded unripe kiwifruits (DUKs) are regarded as the major agro-byproducts in the production of kiwifruits, which have abundantly valuable secondary metabolites. Nevertheless, owing to the limited knowledge about the differences in phytochemicals and bioactivity between DUKs and mature kiwifruits, the utilization of DUKs in the food industry remains scarce. Hence, to promote their food applications, the phenolic compounds and bioactivity of discarded unripe, mature, and overripe fruits from three red-fleshed kiwifruit cultivars were studied and compared. The results revealed that the levels of total phenolics, total flavonoids, and total procyanidins in kiwifruits varied significantly by maturity stage. In addition, our findings demonstrated that DUKs possessed much higher contents of valuable phenolic compounds (e.g., chlorogenic acid (CHA), neochlorogenic acid (NCHA), gallic acid (GA), protocatechuic acid (PA), procyanidin B1 (ProcB1), procyanidin B2 (ProcB2), procyanidin C1 (ProcC1), quercetin 3-O-glucoside (QueG), and quercetin 3-O-rhamnoside (QueR)) than mature and overripe kiwifruits. Furthermore, DUKs exerted much stronger in vitro antioxidant capacity, inhibitory effects on α-glucosidase, and anti-inflammatory activity than mature and overripe kiwifruits, which were mainly attributed to their higher contents of total polyphenols and individual phenolic components, such as GA, CHA, NCHA, PA, ProcB1, ProcB2, ProcC1, and QueR. Overall, these findings provide sufficient evidence for the development and utilization of DUKs in the food/functional food industry.

14.
Life (Basel) ; 14(9)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39337969

RESUMO

The complex composition of honey plays a crucial role in wound healing, exhibiting varying effects at different stages of the healing process. This study investigated seven honey varieties sourced from different regions of Romania using in vitro experimental models developed in macrophage-like, fibroblast, and keratinocyte cell lines to explore the mechanisms by which honey promoted the healing process. This study assessed the impact of honey on inflammatory cytokine production in macrophage-like cells, cell proliferation and collagen synthesis in fibroblasts, and cell proliferation and migration in keratinocytes. Additionally, correlation analysis was conducted to examine the relationship between honey composition and its biological properties. Honey varieties presented both anti- and pro-inflammatory effects. Moreover, they displayed dose-dependent pro-proliferative effects, stimulating collagen synthesis and cell migration, thereby enhancing the re-epithelialization process. The Pearson coefficient analysis indicated a strong positive correlation between biological activities and phenolic content. Additionally, there was a medium positive correlation with the ascorbic acid content and a medium negative correlation with the glucose content in the different honey varieties. Romanian honey varieties rich in phenolics showed potential in modulating inflammation, proliferation, collagen synthesis, and cell migration, suggesting their suitability for further evaluation and development of innovative dressings for skin tissue regeneration.

15.
Phytomedicine ; 134: 156020, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39243749

RESUMO

BACKGROUND: The intestinal and skin epithelium play a strong role against bacterial stimuli which leads to inflammation and oxidative stress when overwhelmed. Polyphenols from fruit-rich diets and by-products show promise against bacterial deleterious effects; however, their antibacterial and health-promoting effects remain understudied. PURPOSE: This study aimed to assess the impact of polyphenolic extracts of grape (GrPE), persimmon (PePE) and pomegranate (PoPE) by-products on bacterial pathogen-host interactions, focusing beyond growth inhibition to explore their effects on bacterial adhesion, invasion, and modulation of host responses. METHODS: The microdilution method, as well as the tetrazolium based MTT cell proliferation and cytotoxicity assay with crystal violet staining were used to identify extracts sub-inhibitory concentrations that interfere with bacterial adhesion, invasion or lipopolysaccharides (LPS) effect on cell hosts without compromising host viability. The cytoprotective effects of extracts were assessed in a knock-down model of nuclear factor erythroid 2-related factor 2 (Nrf2). RESULTS: All extracts demonstrated significant reductions in pathogen adhesion to Caco-2 and HaCaT cells while preserving cellular integrity. Notably, PePE exhibited specific efficacy against Salmonella enterica adhesion, attributed mostly to its gallic acid content, whereas PoPE reduced S. enterica invasion in Caco-2 cells. The extracts supported the prevalence of non-pathogenic and commensal strains of intestinal and skin surfaces, selectively reducing pathogenic adhesion. The extracts mitigated the oxidative stress, enhanced the barrier function, and modulated the pro-inflammatory cytokines in LPS-challenged cells. GrPE, rich in anthocyanins, and PePE were found to mediate their protective effects through Nrf2 activation, while PoPE exerted multifaceted actions independent of Nrf2. CONCLUSION: Our results highlight the therapeutic potential of GrPE, PePE, and PoPE in shaping bacterial-host interactions, endorsing their utility as novel nutraceuticals for both oral and topical applications to prevent potential bacterial infections through innovative mechanisms.


Assuntos
Diospyros , Fator 2 Relacionado a NF-E2 , Extratos Vegetais , Polifenóis , Vitis , Fator 2 Relacionado a NF-E2/metabolismo , Humanos , Diospyros/química , Polifenóis/farmacologia , Extratos Vegetais/farmacologia , Vitis/química , Células CACO-2 , Aderência Bacteriana/efeitos dos fármacos , Células HaCaT , Frutas/química , Salmonella enterica/efeitos dos fármacos , Antibacterianos/farmacologia , Interações Hospedeiro-Patógeno , Lipopolissacarídeos , Punica granatum/química
16.
Food Chem ; 463(Pt 3): 141342, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39306993

RESUMO

Micronutrient deficiencies are a critical factor in the development of obesity. This work aimed to determine the Se and Zn bioaccessibility on biofortified chickpea flour and evaluate their impact on the antioxidant and anti-inflammatory activities. The greatest increase (235 %) in isoflavones was observed in the ZnSO4-treatment compared to the control. Malonylated-formononetin-glucoside was the major isoflavone (43 %-50 %) found in the treatments. Na2SeO3-treated seeds showed the highest Se accumulation, while the greatest Zn accumulation was found in ZnSO4-treated seeds. Se bioaccesibility followed the order: Germinated Control>ZnSO4 > ZnSeO3 > ZnSO4 + Na2SeO3 > Na2SeO3, while in the seeds biofortified with Zn salts showed the order: Germinated Control>ZnSeO3 > ZnSO4 + Na2SeO3 > Na2SeO3 > ZnSO4. All treatments showed antioxidant activity. Na2SeO3-treatment (15.625 µg/mL) showed a significant reduction of 52 % in NO production compared to the Germinated Control. These findings demonstrated the biological value of food biofortification in providing minerals in the diet to combat the oxidative stress characteristic of obesity.

17.
Phytochem Anal ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39311058

RESUMO

INTRODUCTION: Bienertia cycloptera is a species belonging to the Chenopodiaceae family. According to earlier reports, a unique research study on the phytochemistry and biological analysis of that species was conducted. OBJECTIVE: This study presents an integrated metabolomics investigation combined with multivariate analysis of various extractive fractions of B. cycloptera aerial parts. This study is the first attempt to explore the anti-inflammatory metabolites from B. cycloptera, showing its significance as a valuable traditional medicine. METHODOLOGY: By comparing retention times, quasi-molecular ions, and MS/MS fragment ions with databases and literature references, metabolite annotation was accomplished using ultra performance liquid chromatography (UPLC)/triple quadrupole mass spectrometry (MS). Moreover, the effects of the studied samples on the gene expression of the four pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α, and INF-γ) using polymerase chain reaction (PCR) and comparing their results by those caused by piroxicam were tested to determine their anti-inflammatory efficacy. RESULTS: Chemical profiling revealed diverse metabolites, with 62 chromatographic peaks identified across various chemical classes. UPLC-MS/MS of different B. cycloptera fractions unveiled distinct chemical profiles. Results showed distinct chemical compositions in each fraction, with petroleum ether fraction enriched in sterols and fatty acids; methylene chloride fraction in alkaloids, sterols, and cardenolides; ethyl acetate fraction in alkaloids, flavonoids, cardenolides, and phenolic acids; and n-butanol fraction in flavonoids, alkaloids, and phenolic acids. Multivariate data analysis illustrated clustering patterns among petroleum ether, methylene chloride, ethyl acetate, and n-butanol fractions. OPLS-DA models were constructed to discern inter-class differences, identifying discriminatory metabolites. In vitro cytotoxicity and anti-inflammatory assays demonstrated the safety and efficacy of B. cycloptera fractions, with significant downregulation of pro-inflammatory markers. Further analysis revealed specific metabolites associated with anti-inflammatory effects, such as p-hydroxybenzoic acid, vanillic acid, tachioside, ferulic acid, staphylionoside D, humilixanthin, bergaptol, vulgaxanthin I, and portulacaxanthin III. CONCLUSION: The findings of this study provide valuable insights into the chemical composition and bioactivity of B. cycloptera fractions, suggesting their potential as therapeutic agents and warranting further investigation.

18.
J Ethnopharmacol ; 337(Pt 1): 118845, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39306211

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sabia schumanniana Diels is a traditional botanical used to treat lumbago and arthralgia. However, there has been limited research on the pharmacological effects of its chemical components. AIM OF THE STUDY: This study aimed to rapidly screen for anti-inflammatory compounds in Sabia schumanniana Diels. MATERIALS AND METHODS: An affinity ultrafiltration method based on UHPLC-Q-Exactive Orbitrap MS was established to rapidly screen and identify cyclooxygenase-2 (COX-2) receptor ligands. The reliability of this method was verified by molecular docking analysis and experiments with RAW264.7 cells. RESULTS: Seventeen ligands were identified from Sabia schumanniana Diels using affinity ultrafiltration. Molecular docking results indicated that these ligands specifically docked with COX-2. Among them, N-nornuciferine exhibited notable anti-inflammatory activity. CONCLUSIONS: The combination of affinity ultrafiltration and UHPLC-Q-Exactive Orbitrap MS is an effective and precise method for screening anti-inflammatory compounds. This study provides a foundation for further research on Sabia schumanniana Diels and offers guidance for its potential clinical applications.

19.
Chem Biodivers ; : e202401514, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242337

RESUMO

The Yellow River Delta possesses lots of characteristic medicinal plants due to its high salinity and high alkaline environment and Limonium sinense is an iconic plant. However, there are very few studies on L. sinense and its chemical constituents have not been investigated in recent ten years. In the present study, the chemical constituents and bioactivities of L. sinense were fully studied for the first time. UPLC-MS/MS method combined with database comparison identified 109 compounds mainly including flavonoids, alkaloids and polyphenols. In addition, the potential bioactivities of L. sinense were considerated as anti-inflammatory, anti-oxidative, anti-tumor, hepatoprotective and hpyerglycemic activities based on these identified compounds and their related literature. Furthermore, four derivatives of 12-oxo-phytodienoic acid and butenolide including two new ones (1 and 2) were isolated from the whole plants of L. sinense. Their structures, including the absolute configurations, were determined by the analysis of comprehensive spectroscopic data. All isolates were evaluated for their anti-inflammatory activity. Compound 1 exhibited moderate anti-inflammatory activity with IC50 value of 37.5 ± 1.2 µM on NO production level.

20.
Int J Biol Macromol ; 279(Pt 2): 134958, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39222781

RESUMO

Ulcerative colitis (UC) is a chronic inflammatory bowel disease for which there is currently no efficacious therapeutic drug with fewer side effects. Therefore, the development of approaches for the prevention of UC from natural food sources is urgently needed. In this study, mice were pre-fed with sea cucumber peptides prior to dextran sodium sulfate (DSS) induction. Results showed that sea cucumber peptides decreased pro-inflammatory cytokine (IL-4 and IL-10) levels and remissions of main clinic symptoms in a dose-dependent manner. The composition of peptides was identified, and the anti-inflammatory molecular mechanism was evaluated by silico prediction. The molecular weight of the peptides was 243-1800 Da and composed of 3-18 amino acid residues. Online activity assessment and molecular docking prediction revealed that tripeptides of FGI, FLI, FLL, GFL, GFM, IGF and LDF exhibited strong anti-inflammatory activity. Particularly, LDF showed the highest potency, with a binding energy of -5.37 kJ/mol. Network pharmacology analysis of UC related diseases indicated that active peptides interact with colitis disease targets, primarily proto-oncogene tyrosine-protein kinase Src (SRC), E3 ubiquitin-protein ligase XIAP (XIAP) and angiotensin-converting enzyme (ACE). The results suggest that sea cucumber peptides have potential as a novel nutraceutical option for colitis relief.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA