Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Int J Biol Macromol ; 277(Pt 4): 134330, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39089550

RESUMO

Spinal cord injury (SCI) patients have an increased susceptibility to coronary heart disease (CHD) due to dysregulated lipid deposition. We conducted a comprehensive investigation to gain insights into the specific roles of Apolipoprotein B-100 (APOB-100) in the development of CHD in patients suffering from SCI. First, we established an SCI rat model through semitransection. APOB-100 expression in plasma exosomes obtained from patients were determined. Subsequently, we found APOB-100 affected macrophage polarization when treating co-cultured neurons/macrophages lacking Sortilin with extracellular vesicles derived from SCI rats, where APOB-100 co-immunoprecipitated with Sortilin. Moreover, APOB-100 upregulation reduced neuronal cell viability and triggered apoptosis by upregulating Sortilin, leading to a decline in the Basso, Beattie, and Bresnahan (BBB) scale, exacerbation of neuron injury, increased macrophage infiltration, and elevated blood lipid-related indicators in SCI rats, which could be reversed by silencing Sortilin. In conclusion, APOB-100 from post-SCI patients' extracellular vesicles upregulates Sortilin, thereby endangering those patients to CHD.

2.
Front Cardiovasc Med ; 11: 1381520, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952543

RESUMO

In recent years, the role of macrophages as the primary cell type contributing to foam cell formation and atheroma plaque development has been widely acknowledged. However, it has been long recognized that diffuse intimal thickening (DIM), which precedes the formation of early fatty streaks in humans, primarily consists of lipid-loaded smooth muscle cells (SMCs) and their secreted proteoglycans. Recent studies have further supported the notion that SMCs constitute the majority of foam cells in advanced atherosclerotic plaques. Given that SMCs are a major component of the vascular wall, they serve as a significant source of microvesicles and exosomes, which have the potential to regulate the physiology of other vascular cells. Notably, more than half of the foam cells present in atherosclerotic lesions are of SMC origin. In this review, we describe several mechanisms underlying the formation of intimal foam-like cells in atherosclerotic plaques. Based on these mechanisms, we discuss novel therapeutic approaches that have been developed to regulate the generation of intimal foam-like cells. These innovative strategies hold promise for improving the management of atherosclerosis in the near future.

3.
Mol Neurobiol ; 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38337131

RESUMO

This study aims to explore the impacts of ApoB-100/SORT1-mediated immune microenvironment during acute spinal cord injury (SCI), and to investigate the potential mechanism. CB57BL/6 mice underwent moderate thoracic contusion injury to establish the SCI animal model, and received ApoB-100 lentivirus injection to interfere ApoB-100 level. Functional recovery was assessed using the Basso, Beattie, and Bresnahan (BBB) score and footprint analysis. Transmission electron microscopy was applied to observe the ultrastructure of the injured spinal cord tissue. Hematoxylin-eosin (HE) staining and Perls staining were conducted to assess histological changes and iron deposition. Biochemical factor and cytokines were detected using their commercial kits. M1/M2 macrophage markers were detected by immunofluorescence assay in vivo and by flow cytometry in vitro. HT22 neurons were simulated by lipopolysaccharide (LPS), followed by incubation with polarized macrophage medium to simulate the immune microenvironment of injured spinal cord in vitro. The local immune microenvironment is changed in SCI mice, accompanied with the occurrence of oxidative stress and the elevation of both M1 and M2 macrophages. Knockdown of ApoB-100 ameliorates oxidative stress and lipid disorder, and inhibits inflammation and ferroptosis in SCI mice. Importantly, knockdown of ApoB-100 can partly restrict M1 macrophages but does not change M2 macrophage proportion in SCI mice. Further, M1 macrophages are observed to attenuate the inflammatory response, oxidative stress, and ferroptosis levels of LPS-induced HT22 cells, which is further strengthened by SORT1 knockdown. Blockage of ApoB-100/SORT1-mediated immune microenvironment plays a protective role against SCI via inhibiting oxidative stress, inflammation, lipid disorders, and ferroptosis, providing novel insights of the targeted therapy of SCI.

4.
Metabolites ; 14(2)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38393015

RESUMO

ApoB is the main protein of triglyceride-rich lipoproteins and is further divided into ApoB48 in the intestine and ApoB100 in the liver. Very low-density lipoprotein (VLDL) is produced by the liver, contains ApoB100, and is metabolized into its remnants, intermediate-density lipoprotein (IDL) and low-density lipoprotein (LDL). ApoB100 has been suggested to play a crucial role in the formation of the atherogenic plaque. Apart from being a biomarker of atherosclerosis, ApoB100 seems to be implicated in the inflammatory process of atherosclerosis per se. In this review, we will focus on the structure, the metabolism, and the function of ApoB100, as well as its role as a predictor biomarker of cardiovascular risk. Moreover, we will elaborate upon the molecular mechanisms regarding the pathophysiology of atherosclerosis, and we will discuss the disorders associated with the APOB gene mutations, and the potential role of various drugs as therapeutic targets.

5.
Mol Nutr Food Res ; 68(1): e2300508, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37933702

RESUMO

SCOPE: Extra virgin olive oil has numerous cardiopreventive effects, largely due to its high content of (poly)phenols such as hydroxytyrosol (HT). However, some animal studies suggest that its excessive consumption may alter systemic lipoprotein metabolism. Because human lipoprotein metabolism differs from that of rodents, this study examines the effects of HT in a humanized mouse model that approximates human lipoprotein metabolism. METHODS AND RESULTS: Mice are treated as follows: control diet or diet enriched with HT. Serum lipids and lipoproteins are determined after 4 and 8 weeks. We also analyzed the regulation of various genes and miRNA by HT, using microarrays and bioinformatic analysis. An increase in body weight is found after supplementation with HT, although food intake was similar in both groups. In addition, HT induced the accumulation of triacylglycerols but not cholesterol in different tissues. Systemic dyslipidemia after HT supplementation and impaired glucose metabolism are observed. Finally, HT modulates the expression of genes related to lipid metabolism, such as Pltp or Lpl. CONCLUSION: HT supplementation induces systemic dyslipidemia and impaired glucose metabolism in humanized mice. Although the numerous health-promoting effects of HT far outweigh these potential adverse effects, further carefully conducted studies are needed.


Assuntos
Dislipidemias , Álcool Feniletílico , Humanos , Camundongos , Animais , Azeite de Oliva/farmacologia , Dislipidemias/etiologia , Álcool Feniletílico/farmacologia , Lipoproteínas , Modelos Animais de Doenças , Glucose
6.
J Clin Med ; 12(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37685728

RESUMO

The availability of sugar has expanded over the past 50 years, due to improved industrial processes and corn subsidies, particularly in the form of sweetened beverages. This correlates with a surge in the prevalence of cardiometabolic disorders, which has brought this issue back into the spotlight for public health. In this narrative review, we focus on the role of fructose in the genesis of cardiometabolic dyslipidemia (an increase in serum triglyceride-rich lipoproteins (TRL): VLDL, chylomicrons (CM), and their remnants) bringing together the most recent data on humans, which demonstrates the crucial interaction between glucose and fructose, increasing the synthesis while decreasing the catabolism of these particles in a synergistic downward spiral. After reviewing TRL metabolism, we discuss the fundamental principles governing the metabolism of fructose in the intestine and liver and the effects of dysregulated fructolysis, in conjunction with the activation of carbohydrate-responsive element-binding protein (ChREBP) by glucose and the resulting crosstalk. The first byproduct of fructose catabolism, fructose-1-P, is highlighted for its function as a signaling molecule that promotes fat synthesis. We emphasize the role of fructose/glucose interaction in the liver, which enhances de novo lipogenesis, triglyceride (TG) synthesis, and VLDL production. In addition, we draw attention to current research that demonstrates how fructose affects the activity of lipoprotein lipase by increasing the concentration of inhibitors such as apolipoprotein CIII (apoCIII) and angiopoietin-like protein 3 (ANGPTL3), which reduce the catabolism of VLDL and chylomicrons and cause the building up of their atherogenic remnants. The end outcome is a dual, synergistic, and harmful action that encourages atherogenesis. Thus, considering the growing concerns regarding the connection between sugar consumption and cardiometabolic disease, current research strongly supports the actions of public health organizations aimed at reducing sugar intake, including dietary guidance addressing "safe" limits for sugar consumption.

7.
J Clin Med ; 12(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37445434

RESUMO

The residual risk for arteriosclerotic cardiovascular disease after optimal statin treatment may amount to 50% and is the consequence of both immunological and lipid disturbances. Regarding the lipid disturbances, the role of triglyceride-rich lipoproteins (TRLs) and their remnants has come to the forefront in the past decade. Triglycerides (TGs) stand as markers of the remnants of the catabolism of TRLs that tend to contain twice as much cholesterol as compared to LDL. The accumulation of circulating TRLs and their partially lipolyzed derivatives, known as "remnants", is caused mainly by ineffective triglyceride catabolism. These cholesterol-enriched remnant particles are hypothesized to contribute to atherogenesis. The aim of the present narrative review is to briefly summarize the main pathways of TRL metabolism, bringing to the forefront the newly discovered role of apolipoproteins, the key physiological function of lipoprotein lipase and its main regulators, the importance of the fluxes of these particles in the post-prandial period, their catabolic rates and the role of apo CIII and angiopoietin-like proteins in the partition of TRLs during the fast-fed cycle. Finally, we provide a succinct summary of the new and old therapeutic armamentarium and the outcomes of key current trials with a final outlook on the different methodological approaches to measuring TRL remnants, still in search of the gold standard.

8.
Elife ; 122023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37252755

RESUMO

Extracellular vesicles (EVs) are released by all cells into biofluids such as plasma. The separation of EVs from highly abundant free proteins and similarly sized lipoproteins remains technically challenging. We developed a digital ELISA assay based on Single Molecule Array (Simoa) technology for ApoB-100, the protein component of several lipoproteins. Combining this ApoB-100 assay with previously developed Simoa assays for albumin and three tetraspanin proteins found on EVs (Ter-Ovanesyan, Norman et al., 2021), we were able to measure the separation of EVs from both lipoproteins and free proteins. We used these five assays to compare EV separation from lipoproteins using size exclusion chromatography with resins containing different pore sizes. We also developed improved methods for EV isolation based on combining several types of chromatography resins in the same column. We present a simple approach to quantitatively measure the main impurities of EV isolation in plasma and apply this approach to develop novel methods for enriching EVs from human plasma. These methods will enable applications where high-purity EVs are required to both understand EV biology and profile EVs for biomarker discovery.


Assuntos
Vesículas Extracelulares , Lipoproteínas , Humanos , Apolipoproteína B-100/análise , Apolipoproteína B-100/metabolismo , Lipoproteínas/metabolismo , Vesículas Extracelulares/metabolismo , Cromatografia em Gel , Ensaio de Imunoadsorção Enzimática
9.
Saudi J Biol Sci ; 30(2): 103554, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36619676

RESUMO

Background: Hypercholesterolemia is a common cardiovascular risk factor. The aim of this study was to investigate the association of CELSR2 (rs629301), APOB100 (rs1367117), ABCG5/8 (rs6544713), LDLR (rs6511720), and APOE (rs429358, rs7412) polymorphisms, and their genetic risk scores with lipids among Thai subjects. Methods: A total of 459 study subjects (184 males, and 275 females) were enrolled. Blood pressure, serum lipids, and fasting blood sugar were measured. CELSR2 (rs629301), APOB100 (rs1367117), ABCG5/8 (rs6544713), and LDLR (rs6511720) polymorphisms were analyzed using PCR-HRM. APOE (rs429358, rs7412) polymorphism was analyzed using PCR-RFLP. Results: Total cholesterol (TC) levels were significantly higher in APOB100 AA genotype compared with GG, or AA + AG genotypes in total subjects. In addition, significantly higher concentrations of TC and low density lipoprotein cholesterol (LDL-C) were observed in APOE4 carriers compared to APOE2 carriers in total subjects, males, and females. The significantly higher concentrations of TC were observed in APOE4 carriers compared to APOE3 carriers in females. Moreover, the concentrations of TC, and LDL-C were significantly increased with genetic risk scores of APOB100, and APOE polymorphisms in total subjects, and females. There was no association between CELSR2 (rs629301), ABCG5/8 (rs6544713), and LDLR (rs6511720) polymorphisms and serum lipids. Conclusion: APOB100 (rs1367117), and APOE (rs429358, rs7412) but not CELSR2 (rs629301), ABCG5/8 (rs6544713), and LDLR (rs6511720) polymorphisms were associated with serum lipids. The cumulative risk alleles of APOB100 (rs1367117), and APOE (rs429358, rs7412) polymorphisms could enhance the elevated concentrations of TC, and LDL-C, and they may be used to predict severity of hypercholesterolemia among Thai subjects.

10.
J Lipid Res ; 63(9): 100257, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35931202

RESUMO

The microsomal triglyceride transfer protein (MTP) is essential for the secretion of apolipoprotein B (apoB)48- and apoB100-containing lipoproteins in the intestine and liver, respectively. Loss of function mutations in MTP cause abetalipoproteinemia. Heterologous cells are used to evaluate the function of MTP in apoB secretion to avoid background MTP activity in liver and intestine-derived cells. However, these systems are not suitable to study the role of MTP in the secretion of apoB100-containing lipoproteins, as expression of a large apoB100 peptide using plasmids is difficult. Here, we report a new cell culture model amenable for studying the role of different MTP mutations on apoB100 secretion. The endogenous MTTP gene was ablated in human hepatoma Huh-7 cells using single guide RNA and RNA-guided clustered regularly interspaced short palindromic repeats-associated sequence 9 ribonucleoprotein complexes. We successfully established three different clones that did not express any detectable MTTP mRNA or MTP protein or activity. These cells were defective in secreting apoB-containing lipoproteins and accumulated lipids. Furthermore, we show that transfection of these cells with plasmids expressing human MTTP cDNA resulted in the expression of MTP protein, restoration of triglyceride transfer activity, and secretion of apoB100. Thus, these new cells can be valuable tools for studying structure-function of MTP, roles of different missense mutations in various lipid transfer activities of MTP, and their ability to support apoB100 secretion, compensatory changes associated with loss of MTP, and in the identification of novel proteins that may require MTP for their synthesis and secretion.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Apolipoproteína B-48/metabolismo , Apolipoproteínas B/química , Apolipoproteínas B/genética , Carcinoma Hepatocelular/genética , Proteínas de Transporte , Linhagem Celular , DNA Complementar , Humanos , Lipoproteínas/metabolismo , Neoplasias Hepáticas/genética , RNA Guia de Cinetoplastídeos , RNA Mensageiro , Ribonucleoproteínas , Triglicerídeos/metabolismo
11.
Front Med (Lausanne) ; 9: 1078492, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36687450

RESUMO

The present study uses simple, innovative methods to isolate, characterize and fractionate LDL in its main components for the study of specific oxidations on them that characterize oxidized low-density lipoprotein (oxLDL) status, as it causatively relates to atherosclerosis-associated cardiovascular disease (CVD) risk assessment. These methods are: (a) A simple, relatively time-short, low cost protocol for LDL isolation, to avoid shortcomings of the currently employed ultracentrifugation and affinity chromatography methodologies. (b) LDL purity verification by apoB100 SDS-PAGE analysis and by LDL particle size determination; the latter and its serum concentration are determined in the present study by a simple method more clinically feasible as marker of CVD risk assessment than nuclear magnetic resonance. (c) A protocol for LDL fractionation, for the first time, into its main protein/lipid components (apoB100, phospholipids, triglycerides, free cholesterol, and cholesteryl esters), as well as into LDL carotenoid/tocopherol content. (d) Protocols for the measurement, for the first time, of indicative specific LDL component oxidative modifications (cholesteryl ester-OOH, triglyceride-OOH, free cholesterol-OOH, phospholipid-OOH, apoB100-MDA, and apoB100-DiTyr) out of the many (known/unknown/under development) that collectively define oxLDL status, which contrasts with the current non-specific oxLDL status evaluation methods. The indicative oxLDL status markers, selected in the present study on the basis of expressing early oxidative stress-induced oxidative effects on LDL, are studied for the first time on patients with end stage kidney disease on maintenance hemodialysis, selected as an indicative model for atherosclerosis associated diseases. Isolating LDL and fractionating its protein and main lipid components, as well as its antioxidant arsenal comprised of carotenoids and tocopherols, paves the way for future studies to investigate all possible oxidative modifications responsible for turning LDL to oxLDL in association to their possible escaping from LDL's internal antioxidant defense. This can lead to studies to identify those oxidative modifications of oxLDL (after their artificial generation on LDL), which are recognized by macrophages and convert them to foam cells, known to be responsible for the formation of atherosclerotic plaques that lead to the various CVDs.

12.
J Intern Med ; 291(2): 207-217, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34532909

RESUMO

BACKGROUND AND OBJECTIVES: Atrial fibrillation (AF) is associated with inflammation, both systemically and in the atrial tissue. Oxidized low-density lipoprotein (LDL) is increased in patients with AF and is suggested to be one of the molecules that drives inflammation. Autoantibodies against oxidized LDL and apolipoprotein B100, the protein component of LDL, are linked to atherosclerotic disease. However, whether these autoantibodies are associated with occurrence of AF is not known. We investigated autoantibodies against oxidized apolipoprotein B100 peptides and incidence of AF in a large population-based cohort. METHODS: IgM and IgG against native and aldehyde-modified apoB100 peptides 210 (p210) and 45 were analyzed by enzyme-linked immunosorbent assay (ELISA) in 5169 individuals from the Malmö Diet and Cancer cohort. RESULTS: Seven hundred sixty-nine incident AF cases were recorded during a follow-up of 21.3 years. Individuals with high levels of IgM against native p210 at baseline had a lower risk of developing AF; however, the association did not remain after adjustment for age and sex. Women had higher levels of IgM against native p210 than men (0.70 ± 0.22 AU vs. 0.63 ± 0.21 AU, p < 0.001). The association of IgM against native p210 and AF was significantly different between sexes (p for interaction = 0.024), where females with high IgM against p210 had a lower risk for incidence of AF (hazard ratio [95% confidence interval] 4th versus 1st quartile: 0.67 [0.49-0.91]; p = 0.01) after adjusting for risk factors and comorbidities. CONCLUSION: These findings support an association of humoral autoimmunity with AF.


Assuntos
Apolipoproteína B-100/imunologia , Fibrilação Atrial , Autoanticorpos , Fibrilação Atrial/epidemiologia , Autoanticorpos/sangue , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Incidência , Inflamação , Masculino , Fatores de Risco
13.
Nutrients ; 13(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34836152

RESUMO

Snack alternatives based on common beans (Phaseolus vulgaris L.) have been developed to promote pulse consumption. The purpose of this study was to evaluate the chemical composition, sensory acceptance and the effect of common bean baked snack (CBBS) consumption on blood lipid levels in participants with overweight and altered blood lipid levels. A sensory evaluation by 80 untrained judges was carried out using a hedonic scale. A randomized crossover 2 × 2 trial was performed, where 20 participants with overweight and one blood lipid alteration consumed 32 g of CBBS or did not consume it (control) for four weeks. Blood samples were taken to quantify the triglycerides, total cholesterol, LDL-c, HDL-c, ApoB-100, glucose and insulin. Furthermore, anthropometric, dietary and physical activity parameters were recorded. The overall acceptance of CBBS was similar compared to popcorn (p > 0.05). The consumption of CBBS reduced the apolipoprotein B-100 levels (p = 0.008). This reduction could be associated with the additional dietary fiber consumption during the CBBS period (p = 0.04). Although it did not improve any other blood lipid or glucose parameters (p > 0.05), it did not affect them either, which means that the CBBS could be consumed without compromising cardiovascular health.


Assuntos
Apolipoproteína B-100/sangue , Ingestão de Alimentos/fisiologia , Sobrepeso/sangue , Phaseolus , Lanches/fisiologia , Adulto , Glicemia/análise , Colesterol/sangue , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Estudos Cross-Over , Feminino , Humanos , Insulina/sangue , Lipídeos/sangue , Masculino , Triglicerídeos/sangue
14.
Front Neurosci ; 15: 700729, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366780

RESUMO

Increased blood-brain barrier (BBB) permeability and extensive neuronal changes have been described earlier in both healthy and pathological aging like apolipoprotein B-100 (APOB-100) and amyloid precursor protein (APP)-presenilin-1 (PSEN1) transgenic mouse models. APOB-100 hypertriglyceridemic model is a useful tool to study the link between cerebrovascular pathology and neurodegeneration, while APP-PSEN1 humanized mouse is a model of Alzheimer's disease. The aim of the current study was to characterize the inflammatory changes in the brain with healthy aging and in neurodegeneration. Also, the cerebro-morphological and cognitive alterations have been investigated. The nose-to-brain delivery of a P-glycoprotein substrate model drug (quinidine) was monitored in the disease models and compared with the age-matched controls. Our results revealed an inflammatory balance shift in both the healthy aged and neurodegenerative models. In normal aging monocyte chemoattractant protein-1, stem cell factor and Rantes were highly upregulated indicating a stimulated leukocyte status. In APOB-100 mice, vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF-BB), and interleukin-17A (IL-17A) were induced (vascular reaction), while in APP-PSEN1 mice resistin, IL-17A and GM-CSF were mostly upregulated. The nasal drug absorption was similar in the brain and blood indicating the molecular bypass of the BBB. The learning and memory tests showed no difference in the cognitive performance of healthy aged and young animals. Based on these results, it can be concluded that various markers of chronic inflammation are present in healthy aged and diseased animals. In APOB-100 mice, a cerebro-ventricular dilation can also be observed. For development of proper anti-aging and neuroprotective compounds, further studies focusing on the above inflammatory targets are suggested.

15.
Vet Sci ; 8(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34208809

RESUMO

Fatty liver is closely associated with elevated concentrations of nonesterified fatty acids (NEFA) and a low level of very low-density lipoproteins (VLDL) in blood of dairy cows. High NEFA inhibit the VLDL synthesis and assembly, and cause hepatic triacylglycerol (TAG) deposition. Sirtuin 3 (SIRT3), a mitochondrial deacetylase, antagonizes NEFA-induced TAG accumulation through modulating expressions of fatty acid synthesis and oxidation genes in cow hepatocytes. However, the role of SIRT3 in the VLDL synthesis and assembly was largely unknown. Here we aimed to test whether SIRT3 would recover the synthesis and assembly of VLDL in cow hepatocytes induced by high NEFA. Primary cow hepatocytes were isolated from 3 Holstein cows. Hepatocytes were infected with SIRT3 overexpression adenovirus (Ad-SIRT3), SIRT3-short interfering (si) RNA, or first infected with Ad-SIRT3 and then incubated with 1.0 mM NEFA (Ad-SIRT3 + NEFA). Expressions of key genes in VLDL synthesis and the VLDL contents in cell culture supernatants were measured. SIRT3 overexpression significantly increased the mRNA abundance of microsomal triglyceride transfer protein (MTP), apolipoprotein B100 (ApoB100) and ApoE (p < 0.01), and raised VLDL contents in the supernatants (p < 0.01). However, SIRT3 silencing displayed a reverse effect in comparison to SIRT3 overexpression. Compared with NEFA treatment alone, the Ad-SIRT3 + NEFA significantly upregulated the mRNA abundance of MTP, ApoB100 and ApoE (p < 0.01), and increased VLDL contents in the supernatants (p < 0.01). Our data demonstrated that SIRT3 restored the synthesis and assembly of VLDL in cow hepatocytes challenged with NEFA, providing an in vitro basis for further investigations testing its feasibility against hepatic TAG accumulation in dairy cows during the perinatal period.

16.
Saudi J Biol Sci ; 28(6): 3249-3253, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34121862

RESUMO

Apolipoprotein B100 (ApoB100) is a glycoprotein and a member of the adipokine family. It plays a central role in lipoprotein metabolism. Many research studies have revealed a strong relation between ApoB100 and metabolic syndrome (MetS) and insulin resistance. In our research, we examined the relationship between ApoB100 rs693 gene polymorphism, body mass index (BMI) and the probability of MetS in young female students studying at King Abdulaziz University (KAU) in Saudi Arabia. The study group comprised 141 females whose ages ranged from 18 to 25 years. Anthropometric measurements and biochemical parameters were measured alongside a genetic analysis of ApoB100 rs693. The BMI, glucose concentration and total cholesterol level were found to be significantly associated with the ApoB100 rs693 gene. The differences noted between control and MetS groups regarding glucose concentrations were statistically significant (P = 0.001). A growing number of young females are being diagnosed with MetS in KAU because of unhealthy eating habits, in combination with the absence of physical exercise, causing increased body weight and the potential progression of chronic diseases. Our study showed that the allele associated with hypertensive individuals at ApoB100 rs693 and MetS may have a direct genetic influence. Further research on expanded sample sizes, however, is required in order to draw rigid conclusions.

17.
J Lipid Res ; 62: 100091, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34118252

RESUMO

Plasma LDL is produced from catabolism of VLDL and cleared from circulation mainly via the hepatic LDL receptor (LDLR). Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes LDLR degradation, increasing plasma LDL-C levels. Circulating PCSK9 is mainly secreted by the liver, whereas VLDL is exclusively secreted by hepatocytes. However, the mechanism regulating their secretion is not completely understood. Surfeit 4 (Surf4) is a cargo receptor localized in the ER membrane. It recruits cargos into coat protein complex II vesicles to facilitate their secretion. Here, we investigated the role of Surf4 in VLDL and PCSK9 secretion. We generated Surf4 liver-specific knockout mice and found that knockout of Surf4 did not affect PCSK9 secretion, whereas it significantly reduced plasma levels of cholesterol, triglyceride, and lipid-binding protein apolipoprotein B (apoB). In cultured human hepatocytes, Surf4 coimmunoprecipitated and colocalized with apolipoprotein B100, and Surf4 silencing reduced secretion of apolipoprotein B100. Furthermore, knockdown of Surf4 in LDLR knockout (Ldlr-/-) mice significantly reduced triglyceride secretion, plasma levels of apoB and non-HDL-C, and the development of atherosclerosis. However, Surf4 liver-specific knockout mice and Surf4 knockdown in Ldlr-/- mice displayed similar levels of liver lipids and plasma alanine aminotransferase activity as control mice, indicating that inhibition of Surf4 does not cause notable liver damage. Expression of stearoyl-CoA desaturase-1 was also reduced in the liver of these mice, suggesting a reduction in de novo lipogenesis. In summary, hepatic deficiency of Surf4 reduced VLDL secretion and the development of atherosclerosis but did not cause significant hepatic lipid accumulation or liver damage.


Assuntos
Aterosclerose/metabolismo , Lipoproteínas VLDL/metabolismo , Proteínas de Membrana/metabolismo , Animais , Células Cultivadas , Proteínas de Membrana/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pró-Proteína Convertase 9/deficiência , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/deficiência , Receptores de LDL/metabolismo
18.
J Clin Lipidol ; 15(4): 569-573, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34052173

RESUMO

"Normotriglyceridemic abetalipoproteinemia (ABL)" was originally described as a clinical entity distinct from either ABL or hypobetalipoproteinemia. Subsequent studies identified mutations in APOB gene which encoded truncated apoB longer than apoB48. Therefore, "Normotriglyceridemic ABL" can be a subtype of homozygous familial hypobetalipoproteinemia. Here, we report an atypical female case of ABL who was initially diagnosed with "normotriglyceridemic ABL", because she had normal plasma apoB48 despite the virtual absence of apoB100 and low plasma TG level. Next generation sequencing revealed that she was a compound heterozygote of two novel MTTP mutations: nonsense (p.Q272X) and missense (p.G709R). We speculate that p.G709R might confer residual triglyceride transfer activity of MTTP preferentially in the intestinal epithelium to the hepatocytes, allowing production of apoB48. Together, "normotriglyceridemic ABL" may be a heterogenous disorder which is caused by specific mutations in either APOB or MTTP gene.


Assuntos
Abetalipoproteinemia/genética , Apolipoproteína B-100/genética , Apolipoproteína B-48/genética , Proteínas de Transporte/genética , Heterozigoto , Mutação/genética , Abetalipoproteinemia/sangue , Abetalipoproteinemia/diagnóstico , Adulto , Idoso , Apolipoproteína B-100/sangue , Apolipoproteína B-48/sangue , Biomarcadores/sangue , Proteínas de Transporte/sangue , Feminino , Humanos , Masculino
19.
Pract Lab Med ; 25: e00218, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33898688

RESUMO

OBJECTIVES: Measurement of lipoprotein(a) [Lp(a)] is used in risk assessment of atherosclerotic cardiovascular disease (ASCVD). The aim of the current study was to evaluate performance characteristic of five different Lp(a) assays using the cobas c501 (Roche Diagnostics) analyzer. DESIGN AND METHODS: Lp(a) was measured using five Lp(a) assays (Diazyme, Kamiya, MedTest, Randox, and Roche) configured to mg/dL units. Assays from Diazyme and Kamiya were also configured using nmol/L units in separate experiments. Studies included sensitivity, imprecision, linearity, method comparison, and evaluation of healthy subjects. Imprecision (intra-day, 20 replicates; inter-day, duplicates twice daily for five days) and linearity were evaluated using patient pools. Linearity assessed a minimum of five patient splits spanning the analytical measurement range (AMR). Method comparison used 80 residual serum samples. Specimens from 120 self-reported healthy subjects (61 females / 59 males) were also tested. Method comparison for two assays in nmol/L units was conducted using 96 residual serum samples. RESULTS: Assay sensitivities met all manufacturer claims. Imprecision studies demonstrated %CVs ranging from 2.5 to 5.2% for the low pool (average concentration from 7.3 to 12.4 â€‹mg/dL); high pool %CVs ranged from 0.8 to 3.0% (average concentrations from 31.5-50.2 â€‹mg/dL). Linearity was confirmed for all assays. Variation in accuracy was observed when comparing results to an all method average. Lp(a) results were higher in females versus males in self-reported healthy subjects. CONCLUSIONS: All assays performed according to manufacturer described performance characteristics, although differences were observed across Lp(a) assays tested when compared to an all method average.

20.
Int J Mol Sci ; 22(8)2021 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-33919597

RESUMO

Inappropriate nutrition and a sedentary lifestyle can lead to obesity, one of the most common risk factors for several chronic diseases. Although regular physical exercise is an efficient approach to improve cardiometabolic health, the exact cellular processes are still not fully understood. We aimed to analyze the morphological, gene expression, and lipidomic patterns in the liver and adipose tissues in response to regular exercise. Healthy (wild type on a normal diet) and hyperlipidemic, high-fat diet-fed (HFD-fed) apolipoprotein B-100 (APOB-100)-overexpressing mice were trained by treadmill running for 7 months. The serum concentrations of triglyceride and tumor necrosis factor α (TNFα), as well as the level of lipid accumulation in the liver, were significantly higher in HFD-fed APOB-100 males compared to females. However, regular exercise almost completely abolished lipid accumulation in the liver of hyperlipidemic animals. The expression level of the thermogenesis marker, uncoupling protein-1 (Ucp1), was significantly higher in the subcutaneous white adipose tissue of healthy females, as well as in the brown adipose tissue of HFD-fed APOB-100 females, compared to males. Lipidomic analyses revealed that hyperlipidemia essentially remodeled the lipidome of brown adipose tissue, affecting both the membrane and storage lipid fractions, which was partially restored by exercise in both sexes. Our results revealed more severe metabolic disturbances in HFD-fed APOB-100 males compared to females. However, exercise efficiently reduced the body weight, serum triglyceride levels, expression of pro-inflammatory factors, and hepatic lipid accumulation in our model.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Hiperlipidemias/metabolismo , Hiperlipidemias/fisiopatologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Condicionamento Físico Animal/fisiologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Metabolismo Energético/fisiologia , Feminino , Fígado/metabolismo , Masculino , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA