Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Plant Physiol Biochem ; 215: 109057, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39173365

RESUMO

Strigolactones (SLs) constitute essential phytohormones that control pathogen defense, resilience to phosphate deficiency and abiotic stresses. Furthermore, SLs are released into the soil by roots, especially in conditions in which there is inadequate phosphate or nitrogen available. SLs have the aptitude to stimulate the root parasite plants and symbiotic cooperation with arbuscular mycorrhizal (AM) fungi in rhizosphere. The use of mineral resources, especially phosphorus (P), by host plants is accelerated by AMF, which also improves plant growth and resilience to a series of biotic and abiotic stresses. Thus, these SL treatments that promote rhizobial symbiosis are substitutes for artificial fertilizers and other chemicals, supporting ecologically friendly farming practices. Moreover, SLs have become a fascinating target for abiotic stress adaptation in plants, with an array of uses in sustainable agriculture. In this review, the biological activity has been summarized that SLs as a signaling hormone for AMF symbiosis, nutrient acquisition, and abiotic stress tolerance through interaction with other hormones. Furthermore, the processes behind the alterations in the microbial population caused by SL are clarified, emphasizing the interplay with other signaling mechanisms. This review covers the latest developments in SL studies as well as the properties of SLs on microbial populations, plant hormone transductions, interactions and abiotic stress tolerance.

2.
J Appl Microbiol ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39147565

RESUMO

AIMS: Arbuscular mycorrhizal fungi (AMF) can perform significant functions within sustainable agricultural ecosystems, including vineyards. Increased AMF diversity can be beneficial in promoting plant growth and increasing resilience to environmental changes. To effectively utilise AMF communities and their benefits in vineyard ecosystems, a better understanding of how management systems influence AMF community composition is needed. Moreover, it is unknown whether AMF communities in organically managed vineyards are distinct from those in conventionally managed vineyards. METHODS AND RESULTS: In this study, vineyards were surveyed across the Marlborough region, New Zealand to identify the AMF communities colonizing the roots of different rootstocks grafted with Sauvignon Blanc and Pinot Noir in both conventional and organic systems. The AMF communities were identified based on spores isolated from trap cultures established with the collected grapevine roots, and by next-generation sequencing technologies (Illumina Miseq). The identified AMF species/genera belonged to Glomeraceae, Entrophosporaceae and Diversisporaceae. The results revealed a significant difference in AMF community composition between rootstocks and in their interaction with management systems. CONCLUSIONS: These outcomes indicated that vineyard management systems influence AMF recruitment by rootstocks and some rootstocks may therefore be more suited to organic systems due to the AMF communities they support. This could provide an increased benefit to organic systems by supporting higher biodiversity.

3.
Sci Total Environ ; 951: 175499, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151618

RESUMO

Arbuscular mycorrhizal fungi (AMF) have been shown to effectively mitigate the detrimental effects of heavy metal stress on their plant hosts. Nevertheless, the biological activities of AMF were concurrently compromised. Biochar (BC), as an abiotic factor, had the potential compensate for this limitation. To elucidate the synergistic effects of biotic and abiotic factors, a pot experiment was conducted to assess the impact of biochar and AMF on the growth, physiological traits, and genetic expression in rice plants subjected to Cd stress. The results demonstrated that biochar significantly increased the mycorrhizal colonization rate by 22.19 %, while the combined application of biochar and AMF led to a remarkable enhancement of rice root biomass by 42.2 %. This resulted in a shift in spatial growth patterns that preferentially promoted enhanced underground development. Biochar effectively mitigated the stomatal limitations imposed by Cd on photosynthetic processes. The decrease in IBRv2 (Integrated Biomarker Response version 2) values suggested that the antioxidant system was experiencing a state of remission. An increase of Cd content within the rice root systems was observed, ranging from 33.71 % to 48.71 %, accompanied by a reduction in Cd bioavailability and mobility curtailed its translocation to the aboveground tissues. Under conditions of low soil Cd concentration (Cd ≤ 1 mg·kg-1), the Cd content in rice seeds from the group subjected to the combined treatment remained below the national standard (Cd ≤ 0.2 mg·kg-1). Furthermore, the combined treatment modulated the uptake of Fe and Zn by rice, while simultaneously suppressing the expression of genes associated with Cd transport. Collectively, the integration of biological and abiotic factors provided a novel perspective and methodological framework for safe in-situ utilization of soils with low Cd contamination.

4.
Int J Mol Sci ; 25(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39125839

RESUMO

Arbuscular mycorrhizal (AM) fungi are well known for enhancing phosphorus uptake in plants; however, their regulating roles in cation transporting gene family, such as natural resistance-associated macrophage protein (NRAMP), are still limited. Here, we performed bioinformatics analysis and quantitative expression assays of tomato SlNRAMP 1 to 5 genes under nutrient deficiency and cadmium (Cd) stress in response to AM symbiosis. These five SlNRAMP members are mainly located in the plasma or vacuolar membrane and can be divided into two subfamilies. Cis-element analysis revealed several motifs involved in phytohormonal and abiotic regulation in their promoters. SlNRAMP2 was downregulated by iron deficiency, while SlNRAMP1, SlNRAMP3, SlNRAMP4, and SlNRAMP5 responded positively to copper-, zinc-, and manganese-deficient conditions. AM colonization reduced Cd accumulation and expression of SlNRAMP3 but enhanced SlNRAMP1, SlNRAMP2, and SlNRMAP4 in plants under Cd stress. These findings provide valuable genetic information for improving tomato resilience to nutrient deficiency and heavy metal stress by developing AM symbiosis.


Assuntos
Cádmio , Regulação da Expressão Gênica de Plantas , Micorrizas , Proteínas de Plantas , Solanum lycopersicum , Estresse Fisiológico , Simbiose , Micorrizas/fisiologia , Solanum lycopersicum/microbiologia , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Simbiose/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo
5.
Plant Environ Interact ; 5(4): e70002, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39131952

RESUMO

Arbuscular mycorrhizal fungi (AMF) are widespread obligate symbionts of plants. This dynamic symbiosis plays a large role in successful plant performance, given that AMF help to ameliorate plant responses to abiotic and biotic stressors. Although the importance of this symbiosis is clear, less is known about what may be driving this symbiosis, the plant's need for nutrients or the excess of plant photosynthate being transferred to the AMF, information critical to assess the functionality of this relationship. Characterizing the AMF community along a natural plant productivity gradient is a first step in understanding how this symbiosis may vary across the landscape. We surveyed the AMF community diversity at 12 sites along a plant productivity gradient driven by soil nitrogen availability. We found that AMF diversity in soil environmental DNA significantly increased along with the growth of the host plants Acer rubrum and A. saccharum., a widespread tree genus. These increases also coincided with a natural soil inorganic N availability gradient. We hypothesize photosynthate from the increased tree growth is being allocated to the belowground AMF community, leading to an increase in diversity. These findings contribute to understanding this complex symbiosis through the lens of AMF turnover and suggest that a more diverse AMF community is associated with increased host-plant performance.

6.
J Exp Bot ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140702

RESUMO

Nuclear Ca²âº signaling is crucial for symbiotic interactions between legumes and beneficial microbes, such as rhizobia and arbuscular mycorrhizal fungi. Key to generating repetitive nuclear Ca²âº oscillations are the ion channels DMI1 and CNGC15. Despite over 20 years of research on symbiotic nuclear Ca²âº spiking, important questions remain, including the exact function of the DMI1 channel. This review highlights recent developments that have filled knowledge gaps regarding the regulation of CNGC15 and its interplay with DMI1. We also explore new insights into the evolutionary conservation of DMI1-induced symbiotic nuclear Ca²âº oscillations and the roles of CNGC15 and DMI1 beyond symbiosis, such as in nitrate signaling, and discuss new questions this raises. As we delve deeper into the regulatory mechanisms and evolutionary history of these ion channels, we move closer to fully understanding the roles of nuclear Ca²âº signaling in plant life.

7.
Int Microbiol ; 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39129035

RESUMO

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts that engage in crucial interactions with plants, playing a vital role in grassland ecology. Our study focuses on the pioneer plant Agropyron cristatum, and we collected soil samples from four degraded grasslands in Yudaokou to investigate the response of community composition to the succession of degraded grasslands. We measured the vegetation status, soil physical and chemical properties, AMF colonization, and spore density in different degraded grasslands. High-throughput sequencing was employed to analyze AMF in soil samples. Correlations among community composition, soil characteristics, and plant factors were studied using principal component and regression analyses. The distribution of AMF in grasslands exhibited variation with different degrees of degradation, with Glomus, Scutellospora, and Diversispora being the dominant genera. The abundance of dominant genera in AMF also varied, showing a gradual increase in the relative abundance of the genus Diversispora with higher degradation levels. AMF diversity decreased from 27.7% to 12.4% throughout the degradation process. Among 180 samples of Agropyron cristatum plants, AMF hyphae and vesicles displayed the highest infection status in non-degraded grasslands and the lowest in severely degraded ones. Peak AMF spore production occurred in August, with maximum values in the 0-10-cm soil layer, and the highest spore densities were found in lightly degraded grasslands. Apart from pH, soil factors exhibited a positive correlation with AMF infection during grassland degradation. Furthermore, changes in AMF community composition were jointly driven by vegetation and soil characteristics, with vegetation coverage and soil organic carbon significantly impacting AMF distribution. Significant differences in AMF variables (spore number and diversity index) were also observed at different soil depths. Grassland successional degradation significantly influences AMF community structure and composition. Our future focus will be on understanding response mechanisms and implementing improvement methods for AMF during grassland degradation and subsequent restoration efforts.

8.
Plants (Basel) ; 13(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39124174

RESUMO

This study aimed to investigate the effects of applying arbuscular mycorrhizal fungi (AMF) on maize root growth and yield formation under different soil conditions. This study was conducted under sandy soil (S) and saline-alkali soil (Y), with treatments of AMF application (AM) and no AMF application (CK). The root characteristics, yield, and quality of maize were measured. High-throughput sequencing technology was employed to assess the impact of AMF on the soil microbial community structure, and the correlation between soil microbes and soil physicochemical properties was elucidated. The results show that under both sandy and saline-alkali soil conditions, AMF application significantly enhanced maize root growth, yield, grain quality, and soil available nitrogen (AN), available phosphorus (AP), and available potassium (AK) contents compared to the CK treatment. Soil microbial Alpha diversity analysis indicated that AMF application effectively increased soil microbial diversity and richness. Principal coordinate analysis (PCoA) and microbial community structure analysis revealed significant differences in bacterial communities between AM treatment in sandy soil (SAM) and CK in sandy soil (SCK), and significant differences in both bacterial and fungal communities between AM treatment in saline-alkali soil (YAM) and CK in saline-alkali soil (YCK). Furthermore, significant correlations between microbial communities and soil physicochemical properties were found, such as AN, AP, AK, soil salinity (SS), and organic matter (OM) content. AMF application had a greater impact on bacterial communities than on fungal communities. This study demonstrated that the use of AMF as a bio-fungal fertilizer was effective in improving spring maize yields, especially in terms of yield increase and quality stability in sandy and saline soils, thereby contributing to safe and sustainable cropping practices.

9.
World J Microbiol Biotechnol ; 40(10): 291, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105959

RESUMO

Phosphorus (P), an essential macronutrient for various plant processes, is generally a limiting soil component for crop growth and yields. Organic and inorganic types of P are copious in soils, but their phyto-availability is limited as it is present largely in insoluble forms. Although phosphate fertilizers are applied in P-deficit soils, their undue use negatively impacts soil quality and the environment. Moreover, many P fertilizers are lost because of adsorption and fixation mechanisms, further reducing fertilizer efficiencies. The application of phosphate-solubilizing microorganisms (PSMs) is an environmentally friendly, low-budget, and biologically efficient method for sustainable agriculture without causing environmental hazards. These beneficial microorganisms are widely distributed in the rhizosphere and can hydrolyze inorganic and organic insoluble P substances to soluble P forms which are directly assimilated by plants. The present review summarizes and discusses our existing understanding related to various forms and sources of P in soils, the importance and P utilization by plants and microbes,, the diversification of PSMs along with mixed consortia of diverse PSMs including endophytic PSMs, the mechanism of P solubilization, and lastly constraints being faced in terms of production and adoption of PSMs on large scale have also been discussed.


Assuntos
Agricultura , Bactérias , Fertilizantes , Fosfatos , Rizosfera , Microbiologia do Solo , Solo , Fosfatos/metabolismo , Solo/química , Bactérias/metabolismo , Solubilidade , Fósforo/metabolismo , Produtos Agrícolas/microbiologia , Produtos Agrícolas/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Plantas/microbiologia , Plantas/metabolismo
10.
Water Res ; 263: 122129, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39094199

RESUMO

Arbuscular mycorrhizal fungi (AMF) colonization has been used in constructed wetlands (CWs) to enhance treatment performance. However, its role in azole (fungicide) degradation and microbial community changes is not well understood. This study aims to explore the impact of AMF on the degradation of tebuconazole and its metabolites in CWs. Total organic carbon levels were consistently higher with the colonization of AMF (AMF+; 9.63- 16.37 mg/L) compared to without the colonization of AMF (AMF-; 8.79-14.48 mg/L) in CWs. Notably, tebuconazole removal was swift, occurring within one day in both treatments (p = 0.885), with removal efficiencies ranging from 94.10 % to 97.83 %. That's primarily due to rapid substrate absorption at the beginning, while degradation follows with a longer time. Four metabolites were reported in CWs first time: tebuconazole hydroxy, tebuconazole lactone, tebuconazole carboxy acid, and tebuconazole dechloro. AMF decreased the abundance of tebuconazole dechloro in the liquid phase, suggesting an inhibitory effect of AMF on dechlorination processes. Furthermore, tebuconazole carboxy acid and hydroxy were predominantly found in plant roots, with a higher abundance observed in AMF+ treatments. Metagenomic analysis highlighted an increasing abundance in bacterial community structure in favor of beneficial microorganisms (xanthomonadales, xanthomonadaceae, and lysobacter), along with a notable presence of functional genes like codA, NAD, and deaD in AMF+ treatments. These findings highlight the positive influence of AMF on tebuconazole stress resilience, microbial community modification, and the enhancement of bioremediation capabilities in CWs.

12.
Front Plant Sci ; 15: 1401050, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974980

RESUMO

Introduction: Drought stress usually inhibits plant growth, which may increase the difficulty of greening slopes. Methods: In this study, we systematically investigated the effects of arbuscular mycorrhizal (AM) fungi on the growth and drought tolerance of two plant species, Festuca elata and Cassia glauca, in a vegetation concrete environment by exogenously inoculating AM fungi and setting three drought levels: well water, moderate drought and severe drought. The results showed that plant growth was significantly inhibited under drought stress; however, AM fungi inoculation significantly promoted plant height, root length, and above- and belowground biomass in these two plant species. Results: Compared with, those in the CK treatment, the greatest increases in the net photosynthesis rate, stomatal conductance and transpiration rate in the AM treatment group were 36.72%, 210.08%, and 66.41%, respectively. Moreover, inoculation with AM fungi increased plant superoxide dismutase and catalase activities by 4.70-150.73% and 9.10-95.70%, respectively, and reduced leaf malondialdehyde content by 2.79-55.01%, which alleviated the damage caused by oxidative stress. These effects alleviated the damage caused by oxidative stress and increased the content of soluble sugars and soluble proteins in plant leaves by 1.52-65.44% and 4.67-97.54%, respectively, which further increased the drought adaptability of plants. However, inoculation with AM fungi had different effects on different plants. Conclusion: In summary, this study demonstrated that the inoculation of AM fungi in vegetation concrete environments can significantly increase plant growth and drought tolerance. The plants that formed a symbiotic structure with AM fungi had a larger root uptake area, greater water uptake capacity, and greater photosynthesis and gas exchange efficiency. In addition, AM fungi inoculation further increased the drought adaptability of the plants by increasing their antioxidant enzyme activity and regulating their metabolite content. These findings are highly important for promoting plant growth and increasing drought tolerance under drought conditions, especially for potential practical applications in areas such as slope protection, and provide useful references for future ecological engineering and sustainable development.

13.
Microorganisms ; 12(7)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39065027

RESUMO

Phytoremediation is recognized as an environmentally friendly technique. However, the low biomass production, high time consumption, and exposure to combined toxic stress from contaminated media weaken the potential of phytoremediation. As a class of plant-beneficial microorganisms, arbuscular mycorrhizal fungi (AMF) can promote plant nutrient uptake, improve plant habitats, and regulate abiotic stresses, and the utilization of AMF to enhance phytoremediation is considered to be an effective way to enhance the remediation efficiency. In this paper, we searched 520 papers published during the period 2000-2023 on the topic of AMF-assisted phytoremediation from the Web of Science core collection database. We analyzed the author co-authorship, country, and keyword co-occurrence clustering by VOSviewer. We summarized the advances in research and proposed prospective studies on AMF-assisted phytoremediation. The bibliometric analyses showed that heavy metal, soil, stress tolerance, and growth promotion were the research hotspots. AMF-plant symbiosis has been used in water and soil in different scenarios for the remediation of heavy metal pollution and organic pollution, among others. The potential mechanisms of pollutant removal in which AMF are directly involved through hyphal exudate binding and stabilization, accumulation in their structures, and nutrient exchange with the host plant are highlighted. In addition, the tolerance strategies of AMF through influencing the subcellular distribution of contaminants as well as chemical form shifts, activation of plant defenses, and induction of differential gene expression in plants are presented. We proposed that future research should screen anaerobic-tolerant AMF strains, examine bacterial interactions with AMF, and utilize AMF for combined pollutant removal to accelerate practical applications.

14.
Mycorrhiza ; 34(4): 369-373, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38951211

RESUMO

Recent work established a backbone reference tree and phylogenetic placement pipeline for identification of arbuscular mycorrhizal fungal (AMF) large subunit (LSU) rDNA environmental sequences. Our previously published pipeline allowed any environmental sequence to be identified as putative AMF or within one of the major families. Despite this contribution, difficulties in implementation of the pipeline remain. Here, we present an updated database and pipeline with (1) an expanded backbone tree to include four newly described genera and (2) several changes to improve ease and consistency of implementation. In particular, packages required for the pipeline are now installed as a single folder (conda environment) and the pipeline has been tested across three university computing clusters. This updated backbone tree and pipeline will enable broadened adoption by the community, advancing our understanding of these ubiquitous and ecologically important fungi.


Assuntos
DNA Fúngico , Micorrizas , Filogenia , Micorrizas/genética , Micorrizas/classificação , DNA Fúngico/genética , DNA Ambiental/genética , DNA Ambiental/análise , Microbiologia do Solo , DNA Ribossômico/genética
15.
Chemosphere ; 362: 142918, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39043273

RESUMO

Coastal wetlands possess significant carbon storage capabilities. However, in coastal soil-plant systems augmented with biochar and microorganisms, the mechanisms of these amendments and carbon participation remain unclear. This study utilized pot experiments to explore how Enteromorpha prolifera biochar and Arbuscular mycorrhizal fungi (AMF) affect soil organic carbon (SOC), carbon-related microbes, photosynthetic and osmotic system of Suaeda salsa. The results showed biochar reduced exchangeable sodium percentage by 6.9% through adsorption and ion exchange, and increased SOC content by 34.4%. The abundance of carbon-related microorganisms (Bacteroidota and Chloroflexi) was increased and carbon metabolizing enzyme (cellulase and sucrase) activity in the soil was enhanced. AMF significantly improved plant growth compared with CK, as evidenced by the enhanced dry weight by 2.34 times. A partial least squares pathway model (PLS-PM) and correlation analysis suggested that the combined effect of biochar and AMF could be outlined as two pathways: soil and plant. Biochar increased SOC, improved the growth of soil carbon metabolizing microorganisms, and further promoted the activity of carbon-related enzymes. Additionally, AMF facilitated nutrient absorption by plants through root symbiosis, with biochar further enhancing this process by acting as a nutrient adsorber. These combined effects of biochar and AMF at soil and plant level enhanced the photosynthetic process of Suaeda salsa. The transport of photosynthetic products to the roots can increase the carbon storage in the soil. This study provides quantitative evidence supporting the increase of carbon storage in coastal wetland soil-plant systems through a combined application of biochar and AMF.


Assuntos
Carbono , Carvão Vegetal , Micorrizas , Microbiologia do Solo , Solo , Áreas Alagadas , Carvão Vegetal/química , Carbono/metabolismo , Solo/química , Micorrizas/fisiologia , Chenopodiaceae/metabolismo , Chenopodiaceae/microbiologia , Fotossíntese , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia
16.
Heliyon ; 10(13): e33141, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39035525

RESUMO

Mycorrhizae are found on about 70-80 % of the roots of all plant species; ectomycorrhizae (ECM) are mostly found on woody plants and gymnosperms, whereas arbuscular mycorrhizal fungi (AMF) are found on 80-90 % of all plant species. In abandoned mining sites, woody plants dominate, while non-woody species remain scarce. However, this pattern depends on the specific mine site and its ecological context. This review article explores the potential of using mycorrhizae-plant associations to enhance and facilitate the remediation of mine wastelands and metal-polluted sites. In this review, we employed reputable databases to collect articles and relevant information on mycorrhizae and their role in plant growth and soil fertility spanning from the 1990s up to 2024. Our review found that the abilities of plants selected for minewasteland reclamation can be harnessed effectively if their mycorrhizae utilization is known and considered. Our findings indicate that AMF facilitates plant cohabitation by influencing species richness, feedback effects, shared mycelial networks, and plant-AMF specificity. Several types of mycorrhizae have been isolated from mine wastelands, including Glomus mosseae, which reduces heavy metal accumulation in plants, and Rhizophagus irregularis, which enhances plant growth and survival in revegetated mine sites. Additionally, studies on ECM in surface mine spoil restoration stands highlight their role in enhancing fungal biodiversity and providing habitats for rare and specialized fungal species. Recent research shows that ECM and AMF fungi can interact synergistically to enhance plant growth, with ECM improving plant nitrogen absorption and AMF increasing nitrogen use efficiency. Our review also found that despite their critical role in improving plant growth and resilience, there remains limited knowledge about the specific mechanisms by which mycorrhizae communicate with each other and other microorganisms, such as bacteria, root-associated fungi, soil protozoa, actinomycetes, nematodes, and endophytes, within the soil matrix. This article highlights the connection between mycorrhizae and plants and other microorganisms in mine wastelands, their role in improving soil structure and nutrient cycling, and how mycorrhizae can help restore soil fertility and promote plant growth, thus improving the overall environmental quality of mine wasteland sites.

18.
Mycorrhiza ; 34(4): 251-270, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39023766

RESUMO

Hot deserts impose extreme conditions on plants growing in arid soils. Deserts are expanding due to climate change, thereby increasing the vulnerability of ecosystems and the need to preserve them. Arbuscular mycorrhizal fungi (AMF) improve plant fitness by enhancing plant water/nutrient uptake and stress tolerance. However, few studies have focused on AMF diversity and community composition in deserts, and the soil and land use parameters affecting them. This study aimed to comprehensively describe AMF ecological features in a 5,000 km2 arid hyperalkaline region in AlUla, Saudi Arabia. We used a multimethod approach to analyse over 1,000 soil and 300 plant root samples of various species encompassing agricultural, old agricultural, urban and natural ecosystems. Our method involved metabarcoding using 18S and ITS2 markers, histological techniques for direct AMF colonization observation and soil spore extraction and observation. Our findings revealed a predominance of AMF taxa assigned to Glomeraceae, regardless of the local conditions, and an almost complete absence of Gigasporales taxa. Land use had little effect on the AMF richness, diversity and community composition, while soil texture, pH and substantial unexplained stochastic variance drove these compositions in AlUla soils. Mycorrhization was frequently observed in the studied plant species, even in usually non-mycorrhizal plant taxa (e.g. Amaranthaceae, Urticaceae). Date palms and Citrus trees, representing two major crops in the region, however, displayed a very low mycorrhizal frequency and intensity. AlUla soils had a very low concentration of spores, which were mostly small. This study generated new insight on AMF and specific behavioral features of these fungi in arid environments.


Assuntos
Clima Desértico , Micorrizas , Microbiologia do Solo , Micorrizas/fisiologia , Arábia Saudita , Esporos Fúngicos/fisiologia , Solo/química , Glomeromycota/fisiologia , Raízes de Plantas/microbiologia
19.
Planta ; 260(3): 66, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080142

RESUMO

MAIN CONCLUSION: Ants, but not mycorrhizae, significantly affected insect leaf-chewing herbivory on potato plants. However, there was no evidence of mutualistic interactive effects on herbivory. Plants associate with both aboveground and belowground mutualists, two prominent examples being ants and arbuscular mycorrhizal fungi (AMF), respectively. While both of these mutualisms have been extensively studied, joint manipulations testing their independent and interactive (non-additive) effects on plants are rare. To address this gap, we conducted a joint test of ant and AMF effects on herbivory by leaf-chewing insects attacking potato (Solanum tuberosum) plants, and further measured plant traits likely mediating mutualist effects on herbivory. In a field experiment, we factorially manipulated the presence of AMF (two levels: control and mycorrhization) and ants (two levels: exclusion and presence) and quantified the concentration of leaf phenolic compounds acting as direct defenses, as well as plant volatile organic compound (VOC) emissions potentially mediating direct (e.g., herbivore repellents) or indirect (e.g., ant attractants) defense. Moreover, we measured ant abundance and performed a dual-choice greenhouse experiment testing for effects of VOC blends (mimicking those emitted by control vs. AMF-inoculated plants) on ant attraction as a mechanism for indirect defense. Ant presence significantly reduced herbivory whereas mycorrhization had no detectable influence on herbivory and mutualist effects operated independently. Plant trait measurements indicated that mycorrhization had no effect on leaf phenolics but significantly increased VOC emissions. However, mycorrhization did not affect ant abundance and there was no evidence of AMF effects on herbivory operating via ant-mediated defense. Consistently, the dual-choice assay showed no effect of AMF-induced volatile blends on ant attraction. Together, these results suggest that herbivory on potato plants responds mainly to top-down (ant-mediated) rather than bottom-up (AMF-mediated) control, an asymmetry in effects which could have precluded mutualist non-additive effects on herbivory. Further research on this, as well as other plant systems, is needed to examine the ecological contexts under which mutualist interactive effects are more or less likely to emerge and their impacts on plant fitness and associated communities.


Assuntos
Formigas , Herbivoria , Micorrizas , Folhas de Planta , Solanum tuberosum , Simbiose , Compostos Orgânicos Voláteis , Animais , Micorrizas/fisiologia , Solanum tuberosum/fisiologia , Solanum tuberosum/microbiologia , Formigas/fisiologia , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Folhas de Planta/fisiologia , Insetos/fisiologia
20.
Molecules ; 29(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38999186

RESUMO

Panax notoginseng is a highly valued perennial medicinal herb in China and is widely used in clinical treatments. The main purpose of this study was to elucidate the changes in the composition of P. notoginseng saponins (PNSs), which are the main bioactive substances, triggered by arbuscular mycorrhizal fungi (AMF) via ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS). A total of 202 putative terpenoid metabolites were detected, of which 150 triterpene glycosides were identified, accounting for 74.26% of the total. Correlation analysis, principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) of the metabolites revealed that the samples treated with AMF (group Ce) could be clearly separated from the CK samples. In total, 49 differential terpene metabolites were identified between the Ce and CK groups, of which 38 and 11 metabolites were upregulated and downregulated, respectively, and most of the upregulated differentially abundant metabolites were mainly triterpene glycosides. The relative abundances of the two major notoginsenosides (MNs), ginsenosides Rd and Re, and 13 rare notoginsenosides (RNs), significantly increased. The differential saponins, especially RNs, were more easily clustered into one branch and had a high positive correlation. It could be concluded that the biosynthesis and accumulation of some RNs share the same pathways as those triggered by AMF. This study provides a new way to obtain more notoginsenoside resources, particularly RNs, and sheds new light on the scientization and rationalization of the use of AMF agents in the ecological planting of medicinal plants.


Assuntos
Metabolômica , Micorrizas , Panax notoginseng , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Triterpenos , Panax notoginseng/microbiologia , Panax notoginseng/química , Triterpenos/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Micorrizas/metabolismo , Metabolômica/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Saponinas/metabolismo , Saponinas/química , Análise de Componente Principal , Metaboloma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA