Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Gene ; 894: 147956, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37925116

RESUMO

Antigenic variation associated with genetic diversity in global Plasmodium falciparum apical membrane antigen-1 (PfAMA-1) is a major impediment to designing an effective malaria vaccine. Here, we report the first study on genetic diversity and natural selection of the Pfama-1 gene in P. falciparum isolates from Cameroon. A total of 328 P. falciparum positive samples collected during 2016 and 2019 from five localities of Cameroon were analysed. The ectodomain coding fragment of Pfama-1 gene was amplified for polymorphism profiling and natural selection analysis. A total of 108 distinct haplotypes were found in 203 P. falciparum isolates with considerable nucleotide diversity (π = 0.016) and haplotype diversity (Hd = 0.976). Most amino acid substitutions detected were scattered in ectodomain-I and few specific mutations viz P145L, K148Q, K462I, L463F, N471K, S482L, E537G, K546R and I547F were seen only in Cameroonian isolates. A tendency of natural selection towards positive diversifying selection was observed (Taj-D = 2.058). Five positively selected codon sites (P145L, S283L, Q308E/K, P330S and I547F) were identified, which overlapped with predicted B-cell epitopes and red blood cell (RBC) binding sites, suggesting their potential implication in host immune pressure and parasite-RBC binding complex modulation. The Cameroonian P. falciparum populations indicated a moderate level of genetic differentiation when compared with global sequences, with few exceptions from Vietnam and Venezuela. Our findings provide baseline data on existing Pfama-1 gene polymorphisms in Cameroonian field isolates, which will be useful information for malaria vaccine design.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Humanos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Camarões , Vacinas Antimaláricas/química , Vacinas Antimaláricas/genética , Proteínas de Membrana/genética , Antígenos de Protozoários/genética , Antígenos de Protozoários/química , Polimorfismo Genético , Seleção Genética , Haplótipos , Variação Genética
2.
BMC Vet Res ; 19(1): 229, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37924072

RESUMO

BACKGROUND: Diseases caused by Toxoplasma gondii (T. gondii) have introduced serious threats to public health. There is an urgent need to develop a rapid detection method for T. gondii infection in cats, which are definitive hosts. Recombinant apical membrane antigen 1 (rAMA1) was produced in a prokaryotic expression system and used as the detection antigen. The aim of this study was to evaluate and optimize a reliable indirect enzyme-linked immunosorbent assay (iELISA) method based on rAMA1 for the detection of antibodies against T. gondii in cats. RESULTS: The rAMA1-iELISA method was developed and optimized by the chessboard titration method. There were no cross-reactions between T. gondii-positive cat serum and positive serum for other pathogens, indicating that rAMA1-iELISA could only detect T. gondii in most cases. The lowest detection limit of rAMA1-iELISA was 1:3200 (dilution of positive serum), and the CV of repeated tests within batches and between batches were confirmed to be less than 10%. The results of 247 cat serum samples detected by rAMA1-iELISA (kappa value = 0.622, p < 0.001) were in substantial agreement with commercial ELISA. The ROC curve analysis revealed the higher overall check accuracy of rAMA1-iELISA (sensitivity = 91.7%, specificity = 93.6%, AUC = 0.956, 95% CI 0.905 to 1.000) than GRA7-based iELISA (sensitivity = 91.7%, specificity = 85.5%, AUC = 0.936, 95% CI 0.892 to 0.980). Moreover, the positive rate of rAMA1-iELISA (6.5%, 16/247) was higher than that of GRA7-based iELISA (3.6%, 9/247) and that of commercial ELISA kit (4.9%, 12/247). CONCLUSION: The iELISA method with good specificity, sensitivity, and reproducibility was established and can be used for large-scale detection of T. gondii infection in clinical cat samples.


Assuntos
Doenças do Gato , Toxoplasma , Toxoplasmose Animal , Gatos , Animais , Antígenos de Protozoários , Sensibilidade e Especificidade , Reprodutibilidade dos Testes , Anticorpos Antiprotozoários , Ensaio de Imunoadsorção Enzimática/veterinária , Ensaio de Imunoadsorção Enzimática/métodos , Toxoplasmose Animal/diagnóstico , Doenças do Gato/diagnóstico
3.
Proc Natl Acad Sci U S A ; 120(1): e2215003120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36577076

RESUMO

We used a transgenic parasite in which Plasmodium falciparum parasites were genetically modified to express Plasmodium vivax apical membrane antigen 1 (PvAMA1) protein in place of PfAMA1 to study PvAMA1-mediated invasion. In P. falciparum, AMA1 interaction with rhoptry neck protein 2 (RON2) is known to be crucial for invasion, and PfRON2 peptides (PfRON2p) blocked the invasion of PfAMA1 wild-type parasites. However, PfRON2p has no effect on the invasion of transgenic parasites expressing PvAMA1 indicating that PfRON2 had no role in the invasion of PvAMA1 transgenic parasites. Interestingly, PvRON2p blocked the invasion of PvAMA1 transgenic parasites in a dose-dependent manner. We found that recombinant PvAMA1 domains 1 and 2 (rPvAMA1) bound to reticulocytes and normocytes indicating that PvAMA1 directly interacts with erythrocytes during the invasion, and invasion blocking of PvRON2p may result from it interfering with PvAMA1 binding to erythrocytes. It was previously shown that the peptide containing Loop1a of PvAMA1 (PvAMA1 Loop1a) is also bound to reticulocytes. We found that the Loop1a peptide blocked the binding of PvAMA1 to erythrocytes. PvAMA1 Loop1a has no polymorphisms in contrast to other PvAMA1 loops and may be an attractive vaccine target. We thus present the evidence that PvAMA1 binds to erythrocytes in addition to interacting with PvRON2 suggesting that the P. vivax merozoites may exploit complex pathways during the invasion process.


Assuntos
Malária Falciparum , Plasmodium vivax , Humanos , Proteínas de Protozoários/química , Antígenos de Protozoários , Eritrócitos/metabolismo , Plasmodium falciparum/metabolismo , Reticulócitos/metabolismo
4.
Trop Med Infect Dis ; 7(11)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36355892

RESUMO

Recombinant vaccinia viruses (rVV) are effective antigen delivery vectors and are researched widely as vaccine platforms against numerous diseases. Apical membrane antigen 1 (AMA1) is one of the candidate antigens for malaria vaccines but rising concerns regarding its genetic diversity and polymorphism have necessitated the need to search for an alternative antigen. Here, we compare the efficacies of the rVV vaccines expressing either AMA1 or microneme protein (MIC) of Plasmodium berghei in mice. Mice (BALB/c) were immunized with either rVV-AMA1 or rVV-MIC and subsequently challenge-infected with P. berghei. Compared to the control group, both antigens elicited elevated levels of parasite-specific antibody responses. Immunization with either one of the two vaccines induced high levels of T cells and germinal center B cell responses. Interestingly, rVV-MIC immunization elicited higher levels of cellular immune response compared to rVV-AMA1 immunization, and significantly reduced pro-inflammatory cytokine productions were observed from the former vaccine. While differences in parasitemia and bodyweight changes were negligible between rVV-AMA1 and rVV-MIC immunization groups, prolonged survival was observed for the latter of the two. Based on these results, our findings suggest that the rVV expressing the P. berghei MIC could be a vaccine-candidate antigen.

5.
BMC Infect Dis ; 22(1): 807, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36310166

RESUMO

BACKGROUND: Plasmodium vivax apical membrane antigen-1 (pvama-1) is an important vaccine candidate against Malaria. The genetic composition assessment of pvama-1 from wide-range geography is vital to plan the antigen based vaccine designing against Malaria. METHODS: The blood samples were collected from 84 P. vivax positive malaria patients from different districts of Khyber Pakhtunkhwa (KP) province of Pakistan. The highly polymorphic and immunogenic domain-I (DI) region of pvama-1 was PCR amplified and DNA sequenced. The QC based sequences raw data filtration was done using DNASTAR package. The downstream population genetic analyses were performed using MEGA4, DnaSP, Arlequin v3.5 and Network.5 resources. RESULTS: The analyses unveiled total 57 haplotypes of pvama-1 (DI) in KP samples with majorly prevalent H-14 and H-5 haplotypes. Pairwise comparative population genetics analyses identified limited to moderate genetic distinctions among the samples collected from different districts of KP, Pakistan. In context of worldwide available data, the KP samples depicted major genetic differentiation against the Korean samples with Fst = 0.40915 (P-value = 0.0001), while least distinction was observed against Indian and Iranian samples. The statistically significant negative values of Fu and Li's D* and F* tests indicate the evidence of population expansion and directional positive selection signature. The slow LD decay across the nucleotide distance in KP isolates indicates low nucleotide diversity. In context of reference pvama-1 sequence, the KP samples were identified to have 09 novel non-synonymous single nucleotide polymorphisms (nsSNPs), including several trimorphic and tetramorphic substitutions. Few of these nsSNPs are mapped within the B-cell predicted epitopic motifs of the pvama-1, and possibly modulate the immune response mechanism. CONCLUSION: Low genetic differentiation was observed across the pvama-1 DI among the P. vivax isolates acquired from widespread regions of KP province of Pakistan. The information may implicate in future vaccine designing strategies based on antigenic features of pvama-1.


Assuntos
Malária Vivax , Plasmodium vivax , Humanos , Plasmodium vivax/genética , Irã (Geográfico) , Paquistão/epidemiologia , DNA de Protozoário/genética , Antígenos de Protozoários/genética , Proteínas de Protozoários/genética , Malária Vivax/epidemiologia , Genética Populacional , Variação Genética , Nucleotídeos , Seleção Genética , Análise de Sequência de DNA
6.
Biomedicines ; 10(9)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36140395

RESUMO

Heterologous prime-boost immunization regimens using various vaccine platforms demonstrated promising results against infectious diseases. Here, mice were sequentially immunized with the recombinant baculovirus (rBV), virus-like particle (VLP), and recombinant vaccinia virus (rVV) vaccines expressing the Plasmodium berghei apical membrane antigen 1 (AMA1) for protective efficacy evaluation. The rBV_V_rVV heterologous immunization regimen elicited high levels of parasite-specific IgG, IgG2a, and IgG2b antibody responses in sera. Upon P. berghei challenge infection, proliferations of germinal center B cells in the inguinal lymph nodes, as well as blood CD4+ and CD8+ T cells were induced. More importantly, rBV_V_rVV immunization significantly diminished the parasitemia and prevented drastic bodyweight loss in mice post-challenge infection with P. berghei. Our findings revealed that immunization with rBV, VLP, and rVV expressing the AMA1 conferred protection against P. berghei infection, providing evidence for the potential implementation of this strategy.

7.
BMC Immunol ; 23(1): 21, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468726

RESUMO

BACKGROUND: Apical membrane antigen 1 (AMA1) and microneme-associated antigen (MIC) of Plasmodium parasites are important factors involved in host cell invasion. METHODS: In this study, influenza VLP vaccines containing both codon-optimized AMA1 and MIC were generated and the vaccine efficacy was evaluated in mice. RESULTS: VLPs vaccine immunization elicited higher levels of parasite-specific IgG and IgG2a antibody responses in sera. CD4+ and CD8+ T cells and germinal center B cells in blood, inguinal lymph nodes (ILN) and spleen were found to be significantly increased. Importantly, VLPs vaccination significantly reduced the levels of pro-inflammatory cytokines IFN-γ and TNF-α, decreased parasitemia in blood, resulting in lower body weight loss and longer survival time compared to control. CONCLUSION: These results indicated that VLPs containing P. berghei AMA1 and MIC could be a candidate for malaria blood-stage vaccine design.


Assuntos
Influenza Humana , Vacinas Antimaláricas , Orthomyxoviridae , Vacinas de Partículas Semelhantes a Vírus , Animais , Linfócitos T CD8-Positivos , Humanos , Camundongos , Micronema , Plasmodium berghei , Proteínas de Protozoários
8.
Malar J ; 21(1): 62, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193607

RESUMO

BACKGROUND: Malaria continues to be a major public health problem in the Northeastern part of India despite the implementation of vector control measures and changes in drug policies. To develop successful vaccines against malaria, it is important to assess the diversity of vaccine candidate antigens in field isolates. This study was done to assess the diversity of Plasmodium falciparum AMA-1 vaccine candidate antigen in a malaria-endemic region of Tripura in Northeast India and compare it with previously reported global isolates with a view to assess the feasibility of developing a universal vaccine based on this antigen. METHODS: Patients with fever and malaria-like illness were screened for malaria and P. falciparum positive cases were recruited for the current study. The diversity of PfAMA-1 vaccine candidate antigen was evaluated by nested PCR and RFLP. A selected number of samples were sequenced using the Sanger technique. RESULTS: Among 56 P. falciparum positive isolates, Pfama-1 was successfully amplified in 75% (n = 42) isolates. Allele frequencies of PfAMA-1 antigen were 16.6% (n = 7) for 3D7 allele and 33.3% (n = 14) in both K1 and HB3 alleles. DNA sequencing revealed 13 haplotypes in the Pfama-1 gene including three unique haplotypes not reported earlier. No unique amino-acid substitutions were found. Global analysis with 2761 sequences revealed 435 haplotypes with a very complex network composition and few clusters. Nucleotide diversity for Tripura (0.02582 ± 0.00160) showed concordance with South-East Asian isolates while recombination parameter (Rm = 8) was lower than previous reports from India. Population genetic structure showed moderate differentiation. CONCLUSIONS: Besides documenting all previously reported allelic forms of the vaccine candidate PfAMA-1 antigen of P. falciparum, new haplotypes not reported earlier, were found in Tripura. Neutrality tests indicate that the Pfama-1 population in Tripura is under balancing selection. This is consistent with global patterns. However, the high haplotype diversity observed in the global Pfama-1 network analysis indicates that designing a universal vaccine based on this antigen may be difficult. This information adds to the existing database of genetic diversity of field isolates of P. falciparum and may be helpful in the development of more effective vaccines against the parasite.


Assuntos
Antígenos de Protozoários/genética , Malária Falciparum , Plasmodium falciparum , Proteínas de Protozoários/genética , Variação Genética , Haplótipos , Humanos , Índia , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Proteínas de Membrana , Plasmodium falciparum/genética , Polimorfismo de Fragmento de Restrição , Desenvolvimento de Vacinas
9.
Electrophoresis ; 43(3): 509-515, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34679212

RESUMO

Rhoptry neck protein 2 (RON2) binds to the hydrophobic groove of apical membrane antigen 1 (AMA1), an interaction essential for invasion of red blood cells (RBCs) by Plasmodium falciparum (Pf) parasites. Vaccination with AMA1 alone has been shown to be immunogenic, but unprotective even against homologous challenge in human trials. However, the AMA1-RON2L (L is referred to as the loop region of RON2 peptide) complex is a promising candidate, as preclinical studies with Freund's adjuvant have indicated complete protection against lethal challenge in mice and superior protection against virulent infection in Aotus monkeys. To prepare for clinical trials of the AMA1-RON2L complex, identity and integrity of the candidate vaccine must be assessed, and characterization methods must be carefully designed to not dissociate the delicate complex during evaluation. In this study, we developed a native Tris-glycine gel method to separate and identify the AMA1-RON2L complex, which was further identified and confirmed by Western blotting using anti-AMA1 monoclonal antibodies (mAbs 4G2 and 2C2) and anti-RON2L polyclonal Ab coupled with mass spectrometry. The formation of complex was also confirmed by Capillary Isoelectric Focusing (cIEF). A short-term (48 h and 72 h at 4°C) stability study of AMA1-RON2L complex was also performed. The results indicate that the complex was stable for 72 h at 4°C. Our research demonstrates that the native Tris-glycine gel separation/Western blotting coupled with mass spectrometry and cIEF can fully characterize the identity and integrity of the AMA1-RON2L complex and provide useful quality control data for the subsequent clinical trials.


Assuntos
Antígenos de Protozoários , Vacinas Antimaláricas , Animais , Antígenos de Protozoários/química , Antígenos de Protozoários/metabolismo , Glicina , Focalização Isoelétrica , Vacinas Antimaláricas/química , Proteínas de Membrana/química , Camundongos , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo
10.
Genes (Basel) ; 12(12)2021 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-34946853

RESUMO

Apical membrane antigen-1 of Plasmodium falciparum (PfAMA-1) is a leading malaria vaccine candidate antigen. However, the genetic diversity of pfama-1 and associated antigenic variation in global P. falciparum field isolates are major hurdles to the design of an efficacious vaccine formulated with this antigen. Here, we analyzed the genetic structure and the natural selection of pfama-1 in the P. falciparum population of Vietnam. A total of 37 distinct haplotypes were found in 131 P. falciparum Vietnamese isolates. Most amino acid changes detected in Vietnamese pfama-1 were localized in the ectodomain, domains I, II, and III. Overall patterns of major amino acid changes in Vietnamese pfama-1 were similar to those of global pfama-1, but the frequencies of the amino acid changes slightly differed by country. Novel amino acid changes were also identified in Vietnamese pfama-1. Vietnamese pfama-1 revealed relatively lower genetic diversity than currently analyzed pfama-1 in other geographical regions, and suggested a distinct genetic differentiation pattern. Evidence for natural selection was detected in Vietnamese pfama-1, but it showed purifying selection unlike the global pfama-1 analyzed so far. Recombination events were also found in Vietnamese pfama-1. Major amino acid changes that were commonly identified in global pfama-1 were mainly localized to predicted B-cell epitopes, RBC-binding sites, and IUR regions. These results provide important information for understanding the genetic nature of the Vietnamese pfama-1 population, and have significant implications for the design of a vaccine based on PfAMA-1.


Assuntos
Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Haplótipos , Malária Falciparum/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Plasmodium falciparum/genética , Polimorfismo Genético , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Seleção Genética , Antígenos de Protozoários/química , Humanos , Malária Falciparum/genética , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Proteínas de Membrana/química , Plasmodium falciparum/imunologia , Plasmodium falciparum/isolamento & purificação , Proteínas de Protozoários/química , Homologia de Sequência de Aminoácidos , Vietnã
11.
Malar J ; 20(1): 367, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34507582

RESUMO

BACKGROUND: Malaria eradication requires a combined effort involving all available control tools, and these efforts would be complemented by an effective vaccine. The antigen targets of immune responses may show polymorphisms that can undermine their recognition by immune effectors and hence render vaccines based on antigens from a single parasite variant ineffective against other variants. This study compared the influence of allelic polymorphisms in Plasmodium falciparum apical membrane antigen 1 (PfAMA1) peptide sequences from three strains of P. falciparum (3D7, 7G8 and FVO) on their function as immunodominant targets of T cell responses in high and low malaria transmission communities in Ghana. METHODS: Peripheral blood mononuclear cells (PBMCs) from 10 subjects from a high transmission area (Obom) and 10 subjects from a low transmission area (Legon) were tested against 15 predicted CD8 + T cell minimal epitopes within the PfAMA1 antigen of multiple parasite strains using IFN-γ ELISpot assay. The peptides were also tested in similar assays against CD8 + enriched PBMC fractions from the same subjects in an effort to characterize the responding T cell subsets. RESULTS: In assays using unfractionated PBMCs, two subjects from the high transmission area, Obom, responded positively to four (26.7%) of the 15 tested peptides. None of the Legon subject PBMCs yielded positive peptide responses using unfractionated PBMCs. In assays with CD8 + enriched PBMCs, three subjects from Obom made positive recall responses to six (40%) of the 15 tested peptides, while only one subject from Legon made a positive recall response to a single peptide. Overall, 5 of the 20 study subjects who had positive peptide-specific IFN-γ recall responses were from the high transmission area, Obom. Furthermore, while subjects from Obom responded to peptides in PfAMA1 from multiple parasite strains, one subject from Legon responded to a peptide from 3D7 strain only. CONCLUSIONS: The current data demonstrate the possibility of a real effect of PfAMA1 polymorphisms on the induction of T cell responses in malaria exposed subjects, and this effect may be more pronounced in communities with higher parasite exposure.


Assuntos
Antígenos de Protozoários/genética , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Malária Falciparum/imunologia , Proteínas de Membrana/genética , Plasmodium falciparum/genética , Polimorfismo Genético , Proteínas de Protozoários/genética , Adulto , Alelos , Feminino , Gana , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
PeerJ ; 9: e11765, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34316404

RESUMO

BACKGROUND: Bovine babesiosis caused by Babesia bovis (B. bovis) has had a significant effect on the mobility and mortality rates of the cattle industry worldwide. Live-attenuated vaccines are currently being used in many endemic countries, but their wide use has been limited for a number of reasons. Although recombinant vaccines have been proposed as an alternative to live vaccines, such vaccines are not commercially available to date. Apical membrane antigen-1 (AMA-1) is one of the leading candidates in the development of a vaccine against diseases caused by apicomplexan parasite species. In Plasmodium falciparum (P. falciparum) AMA-1 (PfAMA-1), several antibodies against epitopes in the plasminogen, apple, and nematode (PAN) motif of PfAMA-1 domain I significantly inhibited parasite growth. Therefore, the purpose of this study was to predict an epitope from the PAN motif of domain I in the B. bovis AMA-1 (BbAMA-1) using a combination of linear and conformational B-cell epitope prediction software. The selected epitope was then bioinformatically analyzed, synthesized as a peptide (sBbAMA-1), and then used to immunize a rabbit. Subsequently, in vitro growth- and the invasion-inhibitory effects of the rabbit antiserum were immunologically characterized. RESULTS: Our results demonstrated that the predicted BbAMA-1 epitope was located on the surface-exposed α-helix of the PAN motif in domain I at the apex area between residues 181 and 230 with six polymorphic sites. Subsequently, sBbAMA-1 elicited antibodies capable of recognizing the native BbAMA-1 in immunoassays. Furthermore, anti-serum against sBbAMA-1 was immunologically evaluated for its growth- and invasion-inhibitory effects on B. bovis merozoites in vitro. Our results demonstrated that the rabbit anti-sBbAMA-1 serum at a dilution of 1:5 significantly inhibited (p < 0.05) the growth of B. bovis merozoites by approximately 50-70% on days 3 and 4 of cultivation, along with the invasion of merozoites by approximately 60% within 4 h of incubation when compared to the control groups. CONCLUSION: Our results indicate that the epitope predicted from the PAN motif of BbAMA-1 domain I is neutralization-sensitive and may serve as a target antigen for vaccine development against bovine babesiosis caused by B. bovis.

13.
Front Cell Infect Microbiol ; 11: 616230, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796476

RESUMO

Malaria is a human parasitic disease distributed in many tropical countries and caused by various Plasmodium species. Plasmodium vivax has the largest geographical distribution of the Plasmodium species and is predominant in the Americas, including Brazil. Only a small number of P. vivax vaccine formulations have successfully reached clinical trials relative to their P. falciparum counterparts. One of the candidate antigens for a blood-stage P. vivax vaccine is apical membrane antigen 1 (PvAMA-1). Due to the worldwide distribution of Plasmodium parasites, a high degree of variability has been detected in this antigen sequence, representing a considerable challenge to the development of a universal vaccine against malaria. In this study, we evaluated how PvAMA-1 polymorphisms influence vaccine-derived immune responses in P. vivax malaria. To this end, we expressed 9 recombinant protein representatives of different PvAMA-1 allelic variants in the yeast Pichia pastoris: Belem, Chesson I, Sal-1, Indonesia XIX, SK0814, TC103, PNG_05_ESP, PNG_62_MU, and PNG_68_MAS. After protein expression and purification, we evaluated the breadth of the immune responses derived from malaria-exposed individuals from the Amazon region. From 611 serum samples of malaria-exposed individuals, 53.68% of them reacted against the PvAMA-1 Belem through ELISA. Positive samples were further tested against recombinant proteins representing the other PvAMA-1 allelic variants. Whereas Sal-1, Chesson I and SK0814 variants were highly recognized by tested serum samples, Indonesia XIX, TC103, PNG_05_ESP, PNG_62_MU, and PNG_68_MAS were only slightly recognized. Moreover, polyclonal sera derived from C57BL/6 mice immunized with the PvAMA-1 Belem protein predominantly recognized Belem, Sal-1, Chesson I, SK0814, and Indonesia XIX through ELISA. Last, ELISA-based competition assays demonstrated that a previous interaction between anti-Belem polyclonal serum and Sal-1, Chesson I, SK0814, or Indonesia XIX proteins could further inhibit antibody binding to the Belem variant. Our human and mouse data suggest the presence of common epitopes or cross-reactivity between Belem, Sal-1, Chesson I, and SK0814 variants. Although the PvAMA-1 Belem variant induces strain-transcendent antibodies, PvAMA-1 variants from Thailand and Papua New Guinea may need to be included in a universal vaccine formulation to achieve protection against P. vivax malaria.


Assuntos
Imunoglobulina G , Plasmodium vivax , Animais , Anticorpos Antiprotozoários , Antígenos de Protozoários/genética , Brasil , Epitopos , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium vivax/genética , Proteínas de Protozoários/genética , Saccharomycetales , Tailândia
14.
Malar J ; 20(1): 37, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33430886

RESUMO

BACKGROUND: Plasmodium falciparum, the parasite causing malaria, affects populations in many endemic countries threatening mainly individuals with low malaria immunity, especially children. Despite the approval of the first malaria vaccine Mosquirix™ and very promising data using cryopreserved P. falciparum sporozoites (PfSPZ), further research is needed to elucidate the mechanisms of humoral immunity for the development of next-generation vaccines and alternative malaria therapies including antibody therapy. A high prevalence of antibodies against AMA1 in immune individuals has made this antigen one of the major blood-stage vaccine candidates. MATERIAL AND METHODS: Using antibody phage display, an AMA1-specific growth inhibitory human monoclonal antibody from a malaria-immune Fab library using a set of three AMA1 diversity covering variants (DiCo 1-3), which represents a wide range of AMA1 antigen sequences, was selected. The functionality of the selected clone was tested in vitro using a growth inhibition assay with P. falciparum strain 3D7. To potentially improve affinity and functional activity of the isolated antibody, a phage display mediated light chain shuffling was employed. The parental light chain was replaced with a light chain repertoire derived from the same population of human V genes, these selected antibodies were tested in binding tests and in functionality assays. RESULTS: The selected parental antibody achieved a 50% effective concentration (EC50) of 1.25 mg/mL. The subsequent light chain shuffling led to the generation of four derivatives of the parental clone with higher expression levels, similar or increased affinity and improved EC50 against 3D7 of 0.29 mg/mL. Pairwise epitope mapping gave evidence for binding to AMA1 domain II without competing with RON2. CONCLUSION: We have thus shown that a compact immune human phage display library is sufficient for the isolation of potent inhibitory monoclonal antibodies and that minor sequence mutations dramatically increase expression levels in Nicotiana benthamiana. Interestingly, the antibody blocks parasite inhibition independently of binding to RON2, thus having a yet undescribed mode of action.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/genética , Imunidade Humoral , Proteínas de Membrana/genética , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Proteínas de Protozoários/genética , Anticorpos Monoclonais/imunologia , Antígenos de Protozoários/metabolismo , Humanos , Vacinas Antimaláricas/química , Proteínas de Membrana/metabolismo , Proteínas de Protozoários/metabolismo
15.
Front Cell Infect Microbiol ; 11: 742189, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35071030

RESUMO

Plasmodium vivax apical membrane antigen-1 (PvAMA-1) is an important vaccine candidate for vivax malaria. However, antigenic variation within PvAMA-1 is a major obstacle to the design of a global protective malaria vaccine. In this study, we analyzed the genetic polymorphism and selection of the PvAMA-1 gene from 152 P. vivax isolates from imported cases to China, collected in the China-Myanmar border (CMB) area in Yunnan Province (YP) during 2009-2011 (n = 71) and 2014-2016 (n = 81), in comparison with PvAMA-1 gene information from Myanmar (n = 73), collected from public data. The overall nucleotide diversity of the PvAMA-1 gene from the 152 YP isolates was 0.007 with 76 haplotypes identified (Hd = 0.958). Results from the population structure suggested three groups among the YP and Myanmar isolates with optimized clusters value of K = 7. In addition, YP (2014-2016) isolates generally lacked some K components that were commonly found in YP (2009-2011) and Myanmar. Meanwhile, PvAMA-1 domain I is found to be the dominant target of positive diversifying selection and most mutation loci were found in this domain. The mutation frequencies of D107N/A, R112K/T, K120R, E145A, E277K, and R438H in PvAMA-1 were more than 70% in the YP isolates. In conclusion, high genetic diversity and positive selection were found in the PvAMA-1 gene from YP isolates, which are significant findings for the design and development of PvAMA-1-based malaria vaccine.


Assuntos
Antígenos de Protozoários/genética , Variação Genética , Malária Vivax/parasitologia , Proteínas de Membrana/genética , Plasmodium vivax , Proteínas de Protozoários/genética , China/epidemiologia , Malária Vivax/epidemiologia , Mianmar/epidemiologia , Plasmodium vivax/genética , Seleção Genética , Análise de Sequência de DNA
16.
Malar J ; 19(1): 307, 2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32854708

RESUMO

BACKGROUND: Malaria antigen-specific antibodies and polymorphisms in host receptors involved in antibody functionality have been associated with different outcomes of Plasmodium falciparum infections. Thus, to identify key prospective malaria antigens for vaccine development, there is the need to evaluate the associations between malaria antibodies and antibody dependent host factors with more rigorous statistical methods. In this study, different statistical models were used to evaluate the predictive performance of malaria-specific antibodies and host gene polymorphisms on P. falciparum infection in a longitudinal cohort study involving Ghanaian children. METHODS: Models with different functional forms were built using known predictors (age, sickle cell status, blood group status, parasite density, and mosquito bed net use) and malaria antigen-specific immunoglobulin (Ig) G and IgG subclasses and FCGR3B polymorphisms shown to mediate antibody-dependent cellular functions. Malaria antigens studied were Merozoite surface proteins (MSP-1 and MSP-3), Glutamate Rich Protein (GLURP)-R0, R2, and the Apical Membrane Antigen (AMA-1). The models were evaluated through visualization and assessment of differences between the Area Under the Receiver Operating Characteristic Curve and Brier Score estimated by suitable internal cross-validation designs. RESULTS: This study found that the FCGR3B-c.233C>A genotype and IgG against AMA1 were relatively better compared to the other antibodies and FCGR3B genotypes studied in classifying or predicting malaria risk among children. CONCLUSIONS: The data supports the P. falciparum, AMA1 as an important malaria vaccine antigen, while FCGR3B-c.233C>A under the additive and dominant models of inheritance could be an important modifier of the effect of malaria protective antibodies.


Assuntos
Anticorpos Antiprotozoários/sangue , Malária Falciparum/epidemiologia , Plasmodium falciparum/genética , Polimorfismo Genético , Receptores de IgG/genética , Área Sob a Curva , Criança , Pré-Escolar , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Gana/epidemiologia , Humanos , Incidência , Lactente , Recém-Nascido , Estudos Longitudinais , Malária Falciparum/diagnóstico , Malária Falciparum/parasitologia , Masculino , Estudos Prospectivos , Curva ROC , Receptores de IgG/metabolismo
17.
Parasit Vectors ; 13(1): 373, 2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32711572

RESUMO

BACKGROUND: Avian coccidiosis is a widespread, economically significant disease of poultry, caused by several Eimeria species. These parasites have complex and diverse life-cycles that require invasion of their host cells. This is mediated by various proteins secreted from apical secretory organelles. Apical membrane antigen 1 (AMA1), which is released from micronemes and is conserved across all apicomplexans, plays a central role in the host cell invasion. In a previous study, some putative EtAMA1-interacting proteins of E. tenella were screened. In this study, we characterized one putative EtAMA1-interacting protein, E. tenella Eimeria -specific protein (EtEsp). METHODS: Bimolecular fluorescence complementation (BiFC) and glutathione S-transferase (GST) fusion protein pull-down (GST pull-down) were used to confirm the interaction between EtAMA1 and EtEsp in vivo and in vitro. The expression of EtEsp was analyzed in different developmental stages of E. tenella with quantitative PCR and western blotting. The secretion of EtEsp protein was tested with staurosporine when sporozoites were incubated in complete medium at 41 °C. The localization of EtEsp was analyzed with an immunofluorescence assay (IFA). An in vitro invasion inhibition assay was conducted to assess the ability of antibodies against EtEsp to inhibit cell invasion by E. tenella sporozoites. RESULTS: The interaction between EtAMA1 and EtEsp was confirmed with BiFC and by GST pull-down. Our results show that EtEsp is differentially expressed during distinct phases of the parasite life-cycle. IFA showed that the EtEsp protein is mainly distributed on the parasite surface, and that the expression of this protein increases during the development of the parasite in the host cells. Using staurosporine, we showed that EtEsp is a secreted protein, but not from micronemes. In inhibition tests, a polyclonal anti-rEtEsp antibody attenuated the capacity of E. tenella to invade host cells. CONCLUSION: In this study, we show that EtEsp interacts with EtAMA1 and that the protein is secreted protein, but not from micronemes. The protein participates in sporozoite invasion of host cells and is maybe involved in the growth of the parasite. These data have implications for the use of EtAMA1 or EtAMA1-interacting proteins as targets in intervention strategies against avian coccidiosis.


Assuntos
Galinhas/parasitologia , Eimeria/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Proteínas de Membrana/metabolismo , Animais , Antígenos de Protozoários/metabolismo , Coccidiose/parasitologia , Coccidiose/veterinária , Eimeria/crescimento & desenvolvimento , Eimeria tenella/crescimento & desenvolvimento , Eimeria tenella/metabolismo , Imunofluorescência/métodos , Estágios do Ciclo de Vida/fisiologia , Doenças das Aves Domésticas/parasitologia , Proteínas de Protozoários/metabolismo , Esporozoítos/crescimento & desenvolvimento , Esporozoítos/metabolismo
18.
Parasit Vectors ; 13(1): 343, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32650837

RESUMO

BACKGROUND: Poultry coccidiosis is a parasitic enteric disease with a highly negative impact on chicken production. In-feed chemoprophylaxis remains the primary method of control, but the increasing ineffectiveness of anticoccidial drugs, and potential future restrictions on their use has encouraged the use of commercial live vaccines. Availability of such formulations is constrained by their production, which relies on the use of live chickens. Several experimental approaches have been taken to explore ways to reduce the complexity and cost of current anticoccidial vaccines including the use of live vectors expressing relevant Eimeria proteins. We and others have shown that vaccination with transgenic Eimeria tenella parasites expressing Eimeria maxima Apical Membrane Antigen-1 or Immune Mapped Protein-1 (EmAMA1 and EmIMP1) partially reduces parasite replication after challenge with a low dose of E. maxima oocysts. In the present study, we have reassessed the efficacy of these experimental vaccines using commercial birds reared at high stocking densities and challenged with both low and high doses of E. maxima to evaluate how well they protect chickens against the negative impacts of disease on production parameters. METHODS: Populations of E. tenella parasites expressing EmAMA1 and EmIMP1 were obtained by nucleofection and propagated in chickens. Cobb500 broilers were immunised with increasing doses of transgenic oocysts and challenged two weeks later with E. maxima to quantify the effect of vaccination on parasite replication, local IFN-γ and IL-10 responses (300 oocysts), as well as impacts on intestinal lesions and body weight gain (10,000 oocysts). RESULTS: Vaccination of chickens with E. tenella expressing EmAMA1, or admixtures of E. tenella expressing EmAMA1 or EmIMP1, was safe and induced partial protection against challenge as measured by E. maxima replication and severity of pathology. Higher levels of protection were observed when both antigens were delivered and was associated with a partial modification of local immune responses against E. maxima, which we hypothesise resulted in more rapid immune recognition of the challenge parasites. CONCLUSIONS: This study offers prospects for future development of multivalent anticoccidial vaccines for commercial chickens. Efforts should now be focused on the discovery of additional antigens for incorporation into such vaccines.


Assuntos
Galinhas/parasitologia , Coccidiose/veterinária , Eimeria tenella , Vacinas Protozoárias , Animais , Antígenos de Protozoários/imunologia , Peso Corporal/efeitos dos fármacos , Galinhas/imunologia , Coccidiose/prevenção & controle , Coccidiose/terapia , Eimeria/efeitos dos fármacos , Eimeria/crescimento & desenvolvimento , Eimeria/imunologia , Eimeria tenella/efeitos dos fármacos , Eimeria tenella/crescimento & desenvolvimento , Eimeria tenella/imunologia , Genes de Protozoários/imunologia , Interferon gama/efeitos dos fármacos , Interleucina-10/metabolismo , Doenças das Aves Domésticas/parasitologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Protozoárias/biossíntese , Vacinas Protozoárias/uso terapêutico , Transfecção , Transgenes/imunologia , Vacinação/métodos , Vacinação/veterinária , Vacinas Atenuadas/biossíntese , Vacinas Atenuadas/uso terapêutico
19.
Microorganisms ; 8(6)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560380

RESUMO

Infections with Plasmodium vivax are predominant in the Americas, representing 75% of malaria cases. Previously perceived as benign, malaria vivax is, in fact, a highly debilitating and economically important disease. Considering the high complexity of the malaria parasite life cycle, it has been hypothesized that an effective vaccine formulation against Plasmodium should contain multiple antigens expressed in different parasite stages. Based on that, we analyzed a recombinant P. vivax vaccine formulation mixing the apical membrane antigen 1 ectodomain (PvAMA-1) and a full-length circumsporozoite protein (PvCSP-AllFL) previously studied by our group, which elicits a potent antibody response in mice. Genetically distinct strains of mice (C57BL/6 and BALB/c) were immunized with the proteins, alone or in combination, in the presence of poly(I:C) adjuvant, a TLR3 agonist. In C57BL/6, high-antibody titers were induced against PvAMA-1 and the three PvCSP variants (VK210, VK247, and P. vivax-like). Meanwhile, mixing PvAMA-1 with PvCSP-AllFL had no impact on total IgG antibody titers, which were long-lasting. Moreover, antibodies from immunized mice recognized VK210 sporozoites and blood-stage parasites by immunofluorescence assay. However, in the BALB/c model, the antibody response against PvCSP-AllFL was relatively low. PvAMA-1-specific CD3+CD4+ and CD3+CD8+ T-cell responses were observed in C57BL/6 mice, and the cellular response was impaired by PvCSP-AllFL combination. More relevant, the multistage vaccine formulation provided partial protection in mice challenged with a transgenic Plasmodium berghei sporozoite expressing the homologous PvCSP protein.

20.
Acta Trop ; 210: 105591, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32562621

RESUMO

Malaria is still an important challenge for global public health because of its extensive mortality and morbidity. Plasmodium ovale is mainly distributed in tropical regions of Africa and Asia. it includes two distinct ovale malaria species, which are P. ovale curtisi and P. ovale wallikeri. Apical membrane antigen-1 (AMA-1) is an asexual blood-stage protein which is essential for Plasmodium. Thus far, no study on gene polymorphism and immunogenicity of P. ovale AMA-1 (PoAMA-1) has been conducted. Amplified poama1 gene products from 14 P ovale curtisi samples and 12 P ovale wallikeri samples imported from Africa to Jiangsu Province, China were sequenced and their polymorphisms were analyzed. We expressed recombinant PoAMA-1 (rPoAMA-1, 53 kDa) proteins in an E. coli expression system and evaluated immune responses against the rPoAMA-1 in BALB/c mice. We identified a synonymous mutation in nucleotide position 333 of the pocama-1 gene and powama-1 did not reveal any variation. The humoral and cellular immune responses to rPoAMA-1 were evaluated using enzyme-linked immunosorbent assay (ELISA) and flow cytometry. rPoAMA-1-immunized mice produced specific antibodies as verified by immunoblotting. The rPoAMA-1 induced high antibody titers (1: 640,000), and had high avidity indexes (an average of 78.63% and 83.40%). The antibodies also recognized the native proteins, namely, crude antigen from blood stages. Cross-reactivity between rPocAMA-1 and rPowAMA-1 was observed. Moreover, rPoAMA-1 s induced interferon (IFN)-gamma-secreting cells in mice and increased lymphocyte proliferation response. Low genetic diversity was observed in poama-1 from the Jiangsu Province imported malaria cases, and further studies conclusively showed its strong immunogenicity. Significant cross-reactivity was found between rPocAMA-1 and rPowAMA-1, suggesting that a single PoAMA-1 antigen could be used to diagnose P. ovale curtisi or P. ovale wallikeri patient simultaneously. However, further evaluation needs to be carried out to validate the potential and limitations of PoAMA-1 as a candidate vaccine.


Assuntos
Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Proteínas de Membrana/imunologia , Plasmodium ovale/imunologia , Proteínas de Protozoários/imunologia , África , Animais , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/genética , China , Reações Cruzadas , Feminino , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Polimorfismo Genético , Proteínas de Protozoários/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA