RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Sophocarpine is a bioactive compound extracted from the dried root of Sophorae Flavesentis Aiton, a plant that has been used for thousands of years for various conditions including skin itch and pain. Its antipruritic and analgesic effects are suggested in publications, while the molecular mechanisms underneath interacting with TRP channels are not understood. AIM OF THE STUDY: We investigated the anti-inflammatory, antipruritic, and analgesic effects of sophocarpine in a murine inflammatory itch and pain model to elucidate the underlying mechanisms. MATERIALS AND METHODS: We evaluated sophocarpine's anti-pruritic and analgesic effects by monitoring mice's scratching and wiping behaviors, and the anti-inflammatory effect by measuring psoriasis area and severity index (PASI) score. The mRNA and protein expression of TRPA1/TRPV1 was analyzed by real-time quantitative polymerase chain reaction and western blotting. We further investigated the relationship between sophocarpine and TRPA1/TRPV1 in mice administered allyl-isothiocyanate (AITC) or capsaicin and by molecular docking. RESULTS: We found that sophocarpine decreased scratching bouts, wipes, and the PASI score, reduced the TNF-α and IL-1ß in the skin and TRPA1 and TRPV1 in the trigeminal ganglion. Pretreatment of sophocarpine decreased AITC-induced scratching bouts and wipes and capsaicin-induced wipes. We also found potential competitive bindings between sophocarpine and AITC/capsaicin to TRPA1/TRPV1. CONCLUSIONS: Sophocarpine is a potential competitive inhibitor of TRPA1 and TRPV1 channels eliciting strong anti-inflammatory, anti-pruritic, and analgesic effects, suggesting its significant therapeutic potential in treating diseases with inflammatory itch and pain.
RESUMO
Pruritis, the sensation of itch, is produced by multiple substances, exogenous and endogenous, that sensitizes specialized sensory neurons (pruriceptors and pruri-nociceptors). Unfortunately, many patients with acute and chronic pruritis obtain only partial relief when treated with currently available treatment modalities. We recently demonstrated that the topical application of high molecular weight hyaluronan (HMWH), when combined with vehicles containing transdermal transport enhancers, produce potent long-lasting reversal of nociceptor sensitization associated with inflammatory and neuropathic pain. In the present experiments we tested the hypothesis that the topical formulation of HMWH with protamine, a transdermal transport enhancer, can also attenuate pruritis. We report that this topical formulation of HMWH markedly attenuates scratching behavior at the nape of the neck induced by serotonin (5-hydroxytryptamine, 5-HT), in male and female rats. Our results support the hypothesis that topical HMWH in a transdermal transport enhancer vehicle is a strong anti-pruritic.
Assuntos
Administração Cutânea , Ácido Hialurônico , Protaminas , Ratos Sprague-Dawley , Animais , Ácido Hialurônico/farmacologia , Ácido Hialurônico/química , Masculino , Feminino , Ratos , Protaminas/farmacologia , Peso Molecular , Serotonina/metabolismo , Administração TópicaRESUMO
INTRODUCTION: Pruritus, particularly in its chronic form, often imposes significant suffering and reductions in patients' quality of life. The pathophysiology of itch is varied depending on disease context, creating opportunities for unique drug development and multimodal therapy. AREAS COVERED: The purpose of this article is to provide an update of the literature regarding current and emerging therapeutics in itch. We review the multitudes of drug targets available and corresponding drugs that have shown efficacy in clinical trials, with a particular emphasis on phase 2 and 3 trials and beyond. Broadly, these targets include therapies directed against type 2 inflammation (i.e. Th2 cytokines, JAK/STAT, lipid mediators, T-cell mediators, and other enzymes and receptors) and neural receptors and targets (i.e. PARs, TRP channels, opioid receptors, MRGPRs, GABA receptors, and cannabinoid receptors). EXPERT OPINION: Therapeutics for itch are emerging at a remarkable pace, and we are entering an era with more and more specialized therapies. Increasingly, these treatments are able to relieve itch beyond their effect on inflammation by directly targeting the neurosensory system.
Assuntos
Antipruriginosos , Desenvolvimento de Medicamentos , Prurido , Qualidade de Vida , Humanos , Prurido/tratamento farmacológico , Prurido/fisiopatologia , Antipruriginosos/uso terapêutico , Animais , Terapia de Alvo Molecular , Doença Crônica , Inflamação/tratamento farmacológicoRESUMO
Mikania micrantha is a perennial liana of the genus Mikania of the Asteraceae family. It is a commonly used medicine in South America for treating fever, malaria, dysentery, snake bites, etc. Because of its strong adaptability and ability to inhibit the growth of its associated plants, Mikania micrantha is considered an invasive species in China and is known as a plant killer. Preliminary studies have shown that Mikania micrantha has an antipruritic effect, but the antipruritic active substance is not yet clear. In this study, a 4-aminopyridine-induced itching model in mice was used to determine the antipruritic effects of petroleum ether, ethyl acetate, ethanol extraction site, and Mikania micrantha volatile oil. GC-MS was used to analyze the components of the antipruritic fractions, combined with mice itch-causing models to study the antipruritic effects of ß-caryophyllene and humulene. The safety of ß-caryophyllene was preliminarily evaluated through the acute toxicity test of mice skin. The ethyl acetate and volatile oil of Mikania micrantha have apparent antipruritic effects. Humulene and ß-caryophyllene have a quantitative-effective relationship to inhibit itching in mice. The acute toxicity test of mouse skin showed that ß-caryophyllene has no acute toxicity. This study indicated that the main antipruritic active ingredients of Mikania micrantha are ß-caryophyllene and humulene.
Assuntos
Acetatos , Mikania , Sesquiterpenos Monocíclicos , Óleos Voláteis , Sesquiterpenos Policíclicos , Animais , Camundongos , Antipruriginosos/farmacologia , Estrutura Molecular , Óleos Voláteis/farmacologia , PruridoRESUMO
BACKGROUND: Intradermal (IDT) and prick (PT) tests are used to select allergens for allergen-specific immunotherapy in dogs with atopic dermatitis (cAD). However, the use of antipruritic drugs before performing these tests may influence the results. OBJECTIVE: To evaluate the influence of the drugs oclacitinib and prednisolone on the immediate-phase reactions of IDT and PT. ANIMALS: Thirty client-owned dogs with cAD with positive reactions to at least one allergen extract on IDT or PT. MATERIALS AND METHODS: Dogs were randomly assigned to receive oclacitinib 0.4-0.58 mg/kg per os, every 12 h (n = 14), or prednisolone 0.37-0.65 mg/kg p.o., every 12 h (n = 16) for 14 days. IDT and PT were performed on Day (D)0 before treatment and on D14. RESULTS: At D14 there was no significant reduction in the means of the orthogonal diameters of the positive immediate-phase reactions of the IDT (p = 0.064) in the oclacitinib group; however, in the PT, the diameter of the positive reactions reduced significantly (p = 0.048). In both tests, there was no significant reduction in the total number of positive reactions (IDT, p > 0.999; PT, p = 0.735). In the prednisolone group, the means of the orthogonal diameters of positive immediate-phase reactions were significantly reduced in both tests (IDT, p = 0.001; PT, p ≤ 0.001) and there also was a reduction in the total number of positive reactions (IDT, p = 0.022; PT, p = 0.001). CONCLUSIONS AND CLINICAL RELEVANCE: The use of oclacitinib 0.4-0.58 mg/kg twice daily for 14 days does not interfere with IDT results in dogs with cAD. However, oclacitinib may reduce PT reactivity. The use of prednisolone 0.37-0.65 mg/kg twice daily results in a reduction in both IDT and PT results.
Assuntos
Dermatite Atópica , Doenças do Cão , Testes Intradérmicos , Animais , Cães , Alérgenos , Dermatite Atópica/diagnóstico , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/veterinária , Doenças do Cão/diagnóstico , Doenças do Cão/tratamento farmacológico , Testes Intradérmicos/veterinária , Testes Intradérmicos/métodos , Prednisolona/farmacologiaRESUMO
Objective: To explore the mechanism of Qiwei antipruritic by using network pharmacology and molecular docking technology. Methods: The components and related targets of Qiwei antipruritic were screened by using the traditional Chinese medicine system pharmacology database (TCMSP and symmap databases). GeneCards and OMIM databases were used to screen itch-related targets. The protein-protein interaction (PPI) network between active ingredient targets and pruritus disease targets was constructed using STRING database. Cytoscape 3.8.0 software was used to draw the visualization network of "drug-component-target-signaling pathway" and screen the core targets. Gene ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using R software. AutoDock vina software was used to perform molecular docking of key targets and their corresponding key components. Results: There were 44 main components of Qiwei antipruritic compound, 118 corresponding targets and 3869 itch-related genes. A total of 82 predicted targets of Qiwei antipruritic in the treatment of pruritus were obtained. Eleven key targets were screened. Among the 23 KEGG enriched pathways, 12 signaling pathways were related to skin pruritus. Molecular docking results showed that the core components of Qiwei antipruritic, including quercetin, kaempferol, ß-sitosterol, stigmasterol, luteolin, and preskimmianine, had good binding ability with ESR1, PPARG, IL6, TP53, and EGFR, and the docking scores were all less than -4. Conclusion: The mechanism of Qiwei antipruritic may be related to histamine activation mechanism, calcium channel mechanism, inhibition of inflammatory signaling pathway, inhibition of neurotransmitters, and regulation of immune pathways. The traditional Chinese medicine compound Qiwei antipruritic can treat clinical pruritus through multiple targets and pathways.
RESUMO
Pain is a very unpleasant experience that makes life extremely uncomfortable. The histamine H4 receptor (H4R) is a promising target for the treatment of inflammatory and immune diseases, as well as pain. H4R ligands have demonstrated analgesic effects in a variety of pain models, including inflammatory pain. Continuing the search for active H4R ligands among the alkyl derivatives of 1,3,5-triazine, we obtained 19 new compounds in two series: acyclic (I) and aliphatic (II). In vitro pharmacological evaluation showed their variable affinity for H4R. The majority of compounds showed a moderate affinity for this receptor (Ki > 100 nM), while all compounds tested in ß-arrestin and cAMP assays showed antagonistic activity. The most promising, compound 6, (4-(cyclopentylmethyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine; Ki = 63 nM) was selected for further in vitro evaluation: blood-brain barrier permeability (PAMPA assay; Pe = 12.26 × 10-6 cm/s) and toxicity tests (HepG2 and SH-5YSY cells; no toxicity up to 50 µM). Next, compound 6 tested in vivo in a carrageenan-induced inflammatory pain model showed anti-inflammatory and analgesic effects (strongest at 50 mg/kg i.p.). Furthermore, in a histamine- and chloroquine-induced pruritus model, compound 6 at a dose of 25 mg/kg i.p. and 50 mg/kg i.p., respectively, reduced the number of scratch bouts. Thus, compound 6 is a promising ligand for further studies.
Assuntos
Histamina , Triazinas , Humanos , Receptores Histamínicos H4 , Triazinas/farmacologia , Triazinas/uso terapêutico , Receptores Histamínicos , Dor/tratamento farmacológico , Ligantes , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Receptores Acoplados a Proteínas GRESUMO
Kappa opioid receptor (KOR) agonists are potentially useful as analgesic and anti-pruritic agents, for prevention and treatment of substance use disorders, and for treatment of demyelinating diseases. However, side effects of KOR agonists, including psychotomimesis, dysphoria, and sedation, have caused early termination of clinical trials. Understanding the signaling mechanisms underlying the beneficial therapeutic effects and the adverse side effects may help in the development of KOR agonist compounds. In this review, we summarize the current knowledge in this regard in five sections. First, studies conducted on mutant mouse lines (GRK3-/-, p38alpha MAPK-/-, ß-arrestin2-/-, phosphorylation-deficient KOR) are summarized. In addition, the abilities of four distinct KOR agonists, which have analgesic and anti-pruritic effects with different side effect profiles, to cause KOR phosphorylation are discussed. Second, investigations on the KOR agonist nalfurafine, both in vitro and in vivo are reviewed. Nalfurafine was the first KOR full agonist approved for clinical use and in the therapeutic dose range it did not produce significant side effects associated with typical KOR agonists. Third, large-scale high-throughput phosphoproteomic studies without a priori hypotheses are described. These studies have revealed that KOR-mediated side effects are associated with many signaling pathways. Fourth, several novel G protein-biased KOR agonists that have been characterized for in vitro biochemical properties and agonist biases and in vivo behavior effects are described. Lastly, possible mechanisms underlying KOR-mediated CPA, hypolocomotion and motor incoordination are discussed. Overall, it is agreed upon that the analgesic and anti-pruritic effects of KOR agonists are mediated via G protein signaling. However, there is no consensus on the mechanisms underlying their side effects. GRK3, p38 MAPK, ß-arrestin2, mTOR pathway, CB1 cannabinoid receptor and protein kinase C have been implicated in one side effect or another. For drug discovery, after initial in vitro characterization, in vivo pharmacological characterizations in various behavior tests are still the most crucial steps and dose separation between beneficial therapeutic effects and adverse side effects are the critical determinant for the compounds to be moved forward for clinical development.
RESUMO
Purpose: Urea as an ingredient in topical skin applications can aid skin integrity and hydration and have keratolytic, anti-fungal, anti-bacterial, and anti-pruritic effects. Skin conditions that urea-containing formulations have been utilized to treat include hand eczema/dermatitis, seborrheic dermatitis and psoriasiform dermatoses of the scalp. Two monocentric, simple blind, observational studies were carried out in healthy participants to examine the efficacy and safety of two urea-containing products in these skin conditions. Patients and Methods: Study 1 tested the actions of a commercially available 30% urea topical cream on hand eczema. The product was applied ≥2/day for 28 ±2 days. Transepidermal water loss, skin redness, skin hydration, and participant ratings of efficacy and qualities were assessed prior to first product application and on days 14 and 29. Study 2 tested the actions of a commercially available foaming product containing 10% urea on seborrheic dermatitis and scalp psoriasiform dermatoses. The product was applied ≥2/day for 28 ±2 days. Desquamation index and surface occupied by squames, analysis of extracted squames, microscopic assessment of scalp photos and participant ratings of product efficacy and qualities was carried out prior to first product application and on days 14 and 29. Results: In Study 1 (n = 20 females), results showed a significant (p < 0.05) decrease in transepidermal water loss, with an increase in hydration level of the upper skin layers, and a decrease in skin redness. In Study 2 (n = 13 females, 7 males), product use led to significant (p < 0.05) decreases in desquamation measures and dryness. In both studies, the majority of participants "agreed" or "slightly agreed" that the product had good efficacy and was easy to apply. No adverse reactions were reported. Conclusion: These findings point to the utility of urea in topically applied vehicles for hand eczema, seborrheic dermatitis, and psoriasiform dermatoses.
RESUMO
Two decades after reports of the anti-pruritic effects of botulinum neurotoxins (BoNTs), there is still no approved product for the anti-itch indication of BoNTs, and most clinical case reports still focus on the off-label use of BoNTs for various itchy conditions. Few randomized clinical trials have been conducted with controversial results, and the beneficial effects of BoNTs against itch are mainly based on case studies and case series. These studies are valuable in presenting the potential application of BoNTs in chronic pruritic conditions, but due to the nature of these studies, they are categorized as providing lower levels of evidence or lower grades of recommendation. To obtain approval for the anti-pruritic indication of BoNTs, higher levels of evidence are required, which can be achieved through conducting large-scale and well-designed studies with proper control groups and established careful and reliable primary and secondary outcomes. In addition to clinical evidence, presenting the mechanism-based antipruritic action of BoNTs can potentially strengthen, accelerate, and facilitate the current efforts towards further investments in accelerating the field towards the potential approval of BoNTs for itchy conditions. This review, therefore, aimed to provide the state-of-the-art mechanisms underlying the anti-itch effect of BoNTs from basic studies that resemble various clinical conditions with itch as a hallmark. Evidence of the neuronal, glial, and immune modulatory actions of BoNTs in reducing the transmission of itch are presented, and future potential directions are outlined.
Assuntos
Toxinas Botulínicas , Humanos , Toxinas Botulínicas/uso terapêutico , Toxinas Botulínicas/farmacologia , Antipruriginosos/uso terapêutico , Prurido/tratamento farmacológico , Neurônios , Neurotoxinas/farmacologiaRESUMO
Atopic dermatitis (AD) is a common chronic allergic skin disease characterized clinically by severe skin lesions and pruritus. Portulaca oleracea L. (PO) is a resourceful plant with homologous properties in medicine and food. In this study, we used two different methods to extract PO, and compared the therapeutic effects of PO aqueous extract (POAE) and PO ultrasound-assisted ethanol extract (POEE) on 2,4-dinitrochlorobenzene (DNCB)-induced AD mice. The results showed that in POAE and POEE, the extraction rates of polysaccharides were 16.95% and 9.85%, while the extraction rates of total flavonoids were 3.15% and 3.25%, respectively. Compared with AD mice, clinical symptoms such as erythema, edema, dryness and ulceration in the back and left ear were alleviated, and pruritus behavior was reduced after POAE and POEE treatments. The thickness of the skin epidermis was thinned, the density of skin nerve fibers labeled with protein gene product 9.5 (PGP9.5) was decreased, and mast cell infiltration was reduced. There was a decrease in blood lymphocytes, eosinophils and basophils, a significant decrease in spleen index and a noticeable decrease in serum immunoglobulin E (Ig E). POEE significantly reduced the concentration of the skin pruritic factor interleukin (Il)-31. POAE and POEE reduced the concentration of skin histamine (His), down-regulated mRNA expression levels of interferon-γ (Ifnγ), tumor necrosis factor-α (Tnf-α), thymic stromal lymphopoietin (Tslp) and Il-4, with an increase of Filaggrin (Flg) and Loricrin (Lor) in skin lesions. These results suggested that POAE and POEE may inhibit atopic response and alleviate the clinical symptoms of AD by inhibiting the expression of immune cells, inflammatory mediators and cytokines. PO may be a potential effective drug for AD-like diseases.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: In treating atopic dermatitis, multi-mode management is adopted, including trying to avoid the allergens, controlling and preventing secondary infections, and using drugs to control itching. At present, most of the commonly used anti-pruritic drugs in the clinic are single-target and lead to serious side effects. Many studies have shown that a variety of traditional Chinese medicines have significant anti-inflammatory and anti-pruritic effects, and have the characteristics of multiple components, multiple targets, and multiple effects. AIM OF THE STUDY: The study aimed to explore the anti-inflammatory and anti-pruritic effects of the Chi-Huang Solution in a murine model of Allergic contact dermatitis (ACD). This study considers the effectiveness of the Chi-Huang Solution for external use on skin to provide an experimental basis for the clinical development and application of Chinese medicine and related preparations for Canine atopic dermatitis (CAD). MATERIALS AND METHODS: Forty-two male SPF C57BL/6 mice were randomly divided into control group (n = 6), ACD model group (n = 6), HAC control group (n = 6), and 4 Chi-Huang Solution groups (n = 6 in each group). With SADBE induce the murine model of ACD chronic pruritus, and initially evaluate whether the model is successful by counting scratching behavior, measuring the skin fold thickness and skin lesion score within 1 h. After treating the ACD model mice with deionized water, HAC, 1CH, 2CH, 3CH, and 4CH for 7 days, behavioral changes were used to evaluate the anti-pruritic effect. The skin fold thickness, skin lesion score, and spleen index were used to evaluate the anti-inflammatory effect of the Chi-Huang Solution. H.E. staining was used for the epidermal thickness measurement and pathological evaluation. RT-qPCR was used to analyze the mRNA expression of related inflammatory factors such as IL-1ß, TNF-α, IL-33, IL-4, IL-17A, CXCL10, and its receptor CXCR3 in the skin of the lesion site, as well as to detect the mRNA expression of pruritus-related genes such as TRPV1, TRPA1, and GRP in DRG. RESULTS: After the treatment of low-dose (0.1 g/mL) and medium-dose (0.2 g/mL) Chi-Huang Solution, the scratching times both decreased significantly (P < 0.05), meanwhile the medium-dose Chi-Huang Solution had an obvious effect on reducing scratches/scab score (P < 0.05). Moreover, no matter what dose it takes, all Chi-Huang Solution can alleviate the epidermal thickening (P < 0.05) and the infiltration of mast cells in the ACD murine model of ACD. It is worth mentioning that the count of mast cells in the dermis was significantly down-regulated after the treatment of medium-dose Chi-Huang Solution (P < 0.005). Furthermore, Chi-Huang Solution can significantly down-regulate the mRNA expression of related inflammatory factors in the skin, and reduce the mRNA expression of pruritus-related genes, such as TRPA1, TRPV1, and GRP in the spinal cord. CONCLUSIONS: The results indicated that Chi-Huang Solution for external use exhibits significant anti-inflammatory and anti-pruritic effects on SADBE-induced ACD chronic pruritus murine models. Chi-Huang Solution might emerge as an effective drug for the treatment of CAD and high-dose Chi-Huang Solution (0.4 g/ml) has better comprehensive effects.
Assuntos
Anti-Inflamatórios , Antipruriginosos , Dermatite Alérgica de Contato , Animais , Anti-Inflamatórios/uso terapêutico , Antipruriginosos/uso terapêutico , Dermatite Alérgica de Contato/tratamento farmacológico , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Prurido/genética , Prurido/prevenção & controle , RNA MensageiroRESUMO
Selective kappa opioid receptor (KOR) agonists are promising antipruritic agents and analgesics. However, clinical development of KOR agonists has been limited by side effects, including psychotomimetic effects, dysphoria, and sedation, except for nalfurafine, and recently. CR845 (difelikefalin). Activation of KOR elicits G protein- and ß-arrestin-mediated signaling. KOR-induced analgesic and antipruritic effects are mediated by G protein signaling. However, different results have been reported as to whether conditioned place aversion (CPA) induced by KOR agonists is mediated by ß-arrestin signaling. In this study, we examined in male mice if there was a connection between agonist-promoted CPA and KOR phosphorylation and internalization, proxies for ß-arrestin recruitment in vivo using four KOR agonists. Herein, we demonstrated that at doses producing maximal effective analgesic and antiscratch effects, U50,488H, MOM-SalB, and 42B, but not nalfurafine, promoted KOR phosphorylation at T363 and S369 in mouse brains, as detected by immunoblotting with phospho-KOR-specific antibodies. In addition, at doses producing maximal effective analgesic and antiscratch effects, U50,488H, MOM-SalB, and 42B, but not nalfurafine, caused KOR internalization in the ventral tegmental area of a mutant mouse line expressing a fusion protein of KOR conjugated at the C-terminus with tdTomato (KtdT). We have reported previously that the KOR agonists U50,488H and methoxymethyl salvinorin B (MOM-SalB) cause CPA, whereas nalfurafine and 42B do not, at doses effective for analgesic and antiscratch effects. Taken together, these data reveal a lack of connection between agonist-promoted KOR-mediated CPA with agonist-induced KOR phosphorylation and internalization in male mice.
RESUMO
Introduction: Treating chronic pruritus is challenging for dermatologists due to the lack of therapeutic options. We review the effects of κ-opioid receptor (KOR) and µ-opioid receptor (MOR) in the modulation of itch, summarize evidence supporting the efficacy and safety of opioid receptor-targeting agents in chronic pruritus, and address clinical considerations. Results: Preclinical studies have found neural pathways underlying detection, transmission, and modulation of itch signaling and spotlighted the importance of neuronal KOR and MOR in itch perception. Clinical reports suggest that opioid axis modulation may be the basis for the successful treatment of chronic itch. Several agents (MOR antagonist naltrexone; KOR agonists nalfurafine and difelikefalin; dual-acting KOR agonists/MOR antagonists butorphanol and nalbuphine) have been evaluated for treating chronic pruritus in case series, small studies, and clinical trials; nalbuphine has progressed through preliminary (phase II/III) studies in uremic pruritus and prurigo nodularis. The antipruritic efficacy of these agents has been observed across multiple disorders with disparate etiologies, suggesting the potential utility of this class to provide a unified approach to chronic pruritus treatment. Conclusions: The relative safety of these agents, including a reduced potential for dependence versus MOR-agonist analgesics, should help overcome resistance to the use of opioid receptor-targeting agents in chronic pruritus treatment.
RESUMO
Nalfurafine has been used clinically in Japan for treatment of itch in kidney dialysis patients and in patients with chronic liver diseases. A one-year post-marketing study showed nalfurafine to be safe and efficacious without producing side effects of typical KOR agonists such as anhedonia and psychotomimesis. In this chapter, we summarize in vitro characterization and in vivo preclinical studies on nalfurafine. In vitro, nalfurafine is a highly potent and moderately selective KOR full agonist; however, whether it is a biased KOR agonist is a matter of debate. In animals, nalfurafine produced anti-pruritic effects in a dose range lower than that caused side effects, including conditioned place aversion (CPA), hypolocomotion, motor incoordination, consistent with the human data. In addition, nalfurafine showed antinociceptive effects in several pain models at doses that did not cause the side effects mentioned above. It appears to be effective against inflammatory pain and mechanical pain, but less so against thermal pain, particularly high-intensity thermal pain. U50,488H and nalfurafine differentially modulated several signaling pathways in a brain region-specific manners. Notably, U50,488H, but not nalfurafine, activated the mTOR pathway, which contributed to U50,488H-induced CPA. Because of its lack of side effects associated with typical KOR agonists, nalfurafine has been investigated as a combination therapy with an MOR ligand for pain treatment and for its effects on opioid use disorder and alcohol use disorder, and results indicate potential usefulness for these indications. Thus, although in vitro data regarding uniqueness of nalfurafine in terms of signaling at the KOR are somewhat equivocal, in vivo results support the assertion that nalfurafine is an atypical KOR agonist with a significantly improved side-effect profile relative to typical KOR agonists.
Assuntos
Morfinanos , Compostos de Espiro , Animais , Humanos , Morfinanos/farmacologia , Morfinanos/uso terapêutico , Dor , Receptores Opioides kappa , Compostos de Espiro/farmacologiaRESUMO
Nalfurafine hydrochloride is a selective kappa-opioid agonist that has antipruritic effects. Here we describe the clinical trials for treatment of uremic pruritus in dialysis patients and on hepatic pruritus in patients with chronic liver disease. Among cytochrome P-450 (CYP) isoforms in humans, CYP3A4 is the major isoform involved in metabolic decyclopropylmethylation of nalfurafine hydrochloride. Nalfurafine hydrochloride was found to be a substrate for P-glycoprotein (P-gp), but had no inhibitory effects on P-gp-mediated transport. The efficacy of oral nalfurafine hydrochloride at 2.5 and 5 µg for refractory pruritus in hemodialysis patients was observed within the first 7 days of treatment, and the effects persisted for the 52-week treatment period. Nalfurafine hydrochloride is also effective in the treatment of conventional refractory pruritus in peritoneal dialysis patients. Moreover, nalfurafine hydrochloride at 2.5 and 5 µg is effective for the treatment of refractory pruritus in chronic liver disease patients within the first 7 days of drug administration. In all the clinical trials, most adverse drug reactions (ADRs) were mild and resolved quickly and there was no clinical safety problem. Following 52 weeks of treatment, hemodialysis patients did not develop physical or psychological dependence, indicating no addiction risks. In summary, nalfurafine hydrochloride administered orally at doses of 2.5 and 5 µg was safe and effective for treatment of refractory pruritus in patients undergoing hemodialysis or peritoneal dialysis and in chronic liver disease patients.
Assuntos
Morfinanos , Compostos de Espiro , Humanos , Morfinanos/uso terapêutico , Prurido/tratamento farmacológico , Prurido/etiologia , Receptores Opioides kappa , Compostos de Espiro/uso terapêuticoRESUMO
In a previous proof-of-concept study we have demonstrated that visual exposure to specific colors results in pruritic or antipruritic effects. To determine the effect of "antipruritic" colors when using immersive virtual reality (VR) and to assess whether psychometric values correlate with the response to the color exposure. In this cross-sectional interventional single-center study, itch patients were exposed to their subjective "antipruritic color" (defined by the Manchester Color Wheel) in a virtual monochromatic room for 10 min using a head-mounted display. Itch intensity rating (0-10 numerical rating scale [NRS]) was repeated at 1-min intervals. Additionally, dermatology life quality index, itch-related quality of life and the Hospital Anxiety and Depression Scale questionnaires were completed. Twenty-two patients (mean age 51.9 ± 23 years, 13 females) participated in the study. Following color exposure for 10 min itch intensity was significantly reduced compared to baseline (exact Wilcoxon signed-rank test, mdn-NRS 4.5 vs 3.0; z = -3.025, p = 0.001), confirmed by the area under the curve (z = -3.118; p = 0.001). No significant correlation between itch reduction and questionnaire scores was found (Spearman's Rho for all questionnaires). Visual exposure to the "antipruritic color" using immersive VR resulted in a significant decrease in itch intensity. This aligns with previous findings on the influence of colors on itch perception. The response of the intervention appeared independent of psychometric values. Thus, color exposure using immersive VR is a promising, low-cost, rapidly-acting, easily-applicable, non-pharmacological experimental antipruritic method.
Assuntos
Realidade Virtual , Adulto , Idoso , Estudos Transversais , Feminino , Humanos , Pessoa de Meia-Idade , Projetos Piloto , Prurido/induzido quimicamente , Prurido/diagnóstico , Prurido/terapia , Qualidade de VidaRESUMO
Background: Canine allergic dermatitis, including atopic dermatitis, often requires antibacterial therapy for concurrent infections. Oclacitinib is indicated for treatment of pruritus associated with allergic dermatitis and the clinical manifestations of atopic dermatitis in dogs aged ≥12 months. Hypothesis/Objectives: We aimed to determine if there was a quantitative difference in antibacterial use by dogs with allergic dermatitis receiving oclacitinib vs. other anti-pruritic therapies and before vs. after oclacitinib. Animals: In this retrospective case-control study, cases (n = 58) included dogs suffering from allergic dermatitis aged ≥12 months receiving oclacitinib and controls (n = 205) were counterpart dogs treated with other anti-pruritic therapies. Methods: Clinical histories of dogs with allergic dermatitis were collected from a small animal university hospital. Multivariable logistic regression models were developed adjusting for underlying skin or ear conditions to determine whether cases were prescribed fewer antibacterials than controls. Results: The odds of systemic antibacterial usage were lower in cases vs. controls [odds ratio (OR): 0.29 (95% confidence interval 0.12-0.71); P = 0.007]. The odds of amoxycillin clavulanic acid usage (12.5-25 mg/kg orally every 12 h) was lower in cases vs. controls [OR: 0.08 (0.01-0.71); P = 0.024]. Topical antibacterial drug use was reduced overall; however, only the odds of neomycin use was lower in cases vs. controls [OR: 0.3 (0.1-0.89); P = 0.029]. Cases had higher odds of experiencing improvements in allergic dermatitis categories vs. controls [OR: 7.89 (3.26-19.13); P < 0.001]. Conclusions and Clinical Importance: Our results suggest that use of oclacitinib to treat allergic dermatitis in dogs is associated with less antibacterial use than other anti-pruritic therapies.
RESUMO
Paeonol is a bioactive phenol presents mainly in Paeonia suffruticosa Andr. (Paeoniaceae), Paeonia lactiflora Pall., and Dioscorea japonica Thunb. (Dioscoreaceae), harboring various pharmacological activities including anti-inflammatory, antioxidant, immune regulatory activity and reverse chemoresistance. Recent reports revealed paeonol exhibited good effects on chronic dermatitis, such as atopic dermatitis (AD) and psoriasis. However, whether paeonol is effective for dry skin disease and its mechanism of action still remain unclear. In this study, we analysed the effects of paeonol on a mouse model of dry skin treated with acetone-ether-water (AEW), which showed impressive activities in reducing scratching behavior and skin inflammation. To elucidate the underlying molecular targets for the anti-pruritic ability of paeonol, we screened the expression of possible chemokine pathways in the spinal cord. The expression of CXCR3 was significantly alleviated by paeonol, which increased greatly in the spinal neurons of AEW mice. In addition, treatment of paeonol significantly inhibited AEW-induced expression of astrocyte activity-dependent genes including Tlr4, Lcn2 and Hspb1 et al. The inhibitory effects of paeonol on scratching behavior and astrocytic activation in the spinal cord induced by AEW were abolished when CXCR3 was antagonized or genetically ablated. Taken together, our results indicated that paeonol can ameliorate AEW-induced inflammatory response and itching behavior, and reduce the expression of spinal astrocyte activity-dependent genes induced by AEW, which are driven by CXCR3.
RESUMO
Nalfurafine, a moderately selective kappa opioid receptor (KOR) agonist, is used in Japan for treatment of itch without causing dysphoria or psychotomimesis. Here we characterized the pharmacology of compound 42B, a 3-dehydroxy analogue of nalfurafine and compared with that of nalfurafine. Nalfurafine and 42B acted as full KOR agonists and partial µ opioid receptor (MOR) agonists, but 42B showed much lower potency for both receptors and lower KOR/MOR selectivity, different from previous reports. Molecular modeling revealed that water-mediated hydrogen-bond formation between 3-OH of nalfurafine and KOR accounted for its higher KOR potency than 42B. The higher potency of both at KOR over MOR may be due to hydrogen-bond formation between nonconserved Y7.35 of KOR and their carbonyl groups. Both showed modest G protein signaling biases. In mice, like nalfurafine, 42B produced antinociceptive and antiscratch effects and did not cause conditioned place aversion (CPA) in the effective dose ranges. Unlike nalfurafine, 42B caused motor incoordination and hypolocomotion. As both agonists showed G protein biases, yet produced different effects on locomotor activity and motor incoordination, the findings and those in the literature suggest caution in correlating in vitro biochemical data with in vivo behavior effects. The factors contributing to the disconnect, including pharmacodynamic and pharmacokinetic issues, are discussed. In addition, our results suggest that among the KOR-induced adverse behaviors, CPA can be separated from motor incoordination and hypolocomotion.