Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Angew Chem Int Ed Engl ; : e202410012, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958836

RESUMO

A symmetric anion mediated dynamic kinetic asymmetric Knoevenagel reaction was established as a general and efficient method for accessing both N-C and N-N atropisomers. The resulting highly enantio-pure pyridine-2,6(1H,3H)-diones exhibit diverse structures and functional groups. The key to excellent regio- and remote enantiocontrol could be owed to the hydrogen bond between the enolate anion and triflamide block of the organocatalyst. This connected the enolate anion and iminium cation by a chiral backbone. The mechanism investigation via control experiments, correlation analysis, and density functional theory calculations further revealed how the stereochemical information was transferred from the catalyst into the axially chiral pyridine-2,6(1H,3H)-diones. The synthetic applications also demonstrated the reaction's potential.

2.
Front Chem ; 12: 1398397, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38783896

RESUMO

Asymmetric catalysis stands at the forefront of modern chemistry, serving as a cornerstone for the efficient creation of enantiopure chiral molecules characterized by their high selectivity. In this review, we delve into the realm of asymmetric catalytic reactions, which spans various methodologies, each contributing to the broader landscape of the enantioselective synthesis of chiral molecules. Transition metals play a central role as catalysts for a wide range of transformations with chiral ligands such as phosphines, N-heterocyclic carbenes (NHCs), etc., facilitating the formation of chiral C-C and C-X bonds, enabling precise control over stereochemistry. Enantioselective photocatalytic reactions leverage the power of light as a driving force for the synthesis of chiral molecules. Asymmetric electrocatalysis has emerged as a sustainable approach, being both atom-efficient and environmentally friendly, while offering a versatile toolkit for enantioselective reductions and oxidations. Biocatalysis relies on nature's most efficient catalysts, i.e., enzymes, to provide exquisite selectivity, as well as a high tolerance for diverse functional groups under mild conditions. Thus, enzymatic optical resolution, kinetic resolution and dynamic kinetic resolution have revolutionized the production of enantiopure compounds. Enantioselective organocatalysis uses metal-free organocatalysts, consisting of modular chiral phosphorus, sulfur and nitrogen components, facilitating remarkably efficient and diverse enantioselective transformations. Additionally, unlocking traditionally unreactive C-H bonds through selective functionalization has expanded the arsenal of catalytic asymmetric synthesis, enabling the efficient and atom-economical construction of enantiopure chiral molecules. Incorporating flow chemistry into asymmetric catalysis has been transformative, as continuous flow systems provide precise control over reaction conditions, enhancing the efficiency and facilitating optimization. Researchers are increasingly adopting hybrid approaches that combine multiple strategies synergistically to tackle complex synthetic challenges. This convergence holds great promise, propelling the field of asymmetric catalysis forward and facilitating the efficient construction of complex molecules in enantiopure form. As these methodologies evolve and complement one another, they push the boundaries of what can be accomplished in catalytic asymmetric synthesis, leading to the discovery of novel, highly selective transformations which may lead to groundbreaking applications across various industries.

3.
Chirality ; 36(5): e23671, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38660756

RESUMO

Steric hindrance in Lewis acid (LA) and Lewis base (LB) obstruct the Lewis acid-base adduct formation, and the pair was termed as frustrated Lewis pair (FLP). In the past 16 years, the field of enantioselective catalysis by chiral FLPs has been slowly growing. It was shown that chiral LAs are significant as they are involved in the hydrogen transfer (HT) step to the imine, resulting in enantioselectivity. After H2 activation, the borohydride can exist in a number of plausible conformations and their stability is governed by the presence of noncovalent interaction through C-H····π and π····π interactions. However, LBs are not ideal for asymmetric induction as they compete with the imine substrate as a counter LB. Further, the proton transfer from chiral LB to the imine does not induce any chirality as chirality develops in the HT step. However, intramolecular FLPs with chiral scaffold are very efficient as they possess an optimum distance between LA and LB, which facilitates the H2 activation but precludes the adduct formation of the small molecules substrate with the LA component. This mini-review summarizes computational investigation involving chiral LA and LB, and discusses intramolecular FLPs in the enantioselective catalysis.

4.
Curr Top Med Chem ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38544390

RESUMO

This review highlights major developments in the application of green organocatalytic and enzymatic dynamic kinetic resolutions (DKRs) in the total synthesis of biorelevant scaffolds. It illustrates the diversity of useful bioactive products and intermediates that can be synthesized under greener and more economic conditions through the combination of the powerful concept of DKR, which allows the resolution of racemic compounds with up to 100% yield, with either asymmetric organocatalysis or enzymatic catalysis, avoiding the use of toxic and expensive metals. With the need for more ecologic synthetic technologies, this field will undoubtedly expand its scope in the future with the employment of other organocatalysts/enzymes to even more types of transformations, thus allowing powerful greener and more economic strategies to reach other biologically important molecules.

