Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Fish Dis ; 46(5): 535-543, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36787245

RESUMO

A Multi-Locus Variable number of tandem repeat Analysis (MLVA) genotyping scheme was developed for the epidemiological study of Moritella viscosa, which causes 'winter ulcer' predominantly in sea-reared Atlantic salmon (Salmo salar L.). The assay involves multiplex PCR amplification of six Variable Number of Tandem Repeat (VNTR) loci, followed by capillary electrophoresis and data interpretation. A collection of 747 spatiotemporally diverse M. viscosa isolates from nine fish species was analysed, the majority from farmed Norwegian salmon. MLVA distributed 76% of the isolates across three major clonal complexes (CC1, CC2 and CC3), with the remaining forming minor clusters and singletons. While 90% of the salmon isolates belong to either CC1, CC2 or CC3, only 20% of the isolates recovered from other fish species do so, indicating a considerable degree of host specificity. We further highlight a series of 'clonal shifts' amongst Norwegian salmon isolates over the 35-year sampling period, with CC1 showing exclusive predominance prior to the emergence of CC2, which was later supplanted by CC3, before the recent re-emergence of CC1. Apparently, these shifts have rapidly swept the entire Norwegian coastline and conceivably, as suggested by typing of a small number of non-Norwegian isolates, the Northeast Atlantic region as a whole.


Assuntos
Doenças dos Peixes , Moritella , Salmo salar , Animais , Genótipo , Agricultura
2.
Fish Shellfish Immunol ; 123: 194-206, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35227881

RESUMO

This study sought to investigate whether a "natural diet" (mimicking the fatty acid composition of freshwater aquatic insects eaten by salmon parr) during the freshwater (FW) life stage of pre-smolt Atlantic salmon (Salmo salar L.) affected red blood cells and gill fatty acid composition as well as eicosanoid metabolism in gill during smolting at different temperatures. Before being transferred to seawater (SW), salmon parr were fed with a modified (MO) diet containing vegetable oils (rapeseed, palm, and linseed oils) supplemented with eicosapentaenoic acid (EPA) and arachidonic acid (ARA) to completely replace the fish oil (FO). Fatty acid composition in red blood cells and gill tissues was determined before SW transfer and six weeks after. Additionally, the expression of genes associated with eicosanoid metabolism and Na+/K+-ATPase (NKA) activity in salmon gill was examined at different temperatures before SW transfer and 24 h after. The results showed the changes in fatty acid composition, including sum monounsaturated fatty acids (MUFAs), docosahexaenoic acid (DHA), ARA, EPA, and sum n-6 polyunsaturated fatty acids (n-6 PUFA) in both red blood cells and gill tissues at the FW stage were consistent with the fatty acid profiles of the supplied MO and FO fish diets; however sum EPA and DHA composition exhibited opposite trends to those of the FO diet. The proportion of ARA, EPA, and n-6 PUFA increased, whereas sum MUFAs and DHA decreased in the red blood cells and gill tissues of MO-fed fish compared to those fed with the FO diet at FW stage. Additionally, 5-lipoxygenase-activating protein (Flap) expression was downregulated in MO-fed fish prior to SW transfer. During the process of SW transfer at different temperatures, the MO diet remarkably suppressed NKAα1a expression in MO-fed fish both at 12 and 16 °C. The MO diet also upregulated phospholipase A2 group IV (PLA2g4) expression in gills at 8, 12, and 16 °C, but suppressed phospholipase A2 group VI (PLA2g6) expression in gills at 12 °C compared to FO-fed fish at 12 °C and MO-fed fish at 8 °C. The MO diet also upregulated Cyclooxygenase 2 (Cox-2) expression at 8 °C compared to FO-fed fish and increased Arachidonate 5-lipoxygenase (5-Lox) expression in MO-fed fish at 16 °C compared to both FO-fed fish at 16 °C and MO-fed fish at 8 °C. Our study also determined that both SW transfer water temperatures and diets during the FW period jointly influenced the mRNA expression of PLA2g4, PLA2g6, and Lpl, whereas 5-Lox was more sensitive to dietary changes. In conclusion, the MO diet affected the fatty acid composition in gill and in red blood cells. When transferred to SW, dietary ARA supplementation could promote the bioavailability for eicosanoid synthesis in gill mainly via PLA2g4 activation, and potentially inhibit the stress and inflammatory response caused by different water temperatures through dietary EPA supplementation.


Assuntos
Ácido Eicosapentaenoico , Salmo salar , Animais , Ácido Araquidônico , Dieta/veterinária , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos , Ácidos Graxos/metabolismo , Ácidos Graxos Monoinsaturados , Óleos de Peixe , Fosfolipases A2 , Óleos de Plantas , Salmo salar/metabolismo , Água
3.
Front Cell Infect Microbiol ; 12: 1068302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36817693

RESUMO

Gnotobiotic models have had a crucial role in studying the effect that commensal microbiota has on the health of their animal hosts. Despite their physiological and ecological diversity, teleost fishes are still underrepresented in gnotobiotic research. Moreover, a better understanding of host-microbe interactions in farmed fish has the potential to contribute to sustainable global food supply. We have developed a novel gnotobiotic experimental system that includes the derivation of fertilized eggs of farmed and wild Atlantic salmon, and gnotobiotic husbandry of fry during the yolk sac stage. We used a microscopy-based approach to estimate the barrier function of the skin mucus layer and used this measurement to select the derivation procedure that minimized adverse effects on the skin mucosa. We also used this method to demonstrate that the mucus barrier was reduced in germ-free fry when compared to fry colonized with two different bacterial communities. This alteration in the mucus barrier was preceded by an increase in the number of cells containing neutral mucosubstances in the anterior segment of the body, but without changes in the number of cells containing acidic substances in any of the other segments studied along the body axis. In addition, we showed how the microbial status of the fry temporarily affected body size and the utilization of internal yolk stores during the yolk sac stage. Finally, we showed that the presence of bacterial communities associated with the fry, as well as their composition, affected the size of adipose tissue. Fry colonized with water from a lake had a larger visceral adipose tissue depot than both conventionally raised and germ-free fry. Together, our results show that this novel gnotobiotic experimental system is a useful tool for the study of host-microbe interactions in this species of aquacultural importance.


Assuntos
Microbiota , Salmo salar , Animais , Saco Vitelino , Mucosa , Aquicultura , Bactérias
4.
Front Physiol ; 12: 720639, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512390

RESUMO

Neuropeptide Y (NPY) is known as a potent orexigenic signal in vertebrates, but its role in Atlantic salmon has not yet been fully established. In this study, we identified three npy paralogs, named npya1, npya2, and npyb, in the Atlantic salmon genome. In silico analysis revealed that these genes are well conserved across the vertebrate's lineage and the mature peptide sequences shared at least 77% of identity with the human homolog. We analyzed mRNA expression of npy paralogs in eight brain regions of Atlantic salmon post-smolt, and the effect of 4 days of fasting on the npy expression level. Results show that npya1 was the most abundant paralog, and was predominantly expressed in the telencephalon, followed by the midbrain and olfactory bulb. npya2 mRNA was highly abundant in hypothalamus and midbrain, while npyb was found to be highest expressed in the telencephalon, with low mRNA expression levels detected in all the other brain regions. 4 days of fasting resulted in a significant (p < 0.05) decrease of npya1 mRNA expression in the olfactory bulb, increased npya2 mRNA expression in the midbrain and decreased npyb mRNA expression in the pituitary. In the hypothalamus, the vertebrate appetite center, expression of the npy paralogs was not significantly affected by feeding status. However, we observed a trend of increased npya2 mRNA expression (p = 0.099) following 4 days of fasting. Altogether, our findings provide a solid basis for further research on appetite and energy metabolism in Atlantic salmon.

5.
Biomolecules ; 10(6)2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498392

RESUMO

The influence of two light regimes, 16:8 h light/dark (LD 16:8) and 24:0 h light/dark (LD 24:0), in comparison to a usual hatchery light regime (HL), on the fatty acids content and weight gain in hatchery-reared underyearlings (at 0+ age) and yearlings (at 1+ age) of Atlantic salmon in the summer-autumn period was studied. The total lipids were analyzed by Folch method, the lipid classes using HPTLC, and the fatty acids of total lipids using GC. The increase in EPA and DHA observed in October in underyearlings and yearlings salmon (especially under LD 24:0) suggests they were physiologically preparing for overwintering. The changes in fatty acids and their ratios in juvenile Atlantic salmon can be used as biochemical indicators of the degree to which hatchery-reared fish are ready to smoltify. These associated with an increase in marine-type specific DHA and EPA, an increase in the 16:0/18:1(n-9) ratio, in correlation with a reduction in MUFAs (mainly 18:1(n-9)). These biochemical modifications, accompanied by fish weight gain, were more pronounced in October in yearlings exposed to continuous light (LD 24:0). The mortality rate was lower in experimental groups of underyearliings with additional lighting. Exposure to prolonged and continuous light did not affect yearlings mortality rate.


Assuntos
Peso Corporal , Ácidos Graxos/análise , Fotoperíodo , Salmo salar/crescimento & desenvolvimento , Salmo salar/metabolismo , Animais , Estações do Ano , Aumento de Peso
6.
Front Immunol ; 10: 2119, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552049

RESUMO

Bead-based multiplex immunoassays are promising tools for determination of the specific humoral immune response. In this study, we developed a multiplexed bead-based immunoassay for the detection of Atlantic salmon (Salmo salar) antibodies against Piscine orthoreovirus (PRV). Three different genotypes of PRV (PRV-1, PRV-2, and PRV-3) cause disease in farmed salmonids. The PRV outer capsid spike protein σ1 is predicted to be a host receptor binding protein and a target for neutralizing and protective antibodies. While recombinant σ1 performed poorly as an antigen to detect specific antibodies, N-terminal lipid modification of recombinant PRV-1 σ1 enabled sensitive detection of specific IgM in the bead-based assay. The specificity of anti-PRV-1 σ1 antibodies was confirmed by western blotting and pre-adsorption of plasma. Binding of non-specific IgM to beads coated with control antigens also increased after PRV infection, indicating a release of polyreactive antibodies. This non-specific binding was reduced by heat treatment of plasma. The same immunoassay also detected anti-PRV-3 σ1 antibodies from infected rainbow trout. In summary, a refined bead based immunoassay created by N-terminal lipid-modification of the PRV-1 σ1 antigen allowed sensitive detection of anti-PRV-1 and anti-PRV-3 antibodies from salmonids.


Assuntos
Anticorpos Antivirais/análise , Proteínas do Capsídeo/imunologia , Imunoensaio/métodos , Imunoglobulina M/análise , Infecções por Reoviridae/imunologia , Salmonidae/virologia , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Orthoreovirus/imunologia
7.
J Fish Dis ; 42(3): 391-396, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30659618

RESUMO

In 2017, a PCR-based survey for Piscine orthoreovirus-3 (PRV-3) was conducted in wild anadromous and non-anadromous salmonids in Norway. In seatrout (anadromous Salmo trutta L.), the virus was present in 16.6% of the fish and in 15 of 21 investigated rivers. Four of 221 (1.8%) Atlantic salmon (Salmo salar L.) from three of 15 rivers were also PCR-positive, with Ct-values indicating low amounts of viral RNA. All anadromous Arctic char (Salvelinus alpinus L.) were PCR-negative. Neither non-anadromous trout (brown trout) nor landlocked salmon were PRV-3 positive. Altogether, these findings suggest that in Norway PRV-3 is more prevalent in the marine environment. In contrast, PRV-3 is present in areas with intensive inland farming in continental Europe. PRV-3 genome sequences from Norwegian seatrout grouped together with sequences from rainbow trout (Oncorhynchus mykiss Walbaum) in Norway and Coho salmon (Oncorhynchus kisutch Walbaum) in Chile. At present, the origin of the virus remains unknown. Nevertheless, the study highlights the value of safeguarding native fish by upholding natural and artificial barriers that hinder introduction and spread, on a local or national scale, of alien fish species and their pathogens. Accordingly, further investigations of freshwater reservoirs and interactions with farmed salmonids are warranted.


Assuntos
Doenças dos Peixes/virologia , Orthoreovirus/isolamento & purificação , Infecções por Reoviridae/veterinária , Salmão , Animais , Aquicultura , Doenças dos Peixes/epidemiologia , Genoma Viral , Noruega , Oceanos e Mares , Orthoreovirus/genética , Infecções por Reoviridae/epidemiologia , Rios
9.
J Fish Dis ; 41(1): 139-145, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28745832

RESUMO

In 2016, the Norwegian health monitoring programme for wild salmonids conducted a real-time PCR-based screening for salmon gill poxvirus (SGPV) in anadromous Arctic char (Salvelinus alpinus L.), anadromous and non-anadromous Atlantic salmon (Salmo salar L.) and trout (Salmo trutta L.). SGPV was widely distributed in wild Atlantic salmon returning from marine migration. In addition, characteristic gill lesions, including apoptosis, were detected in this species. A low amount of SGPV DNA, as indicated by high Ct-values, was detected in anadromous trout, but only in fish cohabiting with SGPV-positive salmon. SGPV was not detected in trout and salmon from non-anadromous water courses, and thus seems to be primarily linked to the marine environment. This could indicate that trout are not a natural host for the virus. SGPV was not detected in Arctic char but, due to a low sample size, these results are inconclusive. The use of freshwater from anadromous water sources may constitute a risk of introducing SGPV to aquaculture facilities. Moreover, SGPV-infected Atlantic salmon farms will hold considerable potential for virus propagation and spillback to wild populations. This interaction should therefore be further investigated.


Assuntos
Doenças dos Peixes/virologia , Infecções por Poxviridae/veterinária , Poxviridae , Salmo salar/virologia , Truta/virologia , Animais , Apoptose , Doenças dos Peixes/epidemiologia , Água Doce , Brânquias/patologia , Brânquias/virologia , Noruega/epidemiologia , Infecções por Poxviridae/virologia , Água do Mar
10.
J Fish Dis ; 41(1): 11-26, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29064107

RESUMO

Cardiomyopathy syndrome (CMS) is a severe cardiac disease affecting Atlantic salmon Salmo salar L. The disease was first recognized in farmed Atlantic salmon in Norway in 1985 and subsequently in farmed salmon in the Faroe Islands, Scotland and Ireland. CMS has also been described in wild Atlantic salmon in Norway. The demonstration of CMS as a transmissible disease in 2009, and the subsequent detection and initial characterization of piscine myocarditis virus (PMCV) in 2010 and 2011 were significant discoveries that gave new impetus to the CMS research. In Norway, CMS usually causes mortality in large salmon in ongrowing and broodfish farms, resulting in reduced fish welfare, significant management-related challenges and substantial economic losses. The disease thus has a significant impact on the Atlantic salmon farming industry. There is a need to gain further basic knowledge about the virus, the disease and its epidemiology, but also applied knowledge from the industry to enable the generation and implementation of effective prevention and control measures. This review summarizes the currently available, scientific information on CMS and PMCV with special focus on epidemiology and factors influencing the development of CMS.


Assuntos
Cardiomiopatias/veterinária , Salmo salar , Animais , Aquicultura , Cardiomiopatias/epidemiologia , Cardiomiopatias/virologia , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/virologia , Infecções por Vírus de RNA/epidemiologia , Infecções por Vírus de RNA/veterinária , Infecções por Vírus de RNA/virologia , Totiviridae/genética
11.
Fish Shellfish Immunol ; 66: 207-216, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28501445

RESUMO

Amoebic gill disease (AGD), caused by the protozoan parasite Neoparamoeba perurans, is one of the most significant infectious diseases for Atlantic salmon (Salmo salar L.) mariculture. The present study investigated the humoral immune response (both local in gill mucus and systemic in serum) of farmed Atlantic salmon naturally infected with N. perurans in commercial sea pens, at two different stages of the disease and after freshwater treatment. Parameters analysed included activity of immune related enzymes (i.e. lysozyme, peroxidase, protease, anti-protease, esterase, alkaline phosphatase), IgM levels, and the terminal carbohydrate profile in the gill mucus. Overall, greater variations between groups were noted in the immune parameters determined in gill mucus than the equivalent in the serum. In gill mucus, IgM levels and peroxidase, lysozyme, esterase and protease activities were decreased in fish showing longer exposure time to the infection and higher disease severity, then showed a sequential increase after treatment. Results obtained highlight the capacity of gills to elicit a local response to the infection, indicate an impaired immune response at the later stages of the disease, and show partial reestablishment of the host immune status after freshwater treatment. In addition to providing data on the humoral response to AGD, this study increases knowledge on gill mucosal humoral immunity, since some of the parameters were analysed for the first time in gill mucus.


Assuntos
Amebíase/veterinária , Amebozoários/fisiologia , Doenças dos Peixes/imunologia , Imunidade Humoral , Salmo salar , Amebíase/imunologia , Amebíase/parasitologia , Animais , Doenças dos Peixes/parasitologia , Brânquias/imunologia , Brânquias/parasitologia , Estudos Longitudinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA