RESUMO
Indoleamine 2,3-dioxygenase (IDO) is a monomeric heme enzyme that catalyzes the oxidative cleavage of tryptophan (L-Trp) to form N-formyl-kynurenine. Similar to other heme proteins, IDO only binds to O2 when the heme iron is ferrous (FeII), thereby rendering the enzyme active. Thus, ascorbate (Asc, a reducing agent) and methylene blue (MB, an electron carrier) are commonly added to in vitro IDO assay systems. However, Asc and MB have been recently reported to significantly impact the measurement of the enzymatic parameters of vertebrate IDO. Aspergillus fumigatus is a filamentous fungus and the most common cause of invasive aspergillosis; it has three IDO genes (IDOα, IDOß, and IDOγ). The FeII-O2 IDOs of A. fumigatus, particularly FeII-O2 IDOγ, have relatively long half-lives in their autoxidation; however, the autoxidation was accelerated by Asc. Similar to vertebrate IDOs, Asc acted as a competitive (or mixed-competitive) inhibitor of the IDOs of A. fumigatus. A positive correlation (in the order of IDOγ > IDOß > IDOα) was observed between the inhibitory sensitivity of the IDOs to Asc and the facilitation of their autoxidation by Asc. The FeII-O2 IDO can repeat the dioxygenase reaction as long as it reacts with L-Trp; however, substrate-free FeII-O2 IDO is converted into inactive FeIII-IDO by autoxidation. Thus, L-Trp (which keeps the IDO active) competes with Asc (which inactivates IDO by accelerating autoxidation). This is probably why Asc, which is structurally quite different from L-Trp, appears to function as a competitive (or mixed-competitive) inhibitor of IDOs.
RESUMO
Limonene, a key volatile chemical product (VCP) commonly found in personal care and cleaning agents, is emerging as a major indoor air pollutant. Recently, elevated levels of reactive chlorine species during bleach cleaning and disinfection have been reported to increase indoor oxidative capacity. However, incomplete knowledge of the indoor transformation of limonene, especially the missing chlorine chemistry, poses a barrier to evaluating the environmental implications associated with the concurrent use of cleaning agents and disinfectants. Here, we investigated the reaction mechanisms of chlorinated limonene peroxy radicals (Cl-lim-RO2â¢), key intermediates in determining the chlorine chemistry of limonene, and toxicity of transformation products (TPs) using quantum chemical calculations and toxicology modeling. The results indicate that Cl-lim-RO2⢠undergoes a concerted autoxidation process modulated by RO2⢠and alkoxy radicals (ROâ¢), particularly emphasizing the importance of RO⢠isomerization. Following this generalized autoxidation mechanism, Cl-lim-RO2⢠can produce low-volatility precursors of secondary organic aerosols. Toxicological findings further indicate that the majority of TPs exhibit increased respiratory toxicity, mutagenicity, and eye/skin irritation compared to limonene, presenting an occupational hazard for indoor occupants. The proposed near-explicit reaction mechanism of chlorine-initiated limonene significantly enhances our current understanding of both RO2⢠and RO⢠chemistry while also highlighting the health risks associated with the concurrent use of cleaning agents and disinfectants.
Assuntos
Cloro , Desinfetantes , Limoneno , Cloro/química , Limoneno/química , Desinfetantes/química , Poluição do Ar em Ambientes Fechados , Detergentes/química , HumanosRESUMO
Dopamine-modified hyaluronic acid (DA-HA) has been initially developed as an efficient coating and adhesion material for industrial uses. However, the biological activity and safety of DA-HA in the brain have not been explored yet. Here, we report a series of evidence that DA-HA exhibits similar functionality as dopamine (DA), but with much lower toxicity arising from autoxidation. DA-HA shows very little autoxidation even after 48-h incubation. This is profoundly different from DA and its derivatives including l-DOPA, which all induce severe neuronal death after pre-autoxidation, indicating that autoxidation is the cause of neuronal death. Furthermore, in vivo injection of DA-HA induces significantly lower toxicity compared to 6-OHDA, a well-known oxidized and toxic form of DA, and alleviates the apomorphine-induced rotational behavior in the 6-OHDA animal model of Parkinson's disease. Our study proposes that DA-HA with DA-like functionalities and minimal toxicity has a great potential to treat DA-related disease.
Assuntos
Dopamina , Ácido Hialurônico , Oxirredução , Oxidopamina , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Dopamina/metabolismo , Dopamina/farmacologia , Animais , Camundongos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Modelos Animais de Doenças , Masculino , HumanosRESUMO
Heme-initiated decomposition of unsaturated fatty acid hydroperoxides creates alkoxyl radicals that propagate a complex series of reactions to hydroxy, keto, epoxy and aldehydic products. Herein, among the products from the hematin-catalyzed degradation of 9-hydroperoxy-linoleic acid (9-HPODE), we observed a double peak on normal-phase HPLC that resolved on RP-HPLC into equal proportions of two epoxy-allylic ketones with identical UV spectra. Their proton NMR spectra were also indistinguishable and consistent with 9,10-trans-epoxy-11E-13-keto- and 9-keto-10E-12,13-trans-epoxy-octadecenoic acids. Acid hydrolysis to the corresponding dihydroxy-ketones and GC-MS analysis identified the earlier eluting product on RP-HPLC as the 9,10-epoxy regio-isomer. Starting from the C9-hydroperoxide, recovery of the two epoxy-ketones in equal proportions suggests their formation from a common intermediate. Earlier work has proposed formation of a pseudo-symmetrical diepoxy radical (9,10-epoxy-11(â¢)-12,13-epoxy, derived from an epoxy allylic hydroperoxide precursor) in the carbon chain fragmentation leading to aldehydic products. This intermediate in pathways of alkoxyl radical reactions forms equal pairs of aldehydes, and now also a pair of epoxy-ketones, and based on mechanism the same products arise from either 9-HPODE or 13-HPODE. Our results point to the intermediacy of this diepoxy-carbinyl radical in the origin of at least two classes of linoleate peroxidation products, and it should be considered as a viable intermediate for homo-conjugated diene peroxidation in general. The reactions could contribute to the aldehydes and epoxy-ketones in tissues undergoing oxidative transformations of polyunsaturated fatty acids.
Assuntos
Compostos de Epóxi , Hemina , Cetonas , Ácido Linoleico , Peróxidos , Hemina/química , Peróxidos/química , Catálise , Ácido Linoleico/química , Compostos de Epóxi/química , Cetonas/química , Radicais Livres/química , Estrutura Molecular , Cromatografia Líquida de Alta PressãoRESUMO
CONTEXT: Phosphite esters, a class of organo-phosphorus compounds, are widely used as non-discolouring antioxidants in many polymeric products. Apart from normal radical scavenging, they prevent the splitting of hydroperoxides (ROOH), one of the initial products of autoxidation, from forming extremely reactive free radicals such as alkoxy (RO.) and hydroxy (.OH) radicals. The inherent molecular properties of antioxidants and the chemistry of their action are essential for researchers working in this field of science. Four organo-phosphorous compounds well-known for their antioxidant activity are selected here for theoretical analysis: Tri(m-methylphenyl) phosphite (m-TMPP), Tri(4-methyl-2,6-di-tert-butylphenyl) phosphite (TMdtBPP), Tri(allylphenyl) phosphite (TAPP) and Tri(mercaptobenzothiazoyl) thiophosphate (TMBTTP). The antioxidant activity exhibited by these compounds is theoretically verified, and the results are consistent with the available experimental data. Such theoretical predictions offer advantages in scientific research, particularly when researchers need to select certain molecules as antioxidants for experiments from a pool of molecular systems. METHODS: The chemical computations presented in this report are done in Gaussian 16 program package. The procedure of density functional theory (DFT) with the model chemistry B3LYP/6-31G(d,p) is used to generate computational data. Global reactivity indices, thermochemical data, Fukui functions, molecular electrostatic potential and NMR spectra are computed for the chosen molecular systems from their optimized geometries.
RESUMO
We present a new method for investigating the oxidation and emission behavior of air-permeable materials. Employing this method, a differentiated statement can be made about the extent to which critical volatile organic compounds (VOCs) such as formaldehyde, acetaldehyde, and acrolein are contained in the material as impurities or formed by thermo-oxidative degradation of the polymer matrix in the use phase. The parameters affecting methods of VOC analysis are reviewed and considered for the developed method. The molecular mechanisms of VOC formation are discussed. Toxicological implications of the reaction kinetics are put into context with international guidelines and threshold levels. This new method enables manufacturers of cellular materials not only to determine the oxidative stability of their products but also to optimize them specifically for higher durability. ENVIRONMENTAL IMPLICATION: Cellular materials are ubiquitous in the technosphere. They play a crucial role in various microenvironments such as automotive interiors, building insulation, and cushioning. These materials are susceptible to oxidative breakdown, leading to the release of formaldehyde, acetaldehyde, and acrolein. The ecotoxicological profiles of these compounds necessitate monitoring and regulation. The absence of reproducible and reliable analytical methods restricts research and development aimed at risk assessment and mitigation. This work significantly enhances the toolbox for optimizing the oxidative stability of any open-cell cellular material and evaluating these materials in terms of their temperature-dependent oxidation and emission behavior.
RESUMO
Organic molecules in the environment oxidatively degrade by a variety of free radical, microbial, and biogeochemical pathways. A significant pathway is heterogeneous autoxidation, in which degradation occurs via a network of carbon and oxygen centered free radicals. Recently, we found evidence for a new heterogeneous autoxidation mechanism of squalene that is initiated by hydroxyl (OH) radical addition to a carbon-carbon double bond and apparently propagated through pathways involving Criegee Intermediates (CI) produced from ß-hydroxy peroxy radicals (ß-OH-RO2â¢). It remains unclear, however, exactly how CI are formed from ß-OH-RO2â¢, which could occur by a unimolecular or bimolecular pathway. Combining kinetic models and multiphase OH oxidation measurements of squalene, we evaluate the kinetic viability of three mechanistic scenarios. Scenario 1 assumes that CI are formed by the unimolecular bond scission of ß-OH-RO2â¢, whereas Scenarios 2 and 3 test bimolecular pathways of ß-OH-RO2⢠to yield CI. Scenario 1 best replicates the entire experimental data set, which includes effective uptake coefficients vs [OH] as well as the formation kinetics of the major products (i.e., aldehydes and secondary ozonides). Although the unimolecular pathway appears to be kinetically viable, future high-level theory is needed to fully explain the mechanistic relationship between CI and ß-OH-RO2⢠in the condensed phase.
Assuntos
Oxirredução , Esqualeno , Esqualeno/química , Esqualeno/análogos & derivados , Cinética , Radical Hidroxila/química , Modelos QuímicosRESUMO
Effects of autoxidation and light irradiation on the oxidative stability were evaluated in rice oil from two brown rice flours including 'Baromi2' and 'Samkwang'. 'Baromi2' is a newly developed variety for rice flour production while 'Samkwang' is a typical rice variety as a control. Degree of oxidation and volatile profiles were evaluated in rice oil stored at 60 °C or under fluorescent light at 25 °C. The oil yields of 'Baromi2' and 'Samkang' were 2.63 and 1.78%, respectively whereas rice oil from 'Baromi2' had lower degree of unsaturation than 'Samkang'. Rice oil from 'Samkwang' possessed higher volatile compounds and more oxidized products during autoxidation whereas rice oil from 'Baromi2' had more oxidation products under light irradiation. Hexanal and 2-heptenal were major headspace volatile from heated rice oil while 2-heptenal and 1-octene-3-ol were main volatiles from light irradiated rice oil, which implies the involvement of singlet oxygen in rice oil during photooxidation.
RESUMO
Formation of highly oxygenated molecules (HOMs) such as organic peroxides (ROOR, ROOH, and H2O2) is known to degrade food and organic matter. Gas-phase unimolecular autoxidation and bimolecular RO2 + HO2/RO2 reactions are prominently renowned mechanisms associated with the formation of peroxides. However, the reaction pathways and conditions favoring the generation of peroxides in the aqueous phase need to be evaluated. Here, we identified bulk aqueous-phase ROOHs in varying organic precursors, including a laboratory model compound and monoterpene oxidation products. Our results show that formation of ROOHs is suppressed at enhanced oxidant concentrations but exhibits complex trends at elevated precursor concentrations. Furthermore, we observed an exponential increase in the yield of ROOHs when UV light with longer wavelengths was used in the experiment, comparing UVA, UVB, and UVC. Water-soluble organic compounds represent a significant fraction of ambient cloud-water components (up to 500 µM). Thus, the reaction pathways facilitating the formation of HOMs (i.e., ROOHs) during the aqueous-phase oxidation of water-soluble species add to the climate and health burden of atmospheric particulate matter.
Assuntos
Peróxido de Hidrogênio , Peróxidos , Material Particulado/análise , Oxidantes , Água , AerossóisRESUMO
The storage of dynamic information in hydrogels has aroused considerable interest regarding the multiple responsiveness of soft matter. Herein, we propose an electrical writing methodology to prepare dopamine (DA)-modified chitosan hydrogels with a dynamic information storage ability. A pH-responsive chitosan hydrogel medium was patterned by cathodic writing to in situ generate OH- in the writing area, at which dopamine underwent an auto-oxidation reaction in the locally alkaline environment to generate a dark color. The patterned information on the hydrogel can be encoded simply by electrical signals. The speed of information retrieval is positively correlated with the charge transfer during the electrical writing process, and the hiding of information is negatively correlated with the environmental stimulus (i.e., dopamine concentration, pH value, etc.). To showcase the versatility of this medium for information storage and the precision of the pattern, a quick response (QR) code is electronically written on dopamine-modified chitosan hydrogel and can be recognized programmably by a standard mobile phone. The results show that electrical regulation is a novel means to program the information storage process of hydrogels, which inspires future research on structural and functional information storage using stimulus-responsive hydrogels.
RESUMO
The autoxidation of tea catechins by dissolved oxygen proceeds in pH-neutral aqueous solutions, and the major products are oligomers. However, the reaction mechanisms have not been clarified. In this study, the autoxidation of (-)-epigallocatechin-3-O-gallate (1) was examined. The autoxidation with ß-cyclodextrin, which includes the A-ring of 1, significantly suppressed oligomer production and increased the formation of products generated by the oxidative cleavage of the B-ring, indicating the participation of the A-ring in the oligomerization. Further, the autoxidation of 1 in the presence of phloroglucinol, a mimic of the catechin A-ring, yielded products via the nucleophilic addition of phloroglucinol to the B-ring quinone of 1. These results indicated that the oxidative A-B ring couplings accounted for the major oligomerization mechanism.
Assuntos
Catequina , Catequina/análogos & derivados , Oxirredução , Catequina/química , Estrutura Molecular , Chá/químicaRESUMO
Substantial amounts of low-value light petroleum fractions and low-value heavy petroleum fractions, such as light naphtha, HVGO, and vacuum residue, are generated during the upgrading and refining of conventional and unconventional petroleum resources. The oil industry emphasizes economic diversification, aiming to produce high-value products from these low petroleum fractions through cost-effective and sustainable methods. Controlled autoxidation (oxidation with air) has the potential to produce industrially important oxygenates, including alcohols, and ketones, from the low-value light petroleum fractions. The produced alcohols can also be converted to olefin through catalytic dehydration. Following controlled autoxidation, the low-value heavy petroleum fractions can be utilized to produce value-added products, including carbon fiber precursors. It would reduce the production cost of a highly demandable product, carbon fiber. This review highlights the prospect of developing an alternative, sustainable, and economic method to produce value-added products from the low-value petroleum fractions following a controlled autoxidation approach.
RESUMO
The present study was performed to examine if catechol oxidation is higher in brains from patients with Parkinson's disease compared to age-matched controls, and if catechol oxidation increases with age. Brain tissue from Parkinson patients and age-matched controls was examined for oxidation of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and 3,4-dihydroxyphenylalanine (DOPA) to corresponding quinones, by measurement of 5-S-cysteinyl-dopamine, 5-S-cysteinyl-DOPAC and 5-S-cysteinyl-DOPA. The cysteinyl catechols are assumed to be biomarkers for DA, DOPAC and DOPA autoxidation and part of the biosynthetic pathway of neuromelanin. The concentrations of the 5-S-cysteinyl catechols were lower, whereas the 5-S-cysteinyl-DA/DA and 5-S-cysteinyl-DOPAC/DOPAC ratios tended to be higher in the Parkinson group compared to controls, which was interpreted as a higher degree of oxidation. High 5-S-cysteinyl-DA/DA ratios were found in the substantia nigra of a sub-population of the Parkinson group. Based on 5-S-cysteinyl-DA/DA ratios, dopamine oxidation was found to increase statistically significantly with age in the caudate nucleus, and non-significantly in the substantia nigra. In conclusion, the occurrence of 5-S-cysteinyl-DA, 5-S-cysteinyl-DOPAC and 5-S-cysteinyl-DOPA was demonstrated in dopaminergic brain areas of humans, a tendency for higher oxidation of DA in the Parkinson group compared to controls was observed as well as a statistically significant increase in DA oxidation with age. Possibly, autoxidation of DA and other catechols are involved in both normal and pathological ageing of the brain. This study confirms one earlier but small study, as well as complements one study on non-PD cases and one study on both PD cases and controls on NM bound or integrated markers or catechols.
Assuntos
Cisteinildopa/análogos & derivados , Dopamina , Doença de Parkinson , Humanos , Dopamina/metabolismo , Doença de Parkinson/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Di-Hidroxifenilalanina , Encéfalo/metabolismo , Catecóis/metabolismo , EnvelhecimentoRESUMO
The unsatisfactory power conversion efficiency (PCE) and long-term stability of tin perovskite solar cells (TPSCs) restrict its further development as alternatives to lead perovskite solar cells (LPSCs). Considerable research has focused on the negative impacts of O2 and H2 O, while discussions about degradation mechanism in an inert atmosphere remains insufficient. Herein, the light-induced autoxidation of tin perovskite in nitrogen atmosphere is revealed for the first time and the elastic lattice distortion is demonstrated as the crucial role of rapid degradation. The continuous injection of photons induces energy transfer from excited A-site cations to vibrating Sn-I framework, leading to the elastic deformation of perovskite lattice. Consequently, the over distorted Sn-I framework releases free iodine and further oxidizes Sn2+ in the form of molecular iodine. Through an appropriately designed light-dark cyclic test, a remarkable PCE of 14.41% is achieved based on (Cs0.025 (MA0.25 FA0.75 )0.975 ) 0.98 EDA0.01 SnI3 solar cells, which is the record of hybrid triple TPSCs so far. The findings unveil autoxidation as the crux of TPSCs' degradation in an inert atmosphere and suggest the possibility of reinforcing the tin perovskite lattice towards highly efficient and stable TPSCs.
RESUMO
Several oxylipins are potent lipid mediators and are discussed to be absorbed after oral intake. However, information about their concentrations in oils and processed foods are scarce. Here, we analyzed the concentrations of mono-, di- and multihydroxy- as well as epoxy-PUFA in virgin and refined oils as well as in different foods/meals. Oil refining causes hydrolysis of epoxy-PUFA and thus high dihydroxy-PUFA concentrations (e.g. 15,16-DiHODE 290 µg/g in refined vs. 15 µg/g in virgin rapeseed oil), making the epoxy-to-diol ratio a potential marker for refined oils. Low oxylipin levels were found in foods with high amounts of saturated fatty acids such as Hamburger patties (around 30 µg/g). High concentrations (up to 1200 µg/g, 80 mg per serving) and high oxylipin/precursor-PUFA ratios were found in fried falafel and processed foods such as vegetarian sausage/fish fingers. Our study provides first insights in the oxylipin concentrations of our daily food, indicating a relevant intake.
Assuntos
Ácidos Graxos , Oxilipinas , Animais , Oxilipinas/análise , Espectrometria de Massa com Cromatografia Líquida , Cromatografia Líquida , Espectrometria de Massas em Tandem , Suplementos Nutricionais/análise , Óleo de Brassica napus , RefeiçõesRESUMO
Immense gains in understanding of mechanisms and effects of lipid oxidation have been achieved in the nearly 90 years over which lipid oxidation has been an active research focus. Even so, the substantial questions still being raised about lipid oxidation in this special issue show clearly that missing pieces remain and must be considered for full accounting of this important reaction in any system. In this context, epoxides are spotlighted as a critical overlooked product of lipid autoxidation - underestimated in analysis, underestimated in presence as a functionally active and competitive intermediate and product of lipid oxidation, and underestimated in potential contributions to impact of lipid oxidation on other molecules and cell functions. Logical reasons for ignoring or not finding epoxides are offered in historical development of lipid oxidation knowledge. Reactions generating lipid epoxides in autoxidation are reviewed, limitations in detecting and tracking epoxides are outlined to explain why epoxides may not be detected when they should be present, and justifications for increased research and analysis of epoxides are argued. The main goal is to provide a context for recognizing epoxides as critical products that must be accounted for in determining the state rather than extent of lipid oxidation and in tracking its consequences in oils, foods, personal care products, and tissues. A secondary goal is to stimulate new research using contemporary analyses to fill in the gaps of knowledge about epoxide formation, structure, and reactions in lipid autoxidation.
RESUMO
The transition between its various oxidation states of Iron plays a crucial part in various chemical transformation of cells. Misregulation of iron can give rise to the iron-catalyzed reactive oxygen species disorder which have been linked to a variety of diseases, so it is crucial to monitor the labile iron pool in vivo for clinical diagnosis. According to iron autoxidation and hydrogen abstraction reaction, we reported a novel "off-on" fluorescent probe to response to ferrous (Fe2+) both in solutions and biological systems. The probe responds to Fe2+ with good selectivity toward competing metal ions. What's more, the probe presents significant fluorescent enhancement to Fe2+ in less than 1 min, making real-time sensing in biological system possible. The applications of the probe in bioimaging revealed the changes in labile iron pool by iron autoxidation or diverse stimuli.
RESUMO
Chlorogenic acid (CGA) and caffeic acid (CA) are two major phenolic acids in coffee. Though the International Agency for Research on Cancer has classified CA as a Group2B carcinogen, coffee consumption seems generally safe within the usual levels of intake and is more likely to benefit health than to harm it. We thus speculated that CGA may effectively suppress the carcinogenic potential of CA. In a molar ratio achievable in vivo, this study shows that CGA can inhibit (i) copper reduction caused by CA, (ii) CA oxidation caused by copper, (iii) the formation of hydroxyl radicals by CA and copper, and (iv) DNA damage induced by CA, quercetin or (-)-epigallocatechin-3-gallate in the presence of copper. CA tends to undergo autoxidation to produce hydrogen peroxide and quinone, which further reacts with proteins to form quinoproteins. This autoxidation at a tolerable level normally induces beneficial adaptive responses. This study shows that CGA is less efficient than CA in producing hydrogen peroxide and quinoprotein; however, together they synergistically produce hydrogen peroxide and quinoprotein in vitro at a molar ratio achievable in vivo. In conclusion, CGA can selectively regulate the prooxidant activities of CA depending on whether copper is involved or not. CGA could be viewed as an indispensable partner of CA in coffee, given its dual role in suppressing the carcinogenic potential of CA and boosting CA autoxidation which is beneficial for disease prevention.
Assuntos
Ácido Clorogênico , Café , Café/metabolismo , Ácido Clorogênico/análise , Peróxido de Hidrogênio , Cobre , Ácidos Cafeicos/análiseRESUMO
Traditional methods for determining superoxide dismutase (SOD) content and catalase (CAT) activity rely on measuring the absorbance of individual tissue (biological) samples using a cuvette and spectrophotometer, rather than cell cultures. Although there are kits available for SOD and CAT assays, these allow for high-throughput analysis of samples and might be too expensive for research laboratories in countries from the Global South, such as South Africa. This paper describes a simple and cost-effective method to determine SOD content and CAT activity in mammalian cell cultures following exposure to environmental chemical mixtures by measuring absorbance in 96-well microplates. Moreover, the equipment used for this method is considered standard for cell culture laboratories, while the reagents and consumables are easily obtainable.â¢Antioxidant enzyme levels can be measured in vitro in cell cultures.â¢The supernatant obtained can be used to determine protein concentration, SOD content, and CAT activity.â¢This method is simple and affordable, allowing for the analysis of multiple samples (up to 32 samples per microplate).
RESUMO
The poor stability of aspalathin in aqueous solutions is a major challenge in delivering a shelf-stable ready-to-drink (RTD) green rooibos iced tea. The kinetics of aspalathin degradation and the formation of eriodictyol glucoside isomers [(S/R)-6-ß-D-glucopyranosyleriodictyol and (S/R)-8-ß-D-glucopyranosyleriodictyol] in aqueous buffers were modeled to understand and predict aspalathin losses during heat processing. The effects of temperature and pH on the rate constants of aspalathin degradation and eriodictyol glucoside isomer formation were determined in a 0.1 M phosphate buffer with 5.7 mM citric acid. The zero-order model best described the reaction kinetics of aspalathin degradation and eriodictyol glucoside isomer formation. Increasing the temperature and pH increased the reaction rate constants. The activation energies of the reactions were much lower at pH 6 than at pH 4, indicating that pH affected the temperature dependence of the reactions. The 8-C-glucosyl eriodictyol derivatives (RE8G and SE8G) formed at much lower rates than the 6-C-glucosyl eriodictyol derivatives (RE6G and SE6G). The metal chelators, citric acid, citrate and EDTA, drastically reduced the reaction rate constants, indicating the catalytic role of metal ions in aspalathin autoxidation. The results of the study could assist manufacturers to improve the shelf life of rooibos RTD beverages by changing the formulation and adjusting heat processing conditions.