5.
Beilstein J Org Chem ; 20: 205-211, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318457

RESUMO

A convenient and efficient method for the synthesis of optically active difluoro-substituted indoline derivatives starting from the corresponding 3H-indoles by chiral phosphoric acid-catalyzed transfer hydrogenation was developed. Using Hantzsch ester as the hydrogen source under mild reaction conditions, the target products can be obtained with excellent yield and enantioselectivity.

6.
Acta Crystallogr C Struct Chem ; 80(Pt 1): 15-20, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38180035

RESUMO

The synthesis of a chiral isothiourea, namely, (4aR,8aR)-3-phenyl-4a,5,6,7,8,8a-hexahydrobenzo[4,5]imidazo[2,1-b]thiazol-9-ium bromide, C15H17N2S+·Br-, with potential organocatalytic and anti-inflammatory activity is reported. The preparation of the heterocycle of interest was carried out in two high-yielding steps. The hydrobromide salt of the isothiourea of interest provided suitable crystals for X-ray diffraction analysis, the results of which are reported. Salient observations from this analysis are the near perpendicular arrangement of the phenyl ring and the mean plane of the heterocycle. This conformational characteristic may be relevant with regard the stereoselectivity induced by the chiral isothiourea in asymmetric reactions. Furthermore, evidence was found for the existence of an S...Br- halogen bond.

7.
Chem Asian J ; 19(4): e202300997, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38270228

RESUMO

The presence of an aromatic additive has been seen to enhance, often significantly, the enantioselectivity and yield in asymmetric organocatalysis. Considering their success across a dizzying range of organocatalysts and organic transformations, it would seem unlikely that a common principle exists for their functioning. However, the current investigations with DFT suggest a general principle: the phenolic additive sandwiches itself, through hydrogen bonding and π⋅⋅⋅π stacking, between the organocatalyst coordinated electrophile and nucleophile. This is seen for a wide range of experimentally reported systems. That such complex formation leads to enhanced stereoselectivity is then demonstrated for two cases: the cinchona alkaloid complex (BzCPD), catalysing thiocyanation (2-naphthol additive employed), as well as for L-pipecolicacid catalysing the asymmetric nitroaldol reaction with a range of nitro-substituted phenol additives. These findings, indicating that dual catalysis takes place when phenolic additives are employed, are likely to have a significant impact on the field of asymmetric organocatalysis.

8.
Chem Asian J ; 19(3): e202301011, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37984888

RESUMO

Ring-fused aminal is an interesting structural skeleton in biologically active and pharmaceutically relevant compounds. A novel and efficient method for synthesizing benzosulfamidate-fused tetrahydroquinazolines is described. By employing the [4+2]-cycloaddition of 2-aminophenyl enones with cyclic N-sulfimines in the presence of DMAP as a base, the desired benzosulfamidate-fused tetrahydroquinazolines were obtained in good yields with high diastereoselectivities. Furthermore, an organocatalytic asymmetric [4+2]-cycloaddition was successfully achieved using a squaramide-based catalyst, enabling the enantioselective synthesis of chiral ring-fused tetrahydroquinazolines with high yields and enantio- as well as diastereoselectivities (up to 89 % yield, 94 % ee, and >30 : 1 dr).

9.
Angew Chem Int Ed Engl ; 63(8): e202316454, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38155472

RESUMO

In the chemistry community, catalytic asymmetric synthesis of furan-based compounds bearing both axial and central chirality has proven to be a significant but challenging issue owing to the importance and difficulty in constructing such frameworks. In this work, we have realized the first catalytic asymmetric synthesis of five-five-membered furan-based compounds bearing both axial and central chirality via organocatalytic asymmetric (2+4) annulation of achiral furan-indoles with 2,3-indolyldimethanols with uncommon regioselectivity. By this strategy, furan-indole compounds bearing both axial and central chirality were synthesized in high yields with excellent regio-, diastereo-, and enantioselectivities. Moreover, theoretical calculations were conducted to provide an in-depth understanding of the reaction pathway, activation mode, and the origin of the selectivity.

10.
Molecules ; 28(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38067563

RESUMO

Bifunctional thioureas and, for the first time, bifunctional thiosquaramides as organocatalysts were used in the asymmetric Betti reaction involving 1-, 2-naphthols and hydroxyquinoline with N-tosylimine and ketimine. The described methodology affords direct access to chiral aminoarylnaphthols in excellent yield (up to 98%) with high enantioselectivity (up to 80% ee) and enantioenriched 3-amino-2-oxindoles (up to 78% yield, up to 98% ee).

11.
Angew Chem Int Ed Engl ; 62(37): e202305450, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37345905

RESUMO

Catalytic asymmetric construction of chiral indole-fused rings has become an important issue in the chemical community because of the significance of such scaffolds. In this work, we have accomplished the first catalytic asymmetric (4+2) and (4+3) cycloadditions of 2,3-indolyldimethanols by using indoles and 2-naphthols as suitable reaction partners under the catalysis of chiral phosphoric acids, constructing enantioenriched indole-fused six-membered and seven-membered rings in high yields with excellent enantioselectivities. In addition, this approach is used to realize the first enantioselective construction of challenging tetrahydroindolocarbazole scaffolds, which are found to show promising anticancer activity. More importantly, theoretical calculations of the reaction pathways and activation mode offer an in-depth understanding of this class of indolylmethanols. This work not only settles the challenges in realizing catalytic asymmetric cycloadditions of indolyldimethanols but also provides a powerful strategy for the construction of enantioenriched indole-fused rings.

12.
Angew Chem Int Ed Engl ; 62(27): e202303430, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37143184

RESUMO

We have developed an efficient modular asymmetric synthesis of azahelicenes through an organocatalyzed asymmetric multicomponent reaction from readily available polycyclic aromatic amines, aldehydes, and (di)enamides, by employing a central-to-helical chirality conversion strategy. A series of aza[5]- and aza[4]helicenes bearing various substituents were readily afforded through this one-pot sequential enantioselective Povarov reaction/oxidative aromatization process, with good yields and high enantioselectivities. The fruitful and diverse derivatizations of the chiral azahelicene products demonstrated the potential of this method, and a preliminary application of the azahelicene derivative as a chiral organocatalyst was showcased. The photophysical and chiroptical properties of these azahelicenes, particularly the acid/base-triggered switching of these properties, were also well studied, which may find potential applications in the development of novel organic optoelectronic materials.

13.
Chem Rec ; 23(4): e202300049, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36976479

RESUMO

Asymmetric Brønsted acid catalysis has been recognized as a powerful concept for asymmetric synthesis. In the process of pursuing more robust and highly effective chiral Brønsted acid catalysts, chiral bisphosphoric acids have received much attention in the last two decades. Their unique catalytic properties are mainly attributed to the inherent intramolecular hydrogen bonding interactions that could increase the overall acidity and tune the conformation property. Integrating hydrogen bonding into the catalyst design, quite a few structurally unique and effective bisphosphoric acids have been synthesized, which frequently exhibited superior selectivity in a broad range of asymmetric transformations. This review summarizes the status quo of chiral bisphosphoric acid catalysts and their applications in catalyzing asymmetric transformations.

14.
Molecules ; 28(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36903480

RESUMO

In 1971, chemists from Hoffmann-La Roche and Schering AG independently discovered a new asymmetric intramolecular aldol reaction catalyzed by the natural amino acid proline, a transformation now known as the Hajos-Parrish-Eder-Sauer-Wiechert reaction. These remarkable results remained forgotten until List and Barbas reported in 2000 that L-proline was also able to catalyze intermolecular aldol reactions with non-negligible enantioselectivities. In the same year, MacMillan reported on asymmetric Diels-Alder cycloadditions which were efficiently catalyzed by imidazolidinones deriving from natural amino acids. These two seminal reports marked the birth of modern asymmetric organocatalysis. A further important breakthrough in this field happened in 2005, when Jørgensen and Hayashi independently proposed the use of diarylprolinol silyl ethers for the asymmetric functionalization of aldehydes. During the last 20 years, asymmetric organocatalysis has emerged as a very powerful tool for the facile construction of complex molecular architectures. Along the way, a deeper knowledge of organocatalytic reaction mechanisms has been acquired, allowing for the fine-tuning of the structures of privileged catalysts or proposing completely new molecular entities that are able to efficiently catalyze these transformations. This review highlights the most recent advances in the asymmetric synthesis of organocatalysts deriving from or related to proline, starting from 2008.

15.
Angew Chem Int Ed Engl ; 62(16): e202216605, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36811516

RESUMO

A chiral Brønsted acid-catalysed asymmetric hydrophosphinylation of 2-vinylazaarenes by secondary phosphine oxides is described. A variety of P-chiral 2-azaaryl-ethylphosphine oxides are synthesized with high yields and ees, of which both the substituents of phosphines and azaarenes can be flexibly modulated, underscoring an exceptionally broad scope of substrates. These adducts are valuable to asymmetric metal catalysis since the resultant P-chiral tertiary phosphines from the reduction of them are verified as a kind of effective C1 -symmetric chiral 1,5-hybrid P,N-ligands. Importantly, this catalysis platform enables the generic and efficient kinetic resolution of P-chiral secondary phosphine oxides. It thus provides an expedient approach to access the enantiomers of the P-chiral tertiary phosphine oxides derived from asymmetric hydrophosphinylation, further improving the utility of the method.

16.
Molecules ; 28(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36771181

RESUMO

Ten novel bifunctional quaternary ammonium salt phase-transfer organocatalysts were synthesized in four steps from (+)-camphor-derived 1,3-diamines. These quaternary ammonium salts contained either (thio)urea or squaramide hydrogen bond donor groups in combination with either trifluoroacetate or iodide as the counteranion. Their organocatalytic activity was evaluated in electrophilic heterofunctionalizations of ß-keto esters and in the Michael addition of a glycine Schiff base with methyl acrylate. α-Fluorination and chlorination of ß-keto esters proceeded with full conversion and low enantioselectivities (up to 29% ee). Similarly, the Michael addition of a glycine Schiff base with methyl acrylate proceeded with full conversion and up to 11% ee. The new catalysts have been fully characterized; the stereochemistry at the C-2 chiral center was unambiguously determined.

17.
Chem Rec ; 23(7): e202200258, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36594608

RESUMO

The sulfa-Michael addition reaction is a crucial subset of the Michael addition reaction, and aroused the interest of numerous synthetic biologists and chemists. In particular, sulfa-Michael addition triggered cascade reaction has developed quickly in recent years because it offers an efficient method to construct C-S bonds and other bonds in one approach, which is widely applicable for building chiral pharmaceuticals, their intermediates, and natural compounds. This review emphasizes the recent advancements in sulfa-Michael addition-triggered cascade reactions for the stereoselective synthesis of sulfur-containing compounds, including sulfa-Michael/aldol, sulfa-Michael/Henry, sulfa-Michael/Michael, sulfa-Michael/Mannich and some sulfa-Michael triggered multi-step processes. Moreover, some reaction mechanisms and derivatization experiments are introduced appropriately.


Assuntos
Compostos de Enxofre , Estereoisomerismo , Compostos de Enxofre/química
18.
Chem Rec ; 23(7): e202200283, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36703542

RESUMO

Asymmetric organocatalysis is a robust methodology providing access to numerous valuable compounds while having green chemistry principles in mind. The realization of organocatalytic transformation under solvent-free mechanochemical conditions brings additional benefits in terms of yields, selectivities, and, last but not least overall improved sustainability. This overview describes developments in the use of mechanochemistry as a vehicle for asymmetric organocatalytic transformations. The material is organized according to main catalytic activation modes, starting with covalent activation and proceeding to non-covalent activation modes. The advantages of mechanochemical organocatalytic reactions are particularly highlighted, but in some cases also, limitations are mentioned. Possibilities for target compound synthesis are also discussed.

19.
Chem Rec ; 23(7): e202200198, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36175162

RESUMO

(Thio)-urea-containing bifunctional quaternary ammonium salts emerged as powerful non-covalently interacting organocatalysts over the course of the last decade. The most commonly employed catalysts in this field are either based on Cinchona alkaloids, α-amino acids, or trans-cyclohexane-1,2-diamine. Our group has been heavily engaged in the design and use of such catalysts, i. e. trans-cyclohexane-1,2-diamine-based ones for around 10 years now, and it is therefore the intention of this short personal account to provide an overview of the, at least in our opinion, most significant and pioneering achievements in this field by looking on catalyst design and asymmetric method development, with a special focus on our own contributions.


Assuntos
Compostos de Amônio Quaternário , Ureia , Estereoisomerismo , Estrutura Molecular , Compostos de Amônio Quaternário/química , Catálise
20.
Fundam Res ; 3(2): 237-248, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38932922

RESUMO

The catalytic asymmetric construction of axially chiral indole-based frameworks is an important area of research due to the unique characteristics of such frameworks. Nevertheless, research in this area is still in its infancy and has some challenges, such as designing and constructing new classes of axially chiral indole-based scaffolds and developing their applications in chiral catalysts, ligands, etc. To overcome these challenges, we present herein the design and atroposelective synthesis of aryl-pyrroloindoles as a new class of axially chiral indole-based scaffolds via the strategy of organocatalytic asymmetric (2 + 3) cyclization between 3-arylindoles and propargylic alcohols. More importantly, this new class of axially chiral scaffolds was derived into phosphines, which served as efficient chiral ligands in palladium-catalyzed asymmetric reactions. Moreover, theoretical calculations provided an in-depth understanding of the reaction mechanism. This work offers a new strategy for constructing axially chiral indole-based scaffolds, which are promising for finding more applications in asymmetric catalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA