Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15985, 2024 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987560

RESUMO

Drought stress is a major abiotic stress affecting the performance of wheat (Triticum aestivum L.). The current study evaluated the effects of drought on wheat phenology, physiology, and biochemistry; and assessed the effectiveness of foliar-applied sulfhydryl thiourea to mitigate drought-induced oxidative stress. The treatments were: wheat varieties; V1 = Punjab-2011, V2 = Galaxy-2013, V3 = Ujala-2016, and V4 = Anaaj-2017, drought stress; D1 = control (80% field capacity [FC]) and D2 = drought stress (40% FC), at  the reproductive stage, and sulfhydryl thiourea (S) applications; S0 = control-no thiourea and S1 = foliar thiourea application @ 500 mg L-1. Results of this study indicated that growth parameters, including height, dry weight, leaf area index (LAI), leaf area duration (LAD), crop growth rate (CGR), net assimilation rate (NAR) were decreased under drought stress-40% FC, as compared to control-80% FC. Drought stress reduced the photosynthetic efficiency, water potential, transpiration rates, stomatal conductances, and relative water contents by 18, 17, 26, 29, and 55% in wheat varieties as compared to control. In addition, foliar chlorophyll a, and b contents were also lowered under drought stress in all wheat varieties due to an increase in malondialdehyde and electrolyte leakage. Interestingly, thiourea applications restored wheat growth and yield attributes by improving the production and activities of proline, antioxidants, and osmolytes under normal and drought stress as compared to control. Thiourea applications improved the osmolyte defense in wheat varieties as peroxidase, superoxide dismutase, catalase, proline, glycine betaine, and total phenolic were increased by 13, 20, 12, 17, 23, and 52%; while reducing the electrolyte leakage and malondialdehyde content by 49 and 32% as compared to control. Among the wheat varieties, Anaaj-2017 showed better resilience towards drought stress and also gave better response towards thiourea application based on morpho-physiological, biochemical, and yield attributes as compared to Punjab-2011, Galaxy-2013, and Ujala-2016. Eta-square values showed that thiourea applications, drought stress, and wheat varieties were key contributors to most of the parameters measured. In conclusion, the sulfhydryl thiourea applications improved the morpho-physiology, biochemical, and yield attributes of wheat varieties, thereby mitigating the adverse effects of drought.  Moving forward, detailed studies pertaining to the molecular and genetic mechanisms under sulfhydryl thiourea-induced drought stress tolerance are warranted.


Assuntos
Secas , Estresse Oxidativo , Folhas de Planta , Tioureia , Triticum , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Triticum/fisiologia , Tioureia/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Antioxidantes/metabolismo , Fotossíntese/efeitos dos fármacos , Clorofila/metabolismo , Água/metabolismo , Estresse Fisiológico/efeitos dos fármacos
2.
Chem Biodivers ; 21(7): e202301941, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38224199

RESUMO

Mediterranean saltbush Atriplex halimus L. (Amaranthaceae) from different bioclimatic arid zones (ten wild populations) were studied. Phenols contents, flavonoids, flavonols, tannins and anthocyanins were determined and then tested for their antioxidants, antidiabetic and anti-acetylcholinesterase (AChE) activities. Levels of total polyphenols including flavonoids and flavonols, tannins and anthocyanins were high and varied significantly among analyzed populations. Nine phenolic acids and four flavonoids were identified for the first time in the methanolic fraction and quantified by liquid high-performance chromatography system HPLC (DAD). All extracts showed a substantial antioxidant activity, as assessed by DPPH assay (1,1-diphenyl-2-picrylhydrazyl free radical) (IC50DPPH=147.3for population of Seliena), Ferric Reducing Antioxidant Power (FRAP; IC50FRAP=3.2 for populations of Sousse and Kairouan), and Chelation Fer test (IC50FerCh=1.5 µg/mL for populations of El-hamma and Mednine). Atriplex halimus possessed a high inhibitory effect against α-amylase activity (up to 2.6 mg ACE/gE), a moderate activity for α-glucosidase (up to 91.0 mg ACE/gE) and AChE (up to 147.2 µg/mL) compared to standard. The analyzed populations were isolated and subdivided into three distinct groups, without any bioclimatic structuration. Enzymatic activities seem to be associated with the presence, in plant extracts, of other classes of compounds then phenols such as terpenes, sterols, saponins, coumarins and carotenoids.


Assuntos
Acetilcolinesterase , Antioxidantes , Atriplex , Inibidores da Colinesterase , Hipoglicemiantes , Compostos Fitoquímicos , Extratos Vegetais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/isolamento & purificação , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Acetilcolinesterase/metabolismo , Atriplex/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , Compostos de Bifenilo/antagonistas & inibidores , Picratos/antagonistas & inibidores , alfa-Glucosidases/metabolismo
3.
Front Plant Sci ; 14: 1263813, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38126015

RESUMO

Introduction: Nanoparticles play a vital role in environmental remediation on a global scale. In recent years, there has been an increasing demand to utilize nanoparticles in wastewater treatment due to their remarkable physiochemical properties. Methods: In the current study, manganese oxide nanoparticles (MnO-NPs) were synthesized from the Bacillus flexus strain and characterized by UV/Vis spectroscopy, X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. Results: The objective of this study was to evaluate the potential of biosynthesized MnO-NPs to treat wastewater. Results showed the photocatalytic degradation and adsorption potential of MnO-NPs for chemical oxygen demand, sulfate, and phosphate were 79%, 64%, and 64.5%, respectively, depicting the potential of MnO-NPs to effectively reduce pollutants in wastewater. The treated wastewater was further utilized for the cultivation of wheat seedlings through a pot experiment. It was observed that the application of treated wastewater showed a significant increase in growth, physiological, and antioxidant attributes. However, the application of treated wastewater led to a significant decrease in oxidative stress by 40%. Discussion: It can be concluded that the application of MnO-NPs is a promising choice to treat wastewater as it has the potential to enhance the growth, physiological, and antioxidant activities of wheat seedlings.

4.
Molecules ; 28(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677578

RESUMO

In the current study, bighead carp fish were used in conjunction with the flavourzyme enzyme to obtain (FPH) fish protein hydrolysates. The optimum conditions of the hydrolysis process included an enzyme/substrate ratio of 4% and a temperature of 50 °C and pH of 6.5. The hydrolysis time was studied and investigated at 1, 3, and 6 h, and the (DH) degree of hydrolysis was recorded at 16.56%, 22.23%, and 25.48%, respectively. The greatest yield value was 17.83% at DH 25.48%. By increasing the DH up to 25.48%, the crude protein and total amino acid composition of the hydrolysate were 88.19% and 86.03%, respectively. Moreover, more peptides with low molecular weight were formed during hydrolysis, which could enhance the functional properties of FPH, particularly the solubility property ranging from 85% to 97%. FTIR analysis revealed that enzymatic hydrolysis impacted the protein's secondary structure, as indicated by a remarkable wavelength of amide bands. Additionally, antioxidant activities were investigated and showed high activity of DDPH radical scavenging, and hydroxyl radical scavenging demonstrated remarkable activity. The current findings demonstrate that the functional, structural, and antioxidant characteristics of FPH might make it an excellent source of protein and suggest potential applications in the food industry.


Assuntos
Carpas , Cyprinidae , Animais , Antioxidantes/química , Hidrólise , Hidrolisados de Proteína/química , Carpas/metabolismo
5.
Front Plant Sci ; 13: 963394, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35971511

RESUMO

Extensive use of chromium (Cr) in anthropogenic activities leads to Cr toxicity in plants causing serious threat to the environment. Cr toxicity impairs plant growth, development, and metabolism. In the present study, we explored the effect of NaHS [a hydrogen sulfide; (H2S), donor] and silicon (Si), alone or in combination, on two chickpea (Cicer arietinum) varieties (Pusa 2085 and Pusa Green 112), in pot conditions under Cr stress. Cr stress increased accumulation of Cr reduction of the plasma membrane (PM) H+-ATPase activity and decreased in photosynthetic pigments, essential minerals, relative water contents (RWC), and enzymatic and non-enzymatic antioxidants in both the varieties. Exogenous application of NaHS and Si on plants exposed to Cr stress mitigated the effect of Cr and enhanced the physiological and biochemical parameters by reducing Cr accumulation and oxidative stress in roots and leaves. The interactive effects of NaHS and Si showed a highly significant and positive correlation with PM H+-ATPase activity, photosynthetic pigments, essential minerals, RWC, proline content, and enzymatic antioxidant activities (catalase, peroxidase, ascorbate peroxidase, dehydroascorbate reductase, superoxide dismutase, and monodehydroascorbate reductase). A similar trend was observed for non-enzymatic antioxidant activities (ascorbic acid, glutathione, oxidized glutathione, and dehydroascorbic acid level) in leaves while oxidative damage in roots and leaves showed a negative correlation. Exogenous application of NaHS + Si could enhance Cr stress tolerance in chickpea and field studies are warranted for assessing crop yield under Cr-affected area.

6.
Food Sci Nutr ; 9(8): 4031-4047, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34401055

RESUMO

Grass turtle muscle was hydrolyzed with papain enzyme to produce protein hydrolysate (PH) and the degree of hydrolysis (DH) was determined. Under optimal conditions, the highest DH was 19.52% and the yield was recorded as 17.26%. Protein content of the hydrolysates was ranged from 73.35% to 76.63%. Total amino acids were more than 96.77% for each PH. The PH obtained at DH 19.52% achieved excellent solubility and emulsifying activity which were 95.56% and 108.76 m2/g, respectively at pH 6. Foam capacity amounted 100% in PH of DH 19.52% at pH 2, and water-holding capacity was 4.38 g/g. The antioxidant activity showed the strongest hydroxyl radical scavenging activity (95.25%), ABTS (84.88%), DPPH (75.89%), iron chelating (63.25%), and cupper chelating (66.90%) at DH 11.96%, whereas reducing power (0.88) at DH 19.52%. Thus, the findings indicated that utilization of grass turtle muscle protein hydrolysate is a potential alternative protein resource to improve the nutritional and functional properties in food ingredients and product formulations.

7.
Sci Total Environ ; 747: 141101, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-32771779

RESUMO

Human-induced disturbances such as dam construction and regulation often change the duration and frequency of flooding and thus notably influence plant dominance in riparian zones. Even though numerous studies have indicated that the oxidative stress and antioxidative stress systems are essential for plant defenses against adverse flooding stress, the mechanism of vegetation distribution due to hydrological regimes is still unclear. In the current study, the riparian zone of the Three Gorges Reservoir (TGR), which experiences seasonal and anti-seasonal water-level fluctuations, was used to investigate the dominant species. To our knowledge, this is the first study that links molecular-physiological-morphological mechanisms to explore the development of flooding tolerance of dominant riparian species. Physiological traits (e.g., chlorophyll and protein contents), morphological traits (e.g., leaf length), and molecular traits (e.g., enzymatic antioxidant activity and the malondialdehyde content) were analyzed at different water-level gradient zones of the dominant species to evaluate the influence of flooding. To explore the regulation mechanisms of submergence for the vegetation distribution, correlation analysis, PCA (principal component analysis) and laboratory flooding experiments were conducted. The results showed that Cynodon dactylon, which has a rapid antioxidative system, was the dominant species in the riparian zone of the TGR. The leaf length varied significantly along with water level gradients (p < 0.05) with the minimum values appearing in the lowest part of the riparian zone and the maximum values observed in the highest areas. The chlorophyll and protein contents fluctuated in different water level gradient zones, but significant differences were not observed. Within the antioxidative system, catalase was found to be essential for riparian plants in their response to flooding. The current study could provide insight to explore the specific mechanism of resistance for dominant plants to periodic flooding, and the reason why dominant species can survive adverse stress.


Assuntos
Inundações , Plantas , China , Cynodon , Água
8.
Plants (Basel) ; 9(4)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316200

RESUMO

: Hypochaeris laevigata var. hipponensis (Asteraceae) is an endemic plant from Algeria. In the current study, we analyzed for the first time its chemical composition, especially phenolic constituents of dichloromethane (DCM), ethyl acetate (EA), and n-butanol (BuOH) fractionsof the aerial parts of Hypochaeris laevigata var. hipponensis by liquid chromatography-mass spectrometry (LC-MS/MS). The number of phenolic compounds detected in DCM, EA, and BuOH fractions were found to be 9, 20, and 15, respectively. More specifically, 12 phenolic acids were detected. Among them, quinic acid, chlorogenic acid, and caffeic acid were the most abundant ones. Meanwhile, only seven flavonoids were detected. Among them, rutin, apigetrin, and isoquercitrin were the major ones. We also determined the total phenolic and flavonoid contents, and fraction EA showed the highest values, followed by BuOH, and DCM fractions. Furthermore, the antioxidant action was dictated by five methods and the tested plant fractions demonstrated a noteworthy antioxidant action.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA