Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39125749

RESUMO

Despite successful vaccination efforts, the emergence of new SARS-CoV-2 variants poses ongoing challenges to control COVID-19. Understanding humoral responses regarding SARS-CoV-2 infections and their impact is crucial for developing future vaccines that are effective worldwide. Here, we identified 41 immunodominant linear B-cell epitopes in its spike glycoprotein with an SPOT synthesis peptide array probed with a pool of serum from hospitalized COVID-19 patients. The bioinformatics showed a restricted set of epitopes unique to SARS-CoV-2 compared to other coronavirus family members. Potential crosstalk was also detected with Dengue virus (DENV), which was confirmed by screening individuals infected with DENV before the COVID-19 pandemic in a commercial ELISA for anti-SARS-CoV-2 antibodies. A high-resolution evaluation of antibody reactivity against peptides representing epitopes in the spike protein identified ten sequences in the NTD, RBD, and S2 domains. Functionally, antibody-dependent enhancement (ADE) in SARS-CoV-2 infections of monocytes was observed in vitro with pre-pandemic Dengue-positive sera. A significant increase in viral load was measured compared to that of the controls, with no detectable neutralization or considerable cell death, suggesting its role in viral entry. Cross-reactivity against peptides from spike proteins was observed for the pre-pandemic sera. This study highlights the importance of identifying specific epitopes generated during the humoral response to a pathogenic infection to understand the potential interplay of previous and future infections on diseases and their impact on vaccinations and immunodiagnostics.


Assuntos
Anticorpos Antivirais , COVID-19 , Reações Cruzadas , Vírus da Dengue , Epitopos de Linfócito B , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Glicoproteína da Espícula de Coronavírus/imunologia , Humanos , Reações Cruzadas/imunologia , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/virologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Epitopos de Linfócito B/imunologia , Vírus da Dengue/imunologia , Dengue/imunologia , Dengue/virologia , Anticorpos Facilitadores/imunologia , Pandemias , Epitopos Imunodominantes/imunologia
2.
Vet Microbiol ; 298: 110200, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39173399

RESUMO

Porcine epidemic diarrhea virus (PEDV) is the pathogen of Porcine epidemic diarrhea (PED) and can mainly cause acute diarrhea, vomiting, dehydration and high mortality in neonatal piglets. The nucleocapsid (N) protein of PEDV is a highly conserved structural protein. In this study, 6-8-week-old BALB/c mice were immunized with purified PEDV, and three monoclonal antibodies (mAbs) against the PEDV N protein were generated, named 3C6,4F8,4C9. Among them, three new B cell epitopes, 235IGENPDKL242, 12KRVPLSLY19, 372DAFKTGNA380 were firstly identified in the viral N-protein. Among them, 4F8 and 4C9 had IgG1 isotype with Kappa light chain, while 3C6 had IgG2a isotype with Kappa light chain. Three monoclonal antibodies (mAbs) demonstrated specific reactivity with PEDV as evidenced by Western blot and indirect immunofluorescence assay. By studying the interaction between the mAbs and the N protein, we can gain insights into the protein's conformation and functional regions. This information will help develop fast and accurate PEDV diagnostic methods.

3.
Pathogens ; 13(8)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39204306

RESUMO

African swine fever virus (ASFV), a highly virulent double-stranded DNA virus, poses a significant threat to global pig farming, with mortality rates in domestic pigs reaching up to 100%. Originating in Kenya in 1921, ASFV has since proliferated to Western Europe, Latin America, Eastern Europe, and most recently China in 2018, resulting in substantial global agricultural losses. Antigenic epitopes, recognized by the immune system's T cells and B cells, are pivotal in antiviral immune responses. The identification and characterization of these antigenic epitopes can offer invaluable insights into the immune response against ASFV and aid in the development of innovative immunotherapeutic strategies. Vaccine adjuvants, substances that amplify the body's specific immune response to antigens, also play a crucial role. This review provides an overview of the progress in studying T/B-cell epitopes in ASFV proteins and ASFV vaccine adjuvants, highlighting their role in the immune response and potential use in new vaccine development.

4.
Gastroenterology ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39173722

RESUMO

BACKGROUND AND AIMS: Inflammatory bowel disease is a chronic manifestation of dysregulated immune response to the gut microbiota in genetically pre-disposed hosts. Nearly half of patients with Crohn's disease (CD) develop selective serum IgG response to flagellin proteins expressed by bacteria in the Lachnospiraceae family. This study aimed to identify the binding epitopes of these IgG antibodies and assess their relevance in CD and in homeostasis. METHODS: Sera from an adult CD cohort, a treatment-naïve pediatric CD cohort, and three independent non-IBD infant cohorts were analyzed using novel techniques including a flagellin peptide microarray and a flagellin peptide cytometric bead array. RESULTS: A dominant B cell peptide epitope in CD patients was identified, locating in the highly conserved "hinge region" between the D0 and D1 domains at the amino-terminus of Lachnospiraceae flagellins. Elevated serum IgG reactivity to the hinge peptide was strongly associated with incidence of CD and the development of disease complications in children with CD up to five years in advance. Notably, high levels of serum IgG to the hinge epitope were also found in most infants from 3 different geographic regions (Uganda, Sweden, and the USA) at one year of age, which decrements rapidly afterwards. CONCLUSIONS: These findings identified a distinct subset of CD patients, united by a shared reactivity to a dominant commensal bacterial flagellin epitope that may represent failure of a homeostatic response to the gut microbiota beginning in infancy.

5.
Cells ; 13(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38994930

RESUMO

B cell epitopes must be visible for recognition by cognate B cells and/or antibodies. Here, we studied that premise for known linear B cell epitopes that were collected from the Immune Epitope Database as being recognized by humans during microbial infections. We found that the majority of such known B cell epitopes are virus-specific linear B cell epitopes (87.96%), and most are located in antigens that remain enclosed in host cells and/or virus particles, preventing antibody recognition (18,832 out of 29,225 epitopes). Moreover, we estimated that only a minority (32.72%) of the virus-specific linear B cell epitopes that are found in exposed viral regions (e.g., the ectodomains of envelope proteins) are solvent accessible on intact antigens. Hence, we conclude that ample degradation/processing of viral particles and/or infected cells must occur prior to B cell recognition, thus shaping the B cell epitope repertoire.


Assuntos
Epitopos de Linfócito B , Epitopos de Linfócito B/imunologia , Humanos , Linfócitos B/imunologia , Antígenos Virais/imunologia , Proteólise , Vírus/imunologia
6.
J Vet Med Sci ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39069487

RESUMO

The inactivated vaccine is effective in controlling foot-and-mouth disease (FMD), but it has drawbacks such as the need for a biosafety level 3 laboratory facility to handle live foot-and-mouth disease virus (FMDV), high production costs, and biological safety risks. In response to these challenges, we developed a new recombinant protein vaccine (2BT-pIgG-Fc) containing porcine IgG-Fc to enhance protein stability in the body. This vaccine incorporates two-repeat B-cell and one-single T-cell epitope derived from O/Jincheon/SKR/2014. Our study confirmed that 2BT-pIgG-Fc and a commercial FMDV vaccine induced FMDV-specific antibodies in guinea pigs at 28 days post-vaccination. The percentage inhibition (PI) value of 2BT-pIgG-Fc was 90.43%, and the commercial FMDV vaccine was 81.75%. The PI value of 2BT-pIgG-Fc was 8.68% higher than that of commercial FMDV vaccine. In pigs, the primary target animals for FMDV, all five individuals produced FMDV-specific antibodies 42 days after vaccination with 2BT-pIgG-Fc. Furthermore, serum from 2BT-pIgG-Fc-vaccinated pigs exhibited neutralizing ability against FMDV infection. Intriguingly, the 2BT-pIgG-Fc recombinant demonstrated FMDV-specific antibody production rates and neutralization efficiency similar to commercial inactivated vaccines. This study illustrates the potential to enhance vaccine efficacy by strategically combining well-known antigenic domains in the development of recombinant protein-based vaccines.

7.
Front Microbiol ; 15: 1373687, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974027

RESUMO

Background: Orf, also known as contagious ecthyma (CE), is an acute, contagious zoonotic disease caused by the orf virus (ORFV). The F1L protein is a major immunodominant protein on the surface of ORFV and can induce the production of neutralizing antibodies. Methods: The prokaryotic expression system was used to produce the recombinant F1L protein of ORFV, which was subsequently purified and used to immunize mice. Positive hybridoma clones were screened using an indirect enzyme-linked immunosorbent assay (ELISA). The reactivity and specificity of the monoclonal antibody (mAb) were verified through Western blot and indirect immunofluorescence (IFA). The linear antigenic epitope specific to the mAb was identified through Western blot, using truncated F1L proteins expressed in eukaryotic cells. A multiple sequence alignment of the ORFV reference strains was performed to evaluate the degree of conservation of the identified epitope. Results: After three rounds of subcloning, a mAb named Ba-F1L was produced. Ba-F1L was found to react with both the exogenously expressed F1L protein and the native F1L protein from ORFV-infected cells, as confirmed by Western blot and IFA. The mAb recognized the core epitope 103CKSTCPKEM111, which is highly conserved among various ORFV strains, as shown by homologous sequence alignment. Conclusion: The mAb produced in the present study can be used as a diagnostic reagent for detecting ORFV and as a basic tool for exploring the mechanisms of orf pathogenesis. In addition, the identified linear epitope may be valuable for the development of epitope-based vaccines.

8.
Anaerobe ; : 102884, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39059623

RESUMO

OBJECTIVE: Fusobacterium necrophorum can casuse Lemierre's syndrome in humans and a range of illnesses, including foot rot and liver abscesses, in animals. The main virulence factor released by F. necrophorum is leukotoxin, which has been shown to have a strong correlation with the severity of the disease. Leukotoxin is commonly employed as the key antigen in the formulation of subunit vaccines. Therefore, identification of the B-cell epitope of F. necrophorum leukotoxin is necessary. METHODS: In this research, we utilized lymphocyte hybridoma technology to develop a monoclonal antibody (mAb), 3D7, targeting the F. necrophorum leukotoxin protein. Identification of B-cell epitopes recognized by 3D7 mAb through Western blot, ELISA and dot blot using leukotoxin-truncated recombinant proteins and peptides, and through SWISS-MODEL homology modeling and PyMOL visualization. RESULTS: The 3D7 mAb was identified as belonging to the IgG1 subclass with a κ-chain light chain. It demonstrated reactivity with the natural leukotoxin. The results showed that the 3D7 mAb recognizes a B-cell epitope of the F. necrophorum leukotoxin protein, I2168SSFGVGV2175 (EP-3D7). Sequence comparison analysis showed that EP-3D7 was highly conserved in F. necrophorum strains, but less conserved in other bacteria, indicating the specificity of EP-3D7. EP-3D7 is present on the surface of leukotoxin proteins in a ß-folded manner. CONCLUSIONS: In summary, these results establish EP-3D7 as a conserved antigenic epitope of F. necrophorum leukotoxin. It could be valuable in the development of vaccines and diagnostic reagents for F. necrophorum epitopes.

9.
Biomed Res Int ; 2024: 4066641, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962403

RESUMO

The zoonotic viruses pose significant threats to public health. Nipah virus (NiV) is an emerging virus transmitted from bats to humans. The NiV causes severe encephalitis and acute respiratory distress syndrome, leading to high mortality rates, with fatality rates ranging from 40% to 75%. The first emergence of the disease was found in Malaysia in 1998-1999 and later in Bangladesh, Cambodia, Timor-Leste, Indonesia, Singapore, Papua New Guinea, Vietnam, Thailand, India, and other South and Southeast Asian nations. Currently, no specific vaccines or antiviral drugs are available. The potential advantages of epitope-based vaccines include their ability to elicit specific immune responses while minimizing potential side effects. The epitopes have been identified from the conserved region of viral proteins obtained from the UniProt database. The selection of conserved epitopes involves analyzing the genetic sequences of various viral strains. The present study identified two B cell epitopes, seven cytotoxic T lymphocyte (CTL) epitopes, and seven helper T lymphocyte (HTL) epitope interactions from the NiV proteomic inventory. The antigenic and physiological properties of retrieved protein were analyzed using online servers ToxinPred, VaxiJen v2.0, and AllerTOP. The final vaccine candidate has a total combined coverage range of 80.53%. The tertiary structure of the constructed vaccine was optimized, and its stability was confirmed with the help of molecular simulation. Molecular docking was performed to check the binding affinity and binding energy of the constructed vaccine with TLR-3 and TLR-5. Codon optimization was performed in the constructed vaccine within the Escherichia coli K12 strain, to eliminate the danger of codon bias. However, these findings must require further validation to assess their effectiveness and safety. The development of vaccines and therapeutic approaches for virus infection is an ongoing area of research, and it may take time before effective interventions are available for clinical use.


Assuntos
Simulação por Computador , Infecções por Henipavirus , Vírus Nipah , Vírus Nipah/imunologia , Humanos , Infecções por Henipavirus/imunologia , Infecções por Henipavirus/prevenção & controle , Vacinas Virais/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Biologia Computacional/métodos , Epitopos de Linfócito T/imunologia , Vacinação , Simulação de Acoplamento Molecular , Proteínas Virais/imunologia , Proteínas Virais/química , Proteínas Virais/genética , Animais
10.
Methods Mol Biol ; 2821: 9-32, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38997477

RESUMO

B-cell epitope prediction is key to developing peptide-based vaccines and immunodiagnostics along with antibodies for prophylactic, therapeutic and/or diagnostic use. This entails estimating paratope binding affinity for variable-length peptidic sequences subject to constraints on both paratope accessibility and antigen conformational flexibility, as described herein for the HAPTIC2/HEPTAD User Toolkit (HUT). HUT comprises the Heuristic Affinity Prediction Tool for Immune Complexes 2 (HAPTIC2), the HAPTIC2-like Epitope Prediction Tool for Antigen with Disulfide (HEPTAD) and the HAPTIC2/HEPTAD Input Preprocessor (HIP). HIP enables tagging of residues (e.g., in hydrophobic blobs, ordered regions and glycosylation motifs) for exclusion from downstream analyses by HAPTIC2 and HEPTAD. HAPTIC2 estimates paratope binding affinity for disulfide-free disordered peptidic antigens (by analogy between flexible-ligand docking and protein folding), from terms attributed to compaction (in view of sequence length, charge and temperature-dependent polyproline-II helical propensity), collapse (disfavored by residue bulkiness) and contact (with glycine and proline regarded as polar residues that hydrogen bond with paratopes). HEPTAD analyzes antigen sequences that each contain two cysteine residues for which the impact of disulfide pairing is estimated as a correction to the free-energy penalty of compaction. All of HUT is freely accessible online ( https://freeshell.de/~badong/hut.htm ).


Assuntos
Epitopos de Linfócito B , Peptídeos , Software , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Peptídeos/química , Peptídeos/imunologia , Humanos , Mapeamento de Epitopos/métodos , Ligação Proteica , Biologia Computacional/métodos
11.
Heliyon ; 10(13): e32811, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39035518

RESUMO

Cyprinid herpesvirus 2 (CyHV-2) is the pathogen of herpesviral hematopoietic necrosis (HVHN), causing the severe economic losses in farmed gibel carp (Carassius gibelio). Further exploration of the genome structure and potential molecular pathogenesis of CyHV-2 through complete genome sequencing, comparative genomics, and molecular characterization is required. Herein, the genome of a CyHV-2 YC-01 strain isolated from diseased gibel carp collected in Yancheng, Jiangsu Province, China was sequenced, then we analyzed the genomic structure, genetic properties, and molecular characterization. First, the complete YC-01 genome comprises 275,367 bp without terminal repeat (TR) regions, with 151 potential open reading frames (ORFs). Second, compared with other representative published strains of the genus Cyvirus, several evident variations are found in YC-01, particularly the orientation and position of ORF25 and ORF25B. ORF107 and ORF156 are considered as potential molecular genetic markers for YC-01. ORF55 (encoding thymidine kinase) might be used to distinguish YC-01 and ST-J1 from other CyHV-2 isolates. Third, phylogenetically, YC-01 clusters with the members of the genus Cyvirus (together with the other six CyHV-2 isolates). Fourth, 43 putative proteins are predicted to be functional and are mainly divided into five categories. Several conserved motifs are found in nucleotide, amino acid, and promoter sequences including cis-acting elements identification of YC-01. Finally, the potential virulence factors and linear B cell epitopes of CyHV-2 are predicted to supply possibilities for designing novel vaccines rationally. Our results provide insights for further understanding genomic structure, genetic evolution, and potential molecular mechanisms of CyHV-2.

12.
Comput Struct Biotechnol J ; 23: 2695-2707, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39035832

RESUMO

Background: The accurate computational prediction of B cell epitopes can vastly reduce the cost and time required for identifying potential epitope candidates for the design of vaccines and immunodiagnostics. However, current computational tools for B cell epitope prediction perform poorly and are not fit-for-purpose, and there remains enormous room for improvement and the need for superior prediction strategies. Results: Here we propose a novel approach that improves B cell epitope prediction by encoding epitopes as binary positional permutation vectors that represent the position and structural properties of the amino acids within a protein antigen sequence that interact with an antibody. This approach supersedes the traditional method of defining epitopes as scores per amino acid on a protein sequence, where each score reflects each amino acids predicted probability of partaking in a B cell epitope antibody interaction. In addition to defining epitopes as binary positional permutation vectors, the approach also uses the 3D macrostructure features of the unbound protein structures, and in turn uses these features to train another deep learning model on the corresponding antibody-bound protein 3D structures. This enables the algorithm to learn the key structural and physiochemical features of the unbound protein and embedded epitope that initiate the antibody binding process helping to eliminate "induced fit" biases in the training data. We demonstrate that the strategy predicts B cell epitopes with improved accuracy compared to the existing tools. Additionally, we show that this approach reliably identifies the majority of experimentally verified epitopes on the spike protein of SARS-CoV-2 not seen by the model during training and generalizes in a very robust manner on dissimilar data not seen by the model during training. Conclusions: With the approach described herein, a primary protein sequence and a query positional permutation vector encoding a putative epitope is sufficient to predict B cell epitopes in a reliable manner, potentially advancing the use of computational prediction of B cell epitopes in biomedical research applications.

13.
Virus Res ; 346: 199412, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838820

RESUMO

African swine fever virus (ASFV) is a large double-stranded DNA virus with a complex structural architecture and encodes more than 150 proteins, where many are with unknown functions. E184L has been reported as one of the immunogenic ASFV proteins that may contribute to ASFV pathogenesis and immune evasion. However, the antigenic epitopes of E184L are not yet characterized. In this study, recombinant E184L protein was expressed in prokaryotic expression system and four monoclonal antibodies (mAbs), designated as 1A10, 2D2, 3H6, and 4C10 were generated. All four mAbs reacted specifically with ASFV infected cells. To identify the epitopes of the mAbs, a series of overlapped peptides of E184L were designed and expressed as maltose binding fusion proteins. Accordingly, the expressed fusion proteins were probed with each E184L mAb separately by using Western blot. Following a fine mapping, the minimal linear epitope recognized by mAb 1A10 was identified as 119IQRQGFL125, and mAbs 2D2, 3H6, and 4C10 recognized a region located between 153DPTEFF158. Alignment of amino acids of E184L revealed that the two linear epitopes are highly conserved among different ASFV isolates. Furthermore, the potential application of the two epitopes in ASFV diagnosis was assessed through epitope-based ELISA using 24 ASFV positive and 18 negative pig serum and the method were able to distinguish positive and negative samples, indicating the two epitopes are dominant antigenic sites. To our knowledge, this is the first study to characterize the B cell epitopes of the antigenic E184L protein of ASFV, offering valuable tools for future research, as well as laying a foundation for serological diagnosis and epitope-based marker vaccine development.


Assuntos
Vírus da Febre Suína Africana , Anticorpos Monoclonais , Anticorpos Antivirais , Mapeamento de Epitopos , Epitopos de Linfócito B , Vírus da Febre Suína Africana/imunologia , Vírus da Febre Suína Africana/genética , Anticorpos Monoclonais/imunologia , Epitopos de Linfócito B/imunologia , Animais , Anticorpos Antivirais/imunologia , Suínos , Febre Suína Africana/imunologia , Febre Suína Africana/virologia , Camundongos , Proteínas Virais/imunologia , Proteínas Virais/genética , Proteínas Virais/química , Antígenos Virais/imunologia , Antígenos Virais/genética , Antígenos Virais/química , Camundongos Endogâmicos BALB C
14.
Curr Issues Mol Biol ; 46(6): 5866-5880, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38921021

RESUMO

Avian leukosis virus (ALV) is an avian oncogenic retrovirus that can impair immunological function, stunt growth and decrease egg production in avian flocks. The capsid protein (P27) is an attractive candidate for ALV diagnostics. In the present study, a new hybridoma cell (1F8) stably secreting an anti-P27 monoclonal antibody (mAb) was developed. The mAb exhibited a high affinity constant (Ka) of 8.65 × 106.0 L/mol, and it could be used for the detection of ALV-A/B/J/K strains. Moreover, a total of eight truncated recombinant proteins and five synthetic polypeptides were utilized for the identification of the B-cell epitopes present on P27. The results revealed that 218IIKYVLDRQK227 was the minimal epitope recognized by 1F8, which had never been reported before. Additionally, the epitopes could strongly react with different ALV subgroup's specific positive serum and had a complete homology among all the ALV subgroups strains. Finally, a new sandwich ELISA method was created for the detection of ALV antigens, demonstrating increased sensitivity compared to a commercially available ELISA kit. These results offer essential knowledge for further characterizing the antigenic composition of ALV P27 and will facilitate the development of diagnostic reagents for ALV.

15.
mSphere ; 9(7): e0022524, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38926905

RESUMO

Porcine circovirus type 4 (PCV4), a recently identified circovirus, is prevalent in numerous provinces in China, as well as in South Korea, Thailand, and Europe. PCV4 virus rescued from an infectious clone showed pathogenicity, suggesting the economic impact of PCV4. However, there remains a lack of understanding regarding the immunogenicity and epitopes of PCV4. This study generated a monoclonal antibody (MAb) 1D8 by immunizing mice with PCV4 virus-like particles (VLPs). Subsequently, the epitope recognized by the MAb 1D8 was identified by truncated protein expression and alanine scanning mutagenesis analysis. Results showed that the 225PKQG228 located at the C-terminus of the PCV4 Cap protein is the minimal motif binding to the MAb. Homology modeling analysis and immunoelectron microscopy revealed that the epitope extends beyond the outer surface of the PCV4 VLP. Moreover, the epitope is highly conserved among PCV4 strains and does not react with other PCVs. Together, the MAb 1D8 recognized epitope shows potential for detecting PCV4. These findings significantly contribute to the design of antigens for PCV4 detection and control strategies. IMPORTANCE: Porcine circovirus type 4 (PCV4) is a novel circovirus. Although PCV4 has been identified in several countries, including China, Korea, Thailand, and Spain, no vaccine is available. Given the potential pathogenic effects of PCV4 on pigs, PCV4 could threaten the global pig farming industry, highlighting the urgency for further investigation. Thus, epitopes of PCV4 remain to be determined. Our finding of a conserved epitope significantly advances vaccine development and pathogen detection.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Proteínas do Capsídeo , Circovirus , Epitopos de Linfócito B , Circovirus/imunologia , Circovirus/genética , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/química , Animais , Anticorpos Monoclonais/imunologia , Camundongos , Suínos , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/genética , Anticorpos Antivirais/imunologia , Camundongos Endogâmicos BALB C , Infecções por Circoviridae/veterinária , Infecções por Circoviridae/imunologia , Infecções por Circoviridae/virologia , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Feminino
16.
Int Immunol ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708774

RESUMO

Persistent immunoglobulin G (IgG) production (PIP) provides long-term vaccine protection. While variations in the duration of protection have been observed with vaccines prepared from different pathogens, little is known about the factors that determine PIP. Here, we investigated the impact of three parameters on the duration of anti-peptide IgGs production, namely amino acid sequences, protein carriers, and immunization programs. We show that anti-peptide IgGs production can be transformed from transient IgG production (TIP) to PIP, by placing short peptides (Pi) containing linear B cell epitopes in different competitive environments using bovine serum albumin (BSA) conjugates instead of the original viral particles. When goats were immunized with the peste des petits ruminants (PPR) live-attenuated vaccine (containing Pi as the constitutive component) and BSA-Pi conjugate, anti-Pi IgGs production exhibited TIP (duration <60 days) and PIP (duration >368 days), respectively. Further, this PIP was unaffected by subsequent immunization with the PPR live-attenuated vaccine in the same goat. When goats were co-immunized with PPR live-attenuated vaccine and BSA-Pi, the induced anti-Pi IgGs production showed a slightly extended TIP (from ~60 days to ~100 days). This discovery provides new perspectives for studying the fate of plasma cells in humoral immune responses and developing peptide vaccines related to linear neutralizing epitopes from various viruses.

17.
Comput Struct Biotechnol J ; 23: 2122-2131, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38817963

RESUMO

B-cell epitope identification plays a vital role in the development of vaccines, therapies, and diagnostic tools. Currently, molecular docking tools in B-cell epitope prediction are heavily influenced by empirical parameters and require significant computational resources, rendering a great challenge to meet large-scale prediction demands. When predicting epitopes from antigen-antibody complex, current artificial intelligence algorithms cannot accurately implement the prediction due to insufficient protein feature representations, indicating novel algorithm is desperately needed for efficient protein information extraction. In this paper, we introduce a multimodal model called WUREN (Whole-modal Union Representation for Epitope predictioN), which effectively combines sequence, graph, and structural features. It achieved AUC-PR scores of 0.213 and 0.193 on the solved structures and AlphaFold-generated structures, respectively, for the independent test proteins selected from DiscoTope3 benchmark. Our findings indicate that WUREN is an efficient feature extraction model for protein complexes, with the generalizable application potential in the development of protein-based drugs. Moreover, the streamlined framework of WUREN could be readily extended to model similar biomolecules, such as nucleic acids, carbohydrates, and lipids.

18.
Sci Rep ; 14(1): 12037, 2024 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802579

RESUMO

Canine kobuvirus (CaKoV) is a pathogen associated with canine gastrointestinal disease (GID). This study examined 327 rectal swabs (RS), including 113 from Vietnam (46 healthy, 67 with GID) and 214 from Thailand (107 healthy and 107 with GID). CaKoV was detected in both countries, with prevalences of 28.3% (33/113) in Vietnam and 7.9% (17/214) in Thailand. Additionally, CaKoV was found in both dogs with diarrhea and healthy dogs. CaKoV was mainly found in puppies under six months of age (30.8%). Co-detection with other canine viruses were also observed. The complete coding sequence (CDS) of nine Vietnamese and four Thai CaKoV strains were characterized. Phylogenetic analysis revealed a close genetic relationship between Vietnamese and Thai CaKoV strains, which were related to the Chinese strains. CDS analysis indicated a distinct lineage for two Vietnamese CaKoV strains. Selective pressure analysis on the viral capsid (VP1) region showed negative selection, with potential positive selection sites on B-cell epitopes. This study, the first of its kind in Vietnam, provides insights into CaKoV prevalence in dogs of different ages and healthy statuses, updates CaKoV occurrence in Thailand, and sheds light on its molecular characteristics and immune evasion strategies.


Assuntos
Doenças do Cão , Kobuvirus , Filogenia , Infecções por Picornaviridae , Animais , Cães , Tailândia/epidemiologia , Vietnã/epidemiologia , Kobuvirus/genética , Kobuvirus/imunologia , Doenças do Cão/virologia , Doenças do Cão/epidemiologia , Doenças do Cão/imunologia , Infecções por Picornaviridae/veterinária , Infecções por Picornaviridae/virologia , Infecções por Picornaviridae/epidemiologia , Infecções por Picornaviridae/imunologia , Evolução Molecular , Prevalência , Gastroenteropatias/virologia , Gastroenteropatias/veterinária , Gastroenteropatias/epidemiologia , Gastroenteropatias/imunologia
19.
Biomedicines ; 12(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38672238

RESUMO

Tropomyosin (TM) is a pan-allergen with cross-reactivity to arthropods, insects, and nematodes in tropical regions. While IgE epitopes of TM contribute to sensitization, T-cell (MHC-II) epitopes polarize the Th2 immune response. This study aimed to identify linear B and T consensus epitopes among house dust mites, cockroaches, Ascaris lumbricoides, shrimp, and mosquitoes, exploring the molecular basis of cross-reactivity in allergic diseases. Amino acid sequences of Der p 10, Der f 10, Blo t 10, Lit v 1, Pen a 1, Pen m 1, rAsc l 3, Per a 7, Bla g 7, and Aed a 10 were collected from Allergen Nomenclature and UniProt. B epitopes were predicted using AlgPred 2.0 and BepiPred 3.0. T epitopes were predicted with NetMHCIIpan 4.1 against 10 HLA-II alleles. Consensus epitopes were obtained through analysis and Epitope Cluster Analysis in the Immune Epitope Database. We found 7 B-cell epitopes and 28 linear T-cell epitopes binding to MHC II. A unique peptide (residues 160-174) exhibited overlap between linear B-cell and T-cell epitopes, highly conserved across tropomyosin sequences. These findings shed light on IgE cross-reactivity among the tested species. The described immuno-informatics pipeline and epitopes can inform in vitro research and guide synthetic multi-epitope proteins' design for potential allergology immunotherapies. Further in silico studies are warranted to confirm epitope accuracy and guide future experimental protocols.

20.
Hum Immunol ; 85(3): 110804, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658216

RESUMO

The development of vaccines against a wide range of infectious diseases and pathogens often relies on multi-epitope strategies that can effectively stimulate both humoral and cellular immunity. Immunoinformatics tools play a pivotal role in designing such vaccines, enhancing immune response potential, and minimizing the risk of failure. This review presents a comprehensive overview of practical tools for epitope prediction and the associated immune responses. These immunoinformatics tools facilitate the selection of epitopes based on parameters such as antigenicity, absence of toxic and allergenic sequences, secondary and tertiary structures, sequence conservation, and population coverage. The chosen epitopes can be tailored for B-cells or T-cells, both of which require further assessments covered in this study. We offer a range of suitable linkers that effectively separate cytotoxic T lymphocyte and helper T lymphocyte epitopes while preserving their functionality. Additionally, we identify various adjuvants for specific purposes. We delve into the evaluation of MHC-epitope interactions, MHC clusters, and the simulation of final constructs through molecular docking techniques. We provide diverse linkers and adjuvants optimized for epitope functions to bolster immune responses through epitope attachment. By leveraging these comprehensive tools, the development of multi-epitope vaccines holds the promise of robust immunity and a significant reduction in experimental costs.


Assuntos
Biologia Computacional , Epitopos de Linfócito T , Vacinas , Humanos , Biologia Computacional/métodos , Vacinas/imunologia , Epitopos de Linfócito T/imunologia , Animais , Simulação por Computador , Adjuvantes Imunológicos , Simulação de Acoplamento Molecular , Epitopos de Linfócito B/imunologia , Epitopos/imunologia , Desenvolvimento de Vacinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA