Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 380
Filtrar
1.
Bioorg Chem ; 153: 107755, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39243741

RESUMO

Helicobacter pylori (H. pylori) cause chronic inflammation of the gastric mucosa which can lead to epithelial atrophy and metaplasia resulting in peptic ulcer disease and gastric cancer. The increasing resistance of H. pylori to antibiotics and chemotherapeutics used to treat the infection is a serious problem. However, it has been confirmed that the introduction of effective anti-H. pylori therapy can prevent the progression to cancerous changes. This problem calls for the search for new and effective therapies. Xanthones are a group of compounds with extensive biological activities, including antibacterial activity, also against H. pylori. Addressing this issue, the aim of the study was to evaluate the potential of a group of 13 xanthone derivatives against susceptible and resistant H. pylori strains. Moreover, our objective was to conduct tests aimed at determining their ability to inhibit biofilm formation. The antimicrobial evaluation revealed that benzylpiperazine coupled at the C-2 position to xanthone (compounds C11 and C12) had good selective bacteriostatic activity against reference and clinical H. pylori strains (MBC/MIC ratio >4) but with no activity against other bacteria such as Staphylococcus aureus, Escherichia coli, and Lactobacillus paracasei. Analysis of the activity of compounds C11 and C12 against the biofilm formed by H. pylori strain ATCC 700684, and the clinical strain showed that these compounds caused a significant reduction in the amount of biofilm produced (5-20×). Moreover, cell viability analysis confirmed a 3-4× reduction in the viability of cells forming biofilm after treatment with C11 and C12. Finally,both compounds did not impair human fibroblast viability at tested concentrations and were not mutagenic in the Ames test. Therefore, they could be promising leads as antibacterial candidates for multidrug-resistant strains of H. pylori.

2.
ACS Infect Dis ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39331790

RESUMO

New drugs and mechanisms of action targeting Mycobacterium tuberculosis are urgently needed to solve the global pandemic of tuberculosis. We previously demonstrated that the 8-hydroxyquinoline series has rapid bactericidal activity against M. tuberculosis. In this work, we determined that the activity of the 8HQ series is potentiated by copper ions and that the activity is dependent on copper since activity was reduced when copper was depleted from the medium. We determined that exposure to 8HQs led to an increase in intracellular copper. The increase in copper ions was specific since we saw no changes for other metal cations (zinc, iron, magnesium, manganese, or calcium). We observed the transient generation of reactive oxygen species after 8HQ exposure which disappeared by 24 h. Inhibition of growth could be partially relieved by scavenging hydroxyl radicals. We excluded the possibility that 8HQs are toxic by DNA intercalation. We screened a panel of hypomorph strains and identified sensitized strains. The pattern of sensitized strains did not suggest a specific target, but metalloenzymes, proteins with Fe-S clusters, and cell envelope biosynthetic enzymes were highlighted. These data suggest that 8HQs do not have a specific intracellular target, but act as copper ionophores, and that the mode of action is via copper-dependent toxicity.

3.
Antibiotics (Basel) ; 13(9)2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39335031

RESUMO

Bacterial diseases of the gastrointestinal (GI) tract continue to be a major worldwide cause of human morbidity and mortality. Among various enteric pathogens, Shigella spp. are some of the most common and deadly bacterial pathogens. They are responsible for ~125 million worldwide cases of shigellosis, and ~14,000 deaths annually, the majority in children under the age of 5 and occurring in developing countries. Preventing and treating shigellosis with conventional drugs (e.g., vaccines and antibiotics) has proven to be very difficult. Here, we assessed the safety and tolerability of ShigActive™, a lytic bacteriophage preparation targeting Shigella spp., in a randomized, placebo-controlled, double-blind Phase 1 clinical trial. Ten participants randomized 4:1 received ShigActive™ or placebo co-administered with sodium bicarbonate orally three times daily for 7 days. Solicited and unsolicited adverse events (AEs) were observed for 29 days. Fifty percent of the subjects receiving ShigActive™ reported mild GI-related symptoms, while one participant experienced moderate fatigue. No serious or medically attended AEs occurred through day 90. Additionally, no significant differences in GI-associated inflammatory mediators or fecal microbiome changes were observed between placebo- and ShigActive™-treated subjects, or from a participants' baseline value. The results of this first-in-human (FIH) randomized, controlled Phase 1 trial of ShigActive™ demonstrate that it is safe and well tolerated when orally administered with no significant differences compared to placebo controls.

4.
Nat Prod Res ; : 1-8, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39086216

RESUMO

Medicinal plants, known for their antibacterial phytocompounds and secondary metabolites, offer promising potential in combating antibiotic-resistant bacteria. This study aimed to perform a phytochemical analysis of the methanol and dichloromethane extracts obtained from Ziziphora tenuior leaves using GC-MS. Furthermore, the antioxidant activity of the extracts was evaluated through the DPPH assay. And, their antibacterial activity was assessed against S. aureus, E. coli, methicillin-resistant S. aureus, and vancomycin-resistant enterococcus (VRE) bacterial strains. Based on the results 90-92% of these extracts consisted of phytocompounds with pharmaceutical properties. Of these, 5-methyl- 2-(1-methylethylidele), Cyclohexanone (Pulegone; C10H16O) comprised the highest percentage of the extracts, constituting 62% of methanolic extract and 81% of dichloromethane extract. Also, both methanolic and dichloromethane extracts showed potent antioxidant activity with IC50 of 277.6 µg/ml and 49.6 µg/ml, respectively. Moreover, these extracts demonstrated considerable antibacterial activity against the tested pathogens, especially against S. aureus and VRE.

5.
Rev Cient Odontol (Lima) ; 12(2): e200, 2024.
Artigo em Espanhol | MEDLINE | ID: mdl-39119127

RESUMO

Introduction: Endodontic therapy is performed by biomechanical preparation and intracanal medication; however, residual bacteria can be compromised due to their ability to adhere to the root canal walls. Therefore, photodynamic therapy has gained popularity because of its good ability to prevent and eradicate microbial infections by using a light-activated dye. Objective: Analyze and to update the information on the effect of curcumin in photodynamic therapy in root canal treatment. Material and Methods: A literature search was carried out in PubMed/MEDLINE, Scopus, Ebsco, Science Direct, and LILACS databases using the keywords "curcumin", "turmeric", "photodynamic", "photochemotherapy", "photoradiation", "photoactivated disinfection", "root canal disinfection", "root canal therapy", "endodontics" in both Spanish and English, from 2018 to 2023. Results: Information from the last five years was collected with the aim of updating the study topic. 749 articles were examined using inclusion and exclusion criteria, of which only 50 met these criteria and were analyzed. Current studies show the effects of therapy on the contamination of the root canal biofilm with E. faecalis, demonstrating that photoactivated curcumin promotes the disruption of the biofilm and reduction of Colony-Forming Units. Conclusions: Curcumin as a photosensitizer demonstrates a potential antibacterial effect significantly decreasing the viability of microbial cells and the vitality of biofilms.

6.
Antibiotics (Basel) ; 13(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39061285

RESUMO

Nowadays, infectious diseases of bacterial and viral origins represent a serious medical problem worldwide. In fact, the development of antibiotic resistance is responsible for the emergence of bacterial strains that are refractory even to new classes of antibiotics. Furthermore, the recent COVID-19 pandemic suggests that new viruses can emerge and spread all over the world. The increase in infectious diseases depends on multiple factors, including malnutrition, massive migration of population from developing to industrialized areas, and alteration of the human microbiota. Alternative treatments to conventional antibiotics and antiviral drugs have intensively been explored. In this regard, plants and marine organisms represent an immense source of products, such as polyphenols, alkaloids, lanthipeptides, and terpenoids, which possess antibacterial and antiviral activities. Their main mechanisms of action involve modifications of bacterial cell membranes, with the formation of pores, the release of cellular content, and the inhibition of bacterial adherence to host cells, as well as of the efflux pump. Natural antivirals can interfere with viral replication and spreading, protecting the host with the enhanced production of interferon. Of note, these antivirals are not free of side effects, and their administration to humans needs more research in terms of safety. Preclinical research with natural antibacterial and antiviral compounds confirms their effects against bacteria and viruses, but there are still only a few clinical trials. Therefore, their full exploitation and more intensive clinical studies represent the next steps to be pursued in this area of medicine.

8.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000214

RESUMO

Lyme disease, caused by Borrelia burgdorferi sensu lato infection, is the most widespread vector-borne illness in the Northern Hemisphere. Unfortunately, using targeted antibiotic therapy is often an ineffective cure. The antibiotic resistance and recurring symptoms of Lyme disease are associated with the formation of biofilm-like aggregates of B. burgdorferi. Plant extracts could provide an effective alternative solution as many of them exhibit antibacterial or biofilm inhibiting activities. This study demonstrates the therapeutic potential of Plantago major and Plantago lanceolata as B. burgdorferi inhibitors. Hydroalcoholic extracts from three different samples of each plant were first characterised based on their total concentrations of polyphenolics, flavonoids, iridoids, and antioxidant capacity. Both plants contained substantial amounts of named phytochemicals and showed considerable antioxidant properties. The major non-volatile constituents were then quantified using HPLC-DAD-MS analyses, and volatile constituents were quantified using HS-SPME-GC-MS. The most prevalent non-volatiles were found to be plantamajoside and acteoside, and the most prevalent volatiles were ß-caryophyllene, D-limonene, and α-caryophyllene. The B. burgdorferi inhibiting activity of the extracts was tested on stationary-phase B. burgdorferi culture and its biofilm fraction. All extracts showed antibacterial activity, with the most effective lowering the residual bacterial viability down to 15%. Moreover, the extracts prepared from the leaves of each plant additionally demonstrated biofilm inhibiting properties, reducing its formation by 30%.


Assuntos
Antibacterianos , Antioxidantes , Borrelia burgdorferi , Extratos Vegetais , Plantago , Plantago/química , Borrelia burgdorferi/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antioxidantes/farmacologia , Antioxidantes/química , Antibacterianos/farmacologia , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Flavonoides/farmacologia , Flavonoides/química , Flavonoides/análise , Testes de Sensibilidade Microbiana
9.
Chem Biodivers ; : e202400932, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949892

RESUMO

Carbohydrate derivatives play a crucial roles in biochemical and medicinal research, especially in the fields of chemistry and biochemistry. From this perspective, the present study was designed to explore the synthesis of methyl α-D-glucopyranoside derivatives (1-8), focusing on their efficacy against bacterial and fungal inhibition. The structure of the synthesized compounds was ascertained using FTIR, 1H-NMR, 13C-NMR, mass and elemental analyses. Antimicrobial screening revealed strong antifungal properties, with compound 7 exhibiting minimum inhibitory concentrations (MICs) ranging from 16-32 µg/L and minimum bactericidal concentrations (MBCs) ranging from 64-128 µg/L. Incorporating decanoyl acyl groups at C-2 and C-3 of (7) significantly improved the efficacy against bacteria and fungi. Structure-activity relationship (SAR) analysis indicated that adding nonanoyl and decanoyl groups to the ribose moiety enhanced potency against both bacterial and fungal strains. Computational methods, including molecular docking, density functional theory (DFT), Petra, Osiris, Molinspiration (POM) evaluation, and molecular dynamics (MD) simulations, were used to assess the efficacy of these derivatives. Compounds 6 and 7, which presented nonanoyl and decanoyl substituents, demonstrated greater efficacy. In addition, DFT studies identified compound 8 as possessing ideal electronic properties. Molecular docking revealed that compound 8 exhibits exceptional binding affinities to bacterial proteins, conferring potent antibacterial and antifungal activities. In addition, pharmacokinetic optimization via POM analysis highlighted compounds 1 and 2 as promising bioavailable drugs with minimal toxicity. Molecular dynamics simulations confirmed the stability of the 2-S. aureus complex, revealing the therapeutic potential of compounds 2 and 8. Future experiments are required to validate their efficacy for pharmaceutical development. The integration of in vitro and in silico methods, including DFT anchoring dynamics and molecular dynamics simulations, provides a solid framework for the advancement of effective anti-infective drugs.

10.
ACS Infect Dis ; 10(8): 2584-2599, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39028949

RESUMO

The prevalence of antimicrobial resistance in Gram-negative bacteria poses a greater challenge due to their intrinsic resistance to many antibiotics. Recently, darobactins have emerged as a novel class of antibiotics originating from previously unexplored Gram-negative bacterial species such as Photorhabdus, Vibrio, Pseudoalteromonas and Yersinia. Darobactins belong to the ribosomally synthesized and post-translationally modified peptide (RiPP) class of antibiotics, exhibiting selective activity against Gram-negative bacteria. They target the ß-barrel assembly machinery (BAM), which is crucial for the maturation and insertion of outer membrane proteins in Gram-negative bacteria. The dar operon in the producer's genome encodes for the synthesis of darobactins, which are characterized by a fused ring system connected via an alkyl-aryl ether linkage (C-O-C) and a C-C cross-link. The enzyme DarE, using the radical S-adenosyl-l-methionine (rSAM), facilitates the formation of these bonds. Biosynthetic manipulation of the darobactin gene cluster, along with its expression in a surrogate host, has enabled access to diverse darobactin analogues with variable antibiotic activities. Recently, two independent research groups successfully achieved the total synthesis of darobactin, employing Larock heteroannulation to construct the bicyclic structure. This paper presents a comprehensive review of darobactins, encompassing their discovery through to the most recent advancements.


Assuntos
Antibacterianos , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias Gram-Negativas/efeitos dos fármacos , Descoberta de Drogas , Família Multigênica , Photorhabdus/genética , Photorhabdus/metabolismo , Testes de Sensibilidade Microbiana , Pseudoalteromonas/genética , Pseudoalteromonas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA