Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Am J Bot ; : e16398, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39192571

RESUMO

PREMISE: The Cenozoic Macquarie Harbour Formation (MHF) hosts one of the oldest and southernmost post-Cretaceous fossil plant assemblages in Australia. Coinciding with the Early Eocene Climatic Optimum (EECO) and predating the breakup of Australia from Antarctica, it offers critical data to study the diversity and extent of the Austral Polar Forest Biome, and the floristic divergence between Australasia and South America resulting from the Gondwana breakup. METHODS: The micromorphology and macromorphology of new fossil plant compressions from the MHF were described and systematically analyzed. Previously published non-flowering plant records were reviewed and revised. Macrofossil abundance data were provided. The flora was compared with other early Paleogene assemblages from across the Southern Hemisphere. RESULTS: Twelve species of non-flowering plants were identified from the macrofossil record. Conifers include Araucariaceae (Araucaria macrophylla, A. readiae, A. timkarikensis sp. nov., and Araucarioides linearis), Podocarpaceae (Acmopyle glabra, Dacrycarpus mucronatus, Podocarpus paralungatikensis sp. nov., and Retrophyllum sp.), and Cupressaceae (Libocedrus microformis). Dacrycarpus linifolius was designated a junior synonym of D. mucronatus. Further components include a cycad (Bowenia johnsonii, Zamiaceae), a pteridosperm (Komlopteris cenozoicus, Umkomasiaceae), and a fern (Lygodium dinmorphyllum, Schizaeaceae). CONCLUSIONS: The fossil assemblage represents a mixed near-polar forest with a high diversity of conifers. The morphology and preservation of several species indicate adaptations to life at high latitudes. The coexistence of large- and small-leaved conifers implies complex, possibly open forest structures. Comparisons with contemporaneous assemblages from Argentina support a circumpolar biome during the EECO, reaching from southern Australia across Antarctica to southern South America.

2.
Plants (Basel) ; 12(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37514262

RESUMO

Somatic embryogenesis (SE) in conifers is usually characterized as a multi-step process starting with the development of proembryogenic cell masses and followed by histodifferentiation, somatic embryo development, maturation, desiccation, and plant regeneration. Our current understanding of conifers' SE is mainly derived from studies using Pinaceae species as a model. However, the evolutionary relationships between conifers are not clear. Some hypotheses consider conifers as a paraphyletic group and Gnetales as a closely related clade. In this review, we used an integrated approach in order to cover the advances in knowledge on SE in conifers and Gnetales, discussing the state-of-the-art and shedding light on similarities and current bottlenecks. With this approach, we expect to be able to better understand the integration of these clades within current studies on SE. Finally, the points discussed raise an intriguing question: are non-Pinaceae conifers less prone to expressing embryogenic competence and generating somatic embryos as compared to Pinaceae species? The development of fundamental studies focused on this morphogenetic route in the coming years could be the key to finding a higher number of points in common between these species, allowing the success of the SE of one species to positively affect the success of another.

3.
PhytoKeys ; 226: 109-158, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274755

RESUMO

Agathis (Araucariaceae) is a genus of broadleaved conifers that today inhabits lowland to upper montane rainforests of Australasia and Southeast Asia. A previous report showed that the earliest known fossils of the genus, from the early Paleogene and possibly latest Cretaceous of Patagonian Argentina, host diverse assemblages of insect and fungal associations, including distinctive leaf mines. Here, we provide complete documentation of the fossilized Agathis herbivore communities from Cretaceous to Recent, describing and comparing insect and fungal damage on Agathis across four latest Cretaceous to early Paleogene time slices in Patagonia with that on 15 extant species. Notable fossil associations include various types of external foliage feeding, leaf mines, galls, and a rust fungus. In addition, enigmatic structures, possibly armored scale insect (Diaspididae) covers or galls, occur on Agathis over a 16-million-year period in the early Paleogene. The extant Agathis species, throughout the range of the genus, are associated with a diverse array of mostly undescribed damage similar to the fossils, demonstrating the importance of Agathis as a host of diverse insect herbivores and pathogens and their little-known evolutionary history.

4.
Phytochemistry ; 200: 113226, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35605810

RESUMO

Identify the botanical origins of a certain type of propolis may be challenging and time demanding, since it involves bee's behavior observation, plant resins collection and chemical analysis. Thus, this study aimed to determine the plant genetic materials in propolis from southern Brazil using the DNA barcoding to investigate their botanical origins, as well as to compare it with the phytochemical composition determined by ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS) and with the pollinic profile. As principal results, non-native Populus carolinensis Moench (Salicaceae) was almost the only DNA source in some propolis samples, which coincided with the presence of flavonoids typical from poplar exudates. Conversely, other propolis samples had DNA material coming mainly from native plant species, most of them characterized to the species level, although no specific chemical markers from those plants could be identified by UHPLC-HRMS. However, pollen from several plants identified by the DNA barcoding were extracted from some propolis samples. Despite the identification of typical diterpenes, DNA material from Araucaria angustifolia (Bertol.) Kuntze (Araucariaceae), which have been indicated as a major resin source for propolis from preservation areas in southern Brazil, was found in very small abundancies, likely because bees do not drag tissue material containing DNA when collecting resin from this native species. In conclusion, DNA barcoding analysis successfully provided information about the provenance of propolis, although, depending on the plant resin sources, this information is likely to come from pollen.


Assuntos
Ascomicetos , Populus , Própole , Cromatografia Líquida de Alta Pressão , DNA , Código de Barras de DNA Taxonômico , Cromatografia Gasosa-Espectrometria de Massas , Variação Genética , Plantas/química , Populus/química , Populus/genética , Própole/química , Resinas Vegetais/análise
6.
Nat Prod Res ; 36(21): 5626-5630, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34957868

RESUMO

The first phytochemical analysis on the leaves of Agathis microstachya J.F. Bailey & C.T. White collected in Rome was reported in this work. The study evidenced the presence of four compounds i.e., 7,4'''-dimethoxy-agathisflavone (1), 7,7''-dimethoxy-cupressuflavone (2), dactylifric acid (3) and shikimic acid (4) which were identified by means of spectroscopic techniques. Compounds (1, 2, 4) were reported in the species for the first time as well as this is the second report on the presence of dactylifric acid (3) in the whole Araucariaceae family. The absence of diterpenoids from the studied accession is also important. All these chemotaxonomic aspects were discussed.


Assuntos
Araucariaceae , Diterpenos , Compostos Fitoquímicos/análise , Folhas de Planta/química , Diterpenos/análise
7.
J Biomol Struct Dyn ; 40(14): 6426-6438, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33596787

RESUMO

The COVID-19 pandemic in Egypt is a part of the worldwide global crisis of coronavirus 2 (SARS-CoV-2). The contagious life-threatening condition causes acute respiratory syndrome. The present study aimed to assess the compounds identified by LC-MS of the methanolic leaves extracts from three conifers trees cultivated in Egypt (Araucaria bidwillii, Araucaria. cunninghamii and Araucaria heterophylla) via docking technique as potential inhibitor of COVID-19 virus on multiple targets; viral main protease (Mpro, 6LU7), non-structural protein-16 which is a methyl transferase (nsp16, 6W4H) and RNA dependent RNA polymerase (nsp12, 7BV2). Among the three targets, nsp16 was the best target recognized by the tested compounds as can be deduced from docking studies. Moreover, the methanolic extract of A. cunninghamii showed the highest radical-scavenging activity using (DPPH test) with 53.7 µg/mL comparable to ascorbic acid with IC50 = 46 µg/mL The anti-inflammatory potential carried using enzyme linked immunoassay showed the highest activity for A. cunninghamii and A. bidwillii followed by A. heterophylla with IC50 = 23.20 ± 1.17 µg/mL, 82.83 ± 3.21 µg/mL and 221.13 ± 6.7 µg/mL, respectively (Celecoxib was used as a standard drug with IC50 = 141.92 ± 4.52 µg/mL). Moreover, a molecular docking study was carried for the LC-MS annotated metabolites to validate their anti-inflammatory inhibitory effect using Celecoxib as a reference compound and showed a high docking score (-7.7 kcal/mol) for Octadecyl (E) P-coumarate and (-7.3 kcal/mol) for secoisolariciresinol rhamnoside.Communicated by Ramaswamy H. Sarma.


Assuntos
Araucaria , Tratamento Farmacológico da COVID-19 , Anti-Inflamatórios/farmacologia , Celecoxib , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Pandemias , Inibidores de Proteases/química , SARS-CoV-2
8.
BMC Evol Biol ; 20(1): 107, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32819273

RESUMO

BACKGROUND: Amber has been reported from the Early Cretaceous Crato Formation, as isolated clasts or within plant tissues. Undescribed cones of uncertain gymnosperm affinity have also been recovered with amber preserved in situ. Here, we provide multiple lines of evidence to determine the botanical affinity of this enigmatic, conspicuous cone type, and to better understand the diversity of amber-source plants present in the Crato Formation and beyond. RESULTS: A new taxon of amber-bearing pollen cone Araripestrobus resinosus gen. nov. et sp. nov. is described here from complete cones and characteristic disarticulated portions. The best-preserved cone portion has both in situ amber infilling the resin canals inside the preserved microsporophyll tissues and pollen of the Eucommiidites-type. This places this genus within the Erdtmanithecales, an incompletely known gymnosperm group from the Mesozoic. FTIR analysis of the in situ amber indicates a potential araucariacean conifer affinity, although affinity with cupressacean conifers cannot be definitely ruled out. Pyr-GC-MS analysis of the Araripestrobus resinosus gen. nov. et sp. nov. in situ fossil resin shows that it is a mature class Ib amber, thought to indicate affinities with araucariacean and cupressacean, but not pinaceous, conifers. This is the first confirmed occurrence of this class of amber in the Crato Formation flora and in South America, except for an archaeological sample from Laguna Guatavita, Colombia. CONCLUSIONS: The combined results of the cones' novel gross morphology and the analyses of the in situ amber and pollen clearly indicate that the new taxon of resinous gymnosperm pollen cones from the Crato Formation is affiliated with Erdtmanithecales. The cone morphology is very distinct from all known pollen cone types of this extinct plant group. We therefore assume that the plant group that produced Eucommiidites-type pollen is much more diverse in habits than previously thought. Moreover, the diversity of potential amber source plants from the Crato Formation is now expanded beyond the Araucariaceae and the Cheirolepidiaceae to include this member of the Erdtmanithecales. Despite dispersed Eucommiidites pollen being noted from the Crato Formation, this is the first time macrofossils of Erdtmanithecales have been recognized from the Early Cretaceous of South America.


Assuntos
Âmbar , Biodiversidade , Cycadopsida/classificação , Fósseis , Brasil , Pólen
9.
Plants (Basel) ; 9(7)2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32674354

RESUMO

In this review article, the phytochemistry of the species belonging to the Araucariaceae family is explored. Among these, in particular, it is given a wide overview on the phytochemical profile of Wollemia genus, for the first time. In addition to this, the ethnopharmacology and the general biological activities associated to the Araucariaceae species are singularly described. Lastly, the chemotaxonomy at the genus and family levels is described and detailed.

10.
Am J Bot ; 107(5): 806-832, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32388874

RESUMO

PREMISE: Eocene floras of Patagonia document biotic response to the final separation of Gondwana. The conifer genus Araucaria, distributed worldwide during the Mesozoic, has a disjunct extant distribution between South America and Australasia. Fossils assigned to Australasian Araucaria Sect. Eutacta usually are represented by isolated organs, making diagnosis difficult. Araucaria pichileufensis E.W. Berry, from the middle Eocene Río Pichileufú (RP) site in Argentine Patagonia, was originally placed in Sect. Eutacta and later reported from the early Eocene Laguna del Hunco (LH) locality. However, the relationship of A. pichileufensis to Sect. Eutacta and the conspecificity of the Araucaria material among these Patagonian floras have not been tested using modern methods. METHODS: We review the type material of A. pichileufensis alongside large (n = 192) new fossil collections of Araucaria from LH and RP, including multi-organ preservation of leafy branches, ovuliferous complexes, and pollen cones. We use a total evidence phylogenetic analysis to analyze relationships of the fossils to Sect. Eutacta. RESULTS: We describe Araucaria huncoensis sp. nov. from LH and improve the whole-plant concept for Araucaria pichileufensis from RP. The two species respectively resolve in the crown and stem of Sect. Eutacta. CONCLUSIONS: Our results confirm the presence and indicate the survival of Sect. Eutacta in South America during early Antarctic separation. The exceptionally complete fossils significantly predate several molecular age estimates for crown Eutacta. The differentiation of two Araucaria species demonstrates conifer turnover during climate change and initial South American isolation from the early to middle Eocene.


Assuntos
Araucaria , Fósseis , Regiões Antárticas , Australásia , Filogenia , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA