Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cells ; 13(15)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39120298

RESUMO

The establishment of neuronal polarity, involving axon specification and outgrowth, is critical to achieve the proper morphology of neurons, which is important for neuronal connectivity and cognitive functions. Extracellular factors, such as Wnts, modulate diverse aspects of neuronal morphology. In particular, non-canonical Wnt5a exhibits differential effects on neurite outgrowth depending upon the context. Thus, the role of Wnt5a in axon outgrowth and neuronal polarization is not completely understood. In this study, we demonstrate that Wnt5a, but not Wnt3a, promotes axon outgrowth in dissociated mouse embryonic cortical neurons and does so in coordination with the core PCP components, Prickle and Vangl. Unexpectedly, exogenous Wnt5a-induced axon outgrowth was dependent on endogenous, neuronal Wnts, as the chemical inhibition of Porcupine using the IWP2- and siRNA-mediated knockdown of either Porcupine or Wntless inhibited Wnt5a-induced elongation. Importantly, delayed treatment with IWP2 did not block Wnt5a-induced elongation, suggesting that endogenous Wnts and Wnt5a act during specific timeframes of neuronal polarization. Wnt5a in fibroblast-conditioned media can associate with small extracellular vesicles (sEVs), and we also show that these Wnt5a-containing sEVs are primarily responsible for inducing axon elongation.


Assuntos
Axônios , Polaridade Celular , Proteína Wnt-5a , Animais , Proteína Wnt-5a/metabolismo , Polaridade Celular/efeitos dos fármacos , Axônios/metabolismo , Axônios/efeitos dos fármacos , Camundongos , Via de Sinalização Wnt/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Crescimento Neuronal/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/citologia , Proteína Wnt3A/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética
2.
Elife ; 122023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099646

RESUMO

ZRANB1 (human Trabid) missense mutations have been identified in children diagnosed with a range of congenital disorders including reduced brain size, but how Trabid regulates neurodevelopment is not understood. We have characterized these patient mutations in cells and mice to identify a key role for Trabid in the regulation of neurite growth. One of the patient mutations flanked the catalytic cysteine of Trabid and its deubiquitylating (DUB) activity was abrogated. The second variant retained DUB activity, but failed to bind STRIPAK, a large multiprotein assembly implicated in cytoskeleton organization and neural development. Zranb1 knock-in mice harboring either of these patient mutations exhibited reduced neuronal and glial cell densities in the brain and a motor deficit consistent with fewer dopaminergic neurons and projections. Mechanistically, both DUB-impaired and STRIPAK-binding-deficient Trabid variants impeded the trafficking of adenomatous polyposis coli (APC) to microtubule plus-ends. Consequently, the formation of neuronal growth cones and the trajectory of neurite outgrowth from mutant midbrain progenitors were severely compromised. We propose that STRIPAK recruits Trabid to deubiquitylate APC, and that in cells with mutant Trabid, APC becomes hyperubiquitylated and mislocalized causing impaired organization of the cytoskeleton that underlie the neuronal and developmental phenotypes.


Assuntos
Polipose Adenomatosa do Colo , Neuritos , Animais , Criança , Humanos , Camundongos , Polipose Adenomatosa do Colo/metabolismo , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Axônios/metabolismo , Mutação , Neuritos/metabolismo
3.
J Neurochem ; 166(4): 678-691, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37439370

RESUMO

Peripheral nerves have limited regeneration ability following nerve injury. Applying growth factors with neurotrophic roles is beneficial for accelerating peripheral nerve regeneration. Here we show that after rat sciatic nerve injury, growth factor amphiregulin (AREG) is upregulated in Schwann cells of sciatic nerves. Elevated AREG stimulates the proliferation and migration of Schwann cells by activating ERK1/2 cascade. Schwann cell-secreted AREG further facilitates the outgrowth of neurites and the elongation of injured axons. Administration of AREG to injured sciatic nerves stimulates the proliferation of Schwann cells to replace lost cell population, encourages the migration of Schwann cells to form cell cords, and facilitates the regrowth of axons. Overall, our results identify AREG as an important neurotrophic factor and thus provide a promising therapeutic avenue towards peripheral nerve injury.


Assuntos
Axônios , Traumatismos dos Nervos Periféricos , Ratos , Animais , Anfirregulina/farmacologia , Anfirregulina/metabolismo , Axônios/metabolismo , Células de Schwann/metabolismo , Regeneração Nervosa/fisiologia , Nervo Isquiático/lesões , Traumatismos dos Nervos Periféricos/metabolismo , Proliferação de Células
4.
Cerebellum ; 22(2): 206-222, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35218524

RESUMO

Cerebellar hypoplasia and dysplasia encompass a group of clinically and genetically heterogeneous disorders frequently associated with neurodevelopmental impairment. The Neuron Navigator 2 (NAV2) gene (MIM: 607,026) encodes a member of the Neuron Navigator protein family, widely expressed within the central nervous system (CNS), and particularly abundant in the developing cerebellum. Evidence across different species supports a pivotal function of NAV2 in cytoskeletal dynamics and neurite outgrowth. Specifically, deficiency of Nav2 in mice leads to cerebellar hypoplasia with abnormal foliation due to impaired axonal outgrowth. However, little is known about the involvement of the NAV2 gene in human disease phenotypes. In this study, we identified a female affected with neurodevelopmental impairment and a complex brain and cardiac malformations in which clinical exome sequencing led to the identification of NAV2 biallelic truncating variants. Through protein expression analysis and cell migration assay in patient-derived fibroblasts, we provide evidence linking NAV2 deficiency to cellular migration deficits. In model organisms, the overall CNS histopathology of the Nav2 hypomorphic mouse revealed developmental anomalies including cerebellar hypoplasia and dysplasia, corpus callosum hypo-dysgenesis, and agenesis of the olfactory bulbs. Lastly, we show that the NAV2 ortholog in Drosophila, sickie (sick) is widely expressed in the fly brain, and sick mutants are mostly lethal with surviving escapers showing neurobehavioral phenotypes. In summary, our results unveil a novel human neurodevelopmental disorder due to genetic loss of NAV2, highlighting a critical conserved role of the NAV2 gene in brain and cerebellar development across species.


Assuntos
Encéfalo , Malformações do Sistema Nervoso , Animais , Feminino , Humanos , Camundongos , Cerebelo/anormalidades , Neurônios
5.
Mol Neurobiol ; 60(1): 329-341, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36261692

RESUMO

Transcription factors are master regulators of various cellular processes under diverse physiological and pathological conditions. Many transcription factors that are differentially expressed after injury to peripheral nerves play important roles in nerve regeneration. Considering that rapid and timely regrowth of injured axons is a prerequisite for successful target reinnervation, here, we compile transcription factors that mediates axon elongation, including axon growth suppressor Klf4 and axon growth promoters c-Myc, Sox11, STAT3, Atf3, c-Jun, Smad1, C/EBPδ, and p53. Besides neuronal changes, Schwann cell phenotype modulation is also critical for nerve regeneration. The activation of Schwann cells at early time points post injury provides a permissive microenvironment whereas the re-differentiation of Schwann cells at later time points supports myelin sheath formation. Hence, c-Jun and Sox2, two critical drivers for Schwann cell reprogramming, as well as Krox-20 and Sox10, two essential regulators of Schwann cell myelination, are reviewed. These transcription factors may serve as promising targets for promoting the functional recovery of injured peripheral nerves.


Assuntos
Bainha de Mielina , Traumatismos dos Nervos Periféricos , Humanos , Bainha de Mielina/patologia , Regeneração Nervosa/fisiologia , Células de Schwann/patologia , Nervos Periféricos , Regulação da Expressão Gênica , Axônios/patologia , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/patologia
6.
Front Mol Neurosci ; 15: 949096, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35979146

RESUMO

Neurons are highly polarized cells with significantly long axonal and dendritic extensions that can reach distances up to hundreds of centimeters away from the cell bodies in higher vertebrates. Their successful formation, maintenance, and proper function highly depend on the coordination of intricate molecular networks that allow axons and dendrites to quickly process information, and respond to a continuous and diverse cascade of environmental stimuli, often without enough time for communication with the soma. Two seemingly unrelated processes, essential for these rapid responses, and thus neuronal homeostasis and plasticity, are local mRNA translation and cytoskeletal reorganization. The axonal cytoskeleton is characterized by high stability and great plasticity; two contradictory attributes that emerge from the powerful cytoskeletal rearrangement dynamics. Cytoskeletal reorganization is crucial during nervous system development and in adulthood, ensuring the establishment of proper neuronal shape and polarity, as well as regulating intracellular transport and synaptic functions. Local mRNA translation is another mechanism with a well-established role in the developing and adult nervous system. It is pivotal for axonal guidance and arborization, synaptic formation, and function and seems to be a key player in processes activated after neuronal damage. Perturbations in the regulatory pathways of local translation and cytoskeletal reorganization contribute to various pathologies with diverse clinical manifestations, ranging from intellectual disabilities (ID) to autism spectrum disorders (ASD) and schizophrenia (SCZ). Despite the fact that both processes are essential for the orchestration of pathways critical for proper axonal and dendritic function, the interplay between them remains elusive. Here we review our current knowledge on the molecular mechanisms and specific interaction networks that regulate and potentially coordinate these interconnected processes.

7.
Biomed Rep ; 16(4): 30, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35251617

RESUMO

Injury to the peripheral nerve may lead to deficits in nerve function. An increase in the levels of free radicals plays a role in inhibition of nerve regeneration following damage. The aim of this study was to investigate the effects of lotus essential oil (LEO) on neurite outgrowth in vitro and nerve regeneration in vivo in a rat model of sciatic nerve crush injury. Gas chromatography-mass spectrometry analysis showed that the principal constituent of LEO was palmitic acid ethyl ester (25.12%). The radical scavenging activity of LEO was evaluated using the DPPH method, and was determined to be IC50=29.01±2.93 µg/ml. LEO-treated sensory neurons exhibited increased neurite outgrowth and upregulated levels of phospho-ERK. Sensory and motor functions were improved in rats treated with 50 and 100 mg/kg LEO, and this was accompanied by an increase in the number of neurons in the dorsal root ganglia, as well as an increase in the nerve axon diameters following nerve injury. Taken together, these results suggests that LEO may serve as a novel pharmacological option for the management of peripheral nerve injury.

8.
Cell Rep ; 35(5): 109053, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33951423

RESUMO

Long intergenic noncoding RNAs (lincRNAs) are critical regulators involved in diverse biological processes. However, the roles and related mechanisms of lincRNAs in axon development are largely unknown. Here we report an axon-enriched lincRNA regulating axon elongation, referred to as ALAE. Profiling of highly expressed lincRNAs detected abundant and enriched ALAE in the axons of dorsal root ganglion (DRG) neurons, where it locally promoted axon elongation. Mechanically, ALAE directly interacted with the KH3-4 domains of KH-type splicing regulatory protein (KHSRP) and impeded its association with growth-associated protein 43 (Gap43) mRNA. Knockdown of ALAE reduced the protein but not the mRNA level of GAP43 in the axons of DRG neurons. Furthermore, local disruption of the interaction between ALAE and KHSRP in the axon significantly inhibited Gap43 mRNA translation, impairing axon elongation. This study implies crucial roles of axon-enriched lincRNAs in spatiotemporal regulation of local translation during axon development.


Assuntos
Axônios/metabolismo , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Humanos
9.
Mol Med ; 27(1): 27, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33794764

RESUMO

BACKGROUND: Growth factors execute essential biological functions and affect various physiological and pathological processes, including peripheral nerve repair and regeneration. Our previous sequencing data showed that the mRNA coding for betacellulin (Btc), an epidermal growth factor protein family member, was up-regulated in rat sciatic nerve segment after nerve injury, implying the potential involvement of Btc during peripheral nerve regeneration. METHODS: Expression of Btc was examined in Schwann cells by immunostaining. The function of Btc in regulating Schwann cells was investigated by transfecting cultured cells with siRNA segment against Btc or treating cells with Btc recombinant protein. The influence of Schwann cell-secreted Btc on neurons was determined using a co-culture assay. The in vivo effects of Btc on Schwann cell migration and axon elongation after rat sciatic nerve injury were further evaluated. RESULTS: Immunostaining images and ELISA outcomes indicated that Btc was present in and secreted by Schwann cells. Transwell migration and wound healing observations showed that transfection with siRNA against Btc impeded Schwann cell migration while application of exogenous Btc advanced Schwann cell migration. Besides the regulating effect on Schwann cell phenotype, Btc secreted by Schwann cells influenced neuron behavior and increased neurite length. In vivo evidence supported the promoting role of Btc in nerve regeneration after both rat sciatic nerve crush injury and transection injury. CONCLUSION: Our findings demonstrate the essential roles of Btc on Schwann cell migration and axon elongation and imply the potential application of Btc as a regenerative strategy for treating peripheral nerve injury.


Assuntos
Betacelulina/uso terapêutico , Regeneração Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Células de Schwann/efeitos dos fármacos , Nervo Isquiático/efeitos dos fármacos , Animais , Betacelulina/genética , Betacelulina/metabolismo , Betacelulina/farmacologia , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Gânglios Espinais/citologia , Masculino , Neurônios/fisiologia , RNA Interferente Pequeno/genética , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Células de Schwann/metabolismo , Células de Schwann/fisiologia , Nervo Isquiático/lesões , Nervo Isquiático/fisiologia
10.
Dev Neurobiol ; 81(3): 300-309, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32302060

RESUMO

Throughout development, neurons are capable of integrating external and internal signals leading to the morphological changes required for neuronal polarization and axon growth. The first phase of axon elongation occurs during neuronal polarization. At this stage, membrane remodeling and cytoskeleton dynamics are crucial for the growth cone to advance and guide axon elongation. When a target is recognized, the growth cone collapses to form the presynaptic terminal. Once a synapse is established, the growth of the organism results in an increased distance between the neuronal cell bodies and their targets. In this second phase of axon elongation, growth cone-independent molecular mechanisms and cytoskeleton changes must occur to enable axon growth to accompany the increase in body size. While the field has mainly focused on growth-cone mediated axon elongation during development, tension driven axon growth remains largely unexplored. In this review, we will discuss in a critical perspective the current knowledge on the mechanisms guiding axon growth following synaptogenesis, with a particular focus on the putative role played by the axonal cytoskeleton.


Assuntos
Axônios , Citoesqueleto , Axônios/fisiologia , Cones de Crescimento , Microtúbulos/fisiologia , Neurônios/fisiologia
11.
Front Cell Dev Biol ; 8: 681, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903776

RESUMO

Reg-1α belongs to the Reg family of small, secreted proteins expressed in both pancreas and nervous system. Reg-1α is composed of two domains, an insoluble C-type lectin domain and a short soluble N-terminal peptide, which is released from the molecule upon proteolytic N-terminal processing, although the biological significance of this proteolysis remains unclear. We have previously shown that binding of Reg-1α to its receptor Extl3 stimulates axonal outgrowth. Reg-1α and Extl3 genes are expressed in the developing cortex but their expression decreases in adulthood, pointing to a possible function of this signaling system at the early developmental stages. Here, we demonstrate that recombinant Reg-1α increases migration and differentiation of cultured embryonic rat telencephalic progenitors via the activation of GSK-3ß activity. In vivo overexpression of Reg-1α by in utero electroporation, has a similar effect, favoring premature differentiation of cortical progenitors. Notably, the N-terminal soluble domain, but not the C-type lectin domain, is largely responsible for Reg-1α effects on cortical neuronal differentiation. We thus conclude that Reg-1α via its proteolytically generated N-terminal domain is required for basic development processes.

12.
Nano Lett ; 20(5): 3633-3641, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32208704

RESUMO

Several works reported increased differentiation of neuronal cells grown on graphene; however, the molecular mechanism driving axon elongation on this material has remained elusive. Here, we study the axonal transport of nerve growth factor (NGF), the neurotrophin supporting development of peripheral neurons, as a key player in the time course of axonal elongation of dorsal root ganglion neurons on graphene. We find that graphene drastically reduces the number of retrogradely transported NGF vesicles in favor of a stalled population in the first 2 days of culture, in which the boost of axon elongation is observed. This correlates with a mutual charge redistribution, observed via Raman spectroscopy and electrophysiological recordings. Furthermore, ultrastructural analysis indicates a reduced microtubule distance and an elongated axonal topology. Thus, both electrophysiological and structural effects can account for graphene action on neuron development. Unraveling the molecular players underneath this interplay may open new avenues for axon regeneration applications.


Assuntos
Axônios , Endossomos , Grafite , Fator de Crescimento Neural/fisiologia , Animais , Células Cultivadas , Camundongos , Regeneração Nervosa
13.
Tissue Eng Part A ; 26(11-12): 672-682, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32000627

RESUMO

One million estimated cases of spinal cord injury (SCI) have been reported in the United States and repairing an injury has constituted a difficult clinical challenge. The complex, dynamic, inhibitory microenvironment postinjury, which is characterized by proinflammatory signaling from invading leukocytes and lack of sufficient factors that promote axonal survival and elongation, limits regeneration. Herein, we investigated the delivery of polycistronic vectors, which have the potential to coexpress factors that target distinct barriers to regeneration, from a multiple channel poly(lactide-co-glycolide) (PLG) bridge to enhance spinal cord regeneration. In this study, we investigated polycistronic delivery of IL-10 that targets proinflammatory signaling, and NT-3 that targets axonal survival and elongation. A significant increase was observed in the density of regenerative macrophages for IL-10+NT-3 condition relative to conditions without IL-10. Furthermore, combined delivery of IL-10+NT-3 produced a significant increase of axonal density and notably myelinated axons compared with all other conditions. A significant increase in functional recovery was observed for IL-10+NT-3 delivery at 12 weeks postinjury that was positively correlated to oligodendrocyte myelinated axon density, suggesting oligodendrocyte-mediated myelination as an important target to improve functional recovery. These results further support the use of multiple channel PLG bridges as a growth supportive substrate and platform to deliver bioactive agents to modulate the SCI microenvironment and promote regeneration and functional recovery. Impact statement Spinal cord injury (SCI) results in a complex microenvironment that contains multiple barriers to regeneration and functional recovery. Multiple factors are necessary to address these barriers to regeneration, and polycistronic lentiviral gene therapy represents a strategy to locally express multiple factors simultaneously. A bicistronic vector encoding IL-10 and NT-3 was delivered from a poly(lactide-co-glycolide) bridge, which provides structural support that guides regeneration, resulting in increased axonal growth, myelination, and subsequent functional recovery. These results demonstrate the opportunity of targeting multiple barriers to SCI regeneration for additive effects.


Assuntos
Interleucina-10/fisiologia , Fatores de Crescimento Neural/fisiologia , Regeneração Nervosa/fisiologia , Animais , Western Blotting , Feminino , Imuno-Histoquímica , Interleucina-10/genética , Locomoção , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Fatores de Crescimento Neural/genética , Regeneração Nervosa/genética , Oligodendroglia/metabolismo , Receptor EphB3/metabolismo , Traumatismos da Medula Espinal
14.
Gene Expr Patterns ; 35: 119099, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32081718

RESUMO

Neuron navigator 2 (NAV2, RAINB1, POMFIL2, HELAD1, unc53H2) is essential for nervous system development. In the present study the spatial distribution of Nav2 transcript in mouse CNS during embryonic, postnatal and adult life is examined. Because multiple NAV2 proteins are predicted based on alternate promoter usage and RNA splicing, in situ hybridization was performed using probes designed to the 5' and 3' ends of the Nav2 transcript, and PCR products using primer sets spanning the length of the mRNA were also examined by real time PCR (qPCR). These studies support full-length Nav2 transcript as the predominant form in the wild-type mouse CNS. The developing cortex, hippocampus, thalamus, olfactory bulb, and granule cells (GC) within the cerebellum show the highest expression, with a similar staining pattern using either the 5'Nav2 or 3'Nav2 probe. Nav2 is expressed in GC precursors migrating over the cerebellar primordium as well as in the postmitotic premigratory cells of the external granule cell layer (EGL). It is expressed in the cornu ammonis (CA) and dentate gyrus (DG) throughout hippocampal development. In situ hybridization was combined with immunohistochemistry for Ki67, CTIP2 and Nissl staining to follow Nav2 transcript location during cortical development, where it is observed in neuroepithelial cells exiting the germinal compartments, as well as later in the cortical plate (CP) and developing cortical layers. The highest levels of Nav2 in all brain regions studied are observed in late gestation and early postnatal life which coincides with times when neurons are migrating and differentiating. A hypomorphic mouse that lacks the full-length transcript but expresses shorter transcript shows little staining in the CNS with either probe set except at the base of the cerebellum, where a shorter Nav2 transcript is detected. Using dual fluorescent probe in situ hybridization studies, these cells are identified as oligodendrocytes and are detected using both Olig1 and the 3'Nav2 probe. The identification of full-length Nav2 as the primary transcript in numerous brain regions suggests NAV2 could play a role in CNS development beyond that of its well-established role in the cerebellum.


Assuntos
Encéfalo/metabolismo , Proteínas do Tecido Nervoso/genética , Neurogênese , Animais , Encéfalo/citologia , Encéfalo/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo
15.
Front Bioeng Biotechnol ; 8: 597867, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425865

RESUMO

The directional alignment and outgrowth of neurons is a critical step of nerve regeneration and functional recovery of nerve systems, where neurons are exposed to a complex mechanical environment with subcellular structures such as stress fibers and focal adhesions acting as the key mechanical transducer. In this paper, we investigate the effects of cyclic stretch on neuron reorientation and axon outgrowth with a feasible stretching device that controls stretching amplitude and frequency. Statistical results indicate an evident frequency and amplitude dependence of neuron reorientation, that is, neurons tend to align away from stretch direction when stretching amplitude and frequency are large enough. On the other hand, axon elongation under cyclic stretch is very close to the reference case where neurons are not stretched. A mechanochemical framework is proposed by connecting the evolution of cellular configuration to the microscopic dynamics of subcellular structures, including stress fiber, focal adhesion, and microtubule, yielding theoretical predictions that are consistent with the experimental observations. The theoretical work provides an explanation of the neuron's mechanical response to cyclic stretch, suggesting that the contraction force generated by stress fiber plays an essential role in both neuron reorientation and axon elongation. This combined experimental and theoretical study on stretch-induced neuron reorientation may have potential applications in neurodevelopment and neuron regeneration.

16.
Acta Biomater ; 86: 312-322, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30610918

RESUMO

Directing the organization of cells into a tissue with defined architectures is one use of biomaterials for regenerative medicine. To this end, hydrogels are widely investigated as they have mechanical properties similar to native soft tissues and can be formed in situ to conform to a defect. Herein, we describe the development of porous hydrogel tubes fabricated through a two-step polymerization process with an intermediate microsphere phase that provides macroscale porosity (66.5%) for cell infiltration. These tubes were investigated in a spinal cord injury model, with the tubes assembled to conform to the injury and to provide an orientation that guides axons through the injury. Implanted tubes had good apposition and were integrated with the host tissue due to cell infiltration, with a transient increase in immune cell infiltration at 1 week that resolved by 2 weeks post injury compared to a gelfoam control. The glial scar was significantly reduced relative to control, which enabled robust axon growth along the inner and outer surface of the tubes. Axon density within the hydrogel tubes (1744 axons/mm2) was significantly increased more than 3-fold compared to the control (456 axons/mm2), with approximately 30% of axons within the tube myelinated. Furthermore, implantation of hydrogel tubes enhanced functional recovery relative to control. This modular assembly of porous tubes to fill a defect and directionally orient tissue growth could be extended beyond spinal cord injury to other tissues, such as vascular or musculoskeletal tissue. STATEMENT OF SIGNIFICANCE: Tissue engineering approaches that mimic the native architecture of healthy tissue are needed following injury. Traditionally, pre-molded scaffolds have been implemented but require a priori knowledge of wound geometries. Conversely, hydrogels can conform to any injury, but do not guide bi-directional regeneration. In this work, we investigate the feasibility of a system of modular hydrogel tubes to promote bi-directional regeneration after spinal cord injury. This system allows for tubes to be cut to size during surgery and implanted one-by-one to fill any injury, while providing bi-directional guidance. Moreover, this system of tubes can be broadly applied to tissue engineering approaches that require a modular guidance system, such as repair to vascular or musculoskeletal tissues.


Assuntos
Hidrogéis/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Traumatismos da Medula Espinal/fisiopatologia , Animais , Axônios/efeitos dos fármacos , Axônios/patologia , Cicatriz/patologia , Reagentes de Ligações Cruzadas/química , Feminino , Membro Posterior/efeitos dos fármacos , Membro Posterior/fisiologia , Locomoção/efeitos dos fármacos , Maleimidas/química , Camundongos Endogâmicos C57BL , Microesferas , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Neuroglia/patologia , Polietilenoglicóis/química , Polimerização , Porosidade , Traumatismos da Medula Espinal/patologia , Alicerces Teciduais/química
17.
Micromachines (Basel) ; 10(1)2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30586941

RESUMO

We have developed a cast microfluidic chip for concentration gradient generation that contains a thin (~5 µm² cross-sectional area) microchannel. The diffusion of diffused 185 nm ultraviolet (UV) light from an inexpensive low-pressure mercury lamp exposed a layer of the SU-8 photoresist from the backside and successfully patterned durable 2 µm-high microchannel mold features with smooth bell-shaped sidewalls. The thin channel had appropriate flow resistance and simultaneously satisfied both the rapid introduction of test substance and long-term maintenance of gradients. The average height and width at the half height of the channel, defined by a 2 µm-wide line mask pattern, were 2.00 ± 0.19 µm, and 2.14 ± 0.89 µm, respectively. We were able to maintain the concentration gradient of Alexa Fluor 488 fluorescent dye inside or at the exit of the thin microchannel in an H-shaped microfluidic configuration for at least 48 h. We also demonstrated the cultivation of chick embryo dorsal root ganglion neuronal cells for 96 h, and the directional elongation of axons under a nerve growth factor concentration gradient.

18.
Biochem Biophys Res Commun ; 507(1-4): 389-394, 2018 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-30448058

RESUMO

Microtubule severing is essential for reorganization of microtubules during neuronal migration and process elongation. Katanin is a microtubule-severing enzyme, of which the major catalytic subunits are katanin A1 (KATNA1) and katanin A-like 1 (KATNAL1). The domain organization of the two subunits are almost the same; however, little is known about their functional difference. Here, we compared the expression pattern, microtubule-severing activity, intracellular degradation and knockdown phenotype in cultured cells of the two subunits. While KATNA1 was expressed ubiquitously among tissues of young adult mice, KATNAL1 was highly expressed in the brain and the testis. Neurons expressed almost only KATNAL1. When introduced into Neuro2a cells, KATNAL1 showed higher microtubule-severing activity. Cycloheximide chase analysis revealed that KATNAL1 is more stable in cells. To elucidate which part of the molecules are responsible for these characteristics, we generated chimeric molecules by swapping the amino-terminal and carboxyl-terminal halves between the two subunits. Experiments using these chimeras revealed that the amino-terminal half region is the determinant for their characteristics. Furthermore, KATNAL1 knockdown in Neuro2a cells resulted in enhancement of process elongation, while KATNA1 knockdown showed no effect. These data suggest that more active and more stable katanin subunit, KATNAL1, plays more important role in process elongation.


Assuntos
Katanina/genética , Neurônios/metabolismo , Animais , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Espaço Intracelular/metabolismo , Katanina/metabolismo , Masculino , Camundongos Endogâmicos ICR , Microtúbulos/metabolismo , Neuritos/metabolismo , Estabilidade Proteica , Proteólise
19.
Tissue Eng Part A ; 24(21-22): 1588-1602, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30215293

RESUMO

IMPACT STATEMENT: Spinal cord injury (SCI) results in loss of tissue innervation below the injury. Spinal progenitors have a greater ability to repair the damage and can be injected into the injury, but their regenerative potential is hampered by their poor survival after transplantation. Biomaterials can create a cell delivery platform and generate a more hospitable microenvironment for the progenitors within the injury. In this work, polymeric bridges are used to deliver embryonic spinal progenitors to the injury, resulting in increased progenitor survival and subsequent regeneration and functional recovery, thus demonstrating the importance of combined therapeutic approaches for SCI.


Assuntos
Axônios/fisiologia , Células-Tronco Neurais/metabolismo , Regeneração , Traumatismos da Medula Espinal/terapia , Transplante de Células-Tronco , Aloenxertos , Animais , Axônios/patologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Transgênicos , Células-Tronco Neurais/patologia , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia
20.
Adv Exp Med Biol ; 1006: 83-101, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28865016

RESUMO

Drebrin is localized in actin-rich regions of neuronal and non-neuronal cells. In mature neurons, its localization is strictly restricted to the postsynaptic sites. In order to understand the function of drebrin in cells, many studies have been performed to examine the effect of overexpression or knocking down of drebrin in various cell types, including neurons, myoblasts, kidney cells, and intestinal epithelial cells. In most cases alteration of cell shape and impairment or facilitation of actin-based activities of these cells were observed. Interestingly, overexpression of drebrin in matured neurons results in the alteration in dendritic spine morphology. Further studies have shown alteration in the localization of postsynaptic receptors and even changes in synaptic transmission caused by drebrin overexpression or depletion in neurons. These drebrin's effects are thought to come from drebrin's actin-cross-linking activity or competitive binding to actin against tropomyosin, fascin, and α-actinin. Furthermore, drebrin binds to various molecules, such as homer, EB3, and cell-cell junctional proteins, indicating that drebrin is a multifunctional cytoskeletal regulator.


Assuntos
Actinas/metabolismo , Forma Celular/genética , Neuropeptídeos/metabolismo , Transmissão Sináptica/genética , Actinas/genética , Animais , Axônios/metabolismo , Movimento Celular/genética , Citoesqueleto/metabolismo , Dendritos/metabolismo , Espinhas Dendríticas/genética , Espinhas Dendríticas/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Neuropeptídeos/genética , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA