RESUMO
The efficient and secure delivery of intravenous chemotherapeutic agents across the blood-brain barrier (BBB) to the precise location of a brain tumor is a crucial element in glioma treatment. Herein, we introduce a biomimetic nanoplatform (T7-M-C/S) comprising a core made up of irinotecan hydrochloride (CPT11) and its bioactive metabolite, 7-Ethyl-10-hydroxycamptothecin (SN38), surrounded by a layer of T7-peptide-modified macrophage membrane. CPT11 spontaneously assembles with SN38 into stable and water-dispersible nanoparticles (C/S), greatly enhancing the water solubility of SN38. The integration of the modified peptide with the inherent proteins expressed by macrophage cells confers the nanoplatform with enhanced bioavailability and robust glioma-targeting abilities, ultimately resulting in superior therapeutic outcomes. These discoveries highlight a drug delivery system characterized by a high drug loading capacity, leveraging the macrophage membrane, and promising significant potential for glioma treatment.
Assuntos
Neoplasias Encefálicas , Glioma , Irinotecano , Macrófagos , Nanopartículas , Glioma/tratamento farmacológico , Glioma/metabolismo , Animais , Irinotecano/administração & dosagem , Irinotecano/farmacologia , Irinotecano/farmacocinética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Neoplasias Encefálicas/tratamento farmacológico , Nanopartículas/química , Barreira Hematoencefálica/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Humanos , Linhagem Celular Tumoral , Peptídeos/química , Peptídeos/administração & dosagem , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/farmacocinética , Solubilidade , Portadores de Fármacos/química , Disponibilidade Biológica , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Camptotecina/administração & dosagem , Camptotecina/farmacologia , Camptotecina/análogos & derivados , Camptotecina/químicaRESUMO
Background: Allicin, a bioactive compound derived from garlic (Allium sativum), demonstrates antibacterial activity against a broad spectrum of bacteria including the most common meningitis pathogens. In order to advocate for allicin as a potential therapeutic candidate for bacterial meningitis, the present study aimed to assess the ability of allicin to cross the blood-brain barrier (BBB) using an in vitro model. Methods: The cell viability of the human brain endothelial cell line hCMEC/D3 after incubation with various concentrations of allicin was investigated using an MTT assay at 3 and 24 h. Additionally, reactive oxygen species (ROS) production of allicin-treated hCMEC/D3 cells was examined at 3 h. The concentrations of allicin that were not toxic to the cells, as determined by the MTT assay, and did not significantly increase ROS generation, were then used to investigate allicin's ability to traverse the in vitro BBB model for 3 h. High-performance liquid chromatography (HPLC) analysis was utilized to examine the allicin concentration capable of passing the in vitro BBB model. The cellular uptake experiments were subsequently performed to observe the uptake of allicin into hCMEC/D3 cells. The pkCSM online tool was used to predict the absorption, distribution, metabolism, excretion, and pharmacokinetic properties of allicin and S-allylmercaptoglutathione (GSSA). Results: The results from MTT assay indicated that the highest non-toxicity concentration of allicin on hCMEC/D3 cells was 5 µg/ml at 3 h and 2 µg/ml at 24 h. Allicin significantly enhanced ROS production of hCMEC/D3 cells at 10 µg/ml at 3 h. After applying the non-toxicity concentrations of allicin (0.5-5 µg/ml) to the in vitro BBB model for 3 h, allicin was not detectable in both apical and basolateral chambers in the presence of hCMEC/D3 cells. On the contrary, allicin was detected in both chambers in the absence of the cells. The results from cellular uptake experiments at 3 h revealed that hCMEC/D3 cells at 1 × 104 cells could uptake allicin at concentrations of 0.5, 1, and 2 µg/ml. Moreover, allicin uptake of hCMEC/D3 cells was proportional to the cell number, and the cells at 5 × 104 could completely uptake allicin at a concentration of 5 µg/ml within 0.5 h. The topological polar surface area (TPSA) predicting for allicin was determined to be 62.082 Å2, indicating its potential ability to cross the BBB. Additionally, the calculated logBB value surpassing 0.3 suggests that the compound may exhibit ease of penetration through the BBB. Conclusion: The present results suggested that allicin was rapidly taken up by hCMEC/D3 cells in vitro BBB model. The prediction results of allicin's distribution patterns suggested that the compound possesses the capability to enter the brain.
Assuntos
Barreira Hematoencefálica , Sobrevivência Celular , Dissulfetos , Células Endoteliais , Espécies Reativas de Oxigênio , Ácidos Sulfínicos , Ácidos Sulfínicos/farmacologia , Humanos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular , Cromatografia Líquida de Alta PressãoRESUMO
Implementing the 3R initiative to reduce animal experiments in brain penetration prediction for CNS-targeting drugs requires more predictive in vitro and in silico models. However, animal studies are still indispensable to obtaining brain concentration and determining the prediction performance of in vitro models. To reveal species differences and provide reliable data for IVIVE, in vitro models are required. Systems overexpressing MDR1 and BCRP are widely used to predict BBB penetration, highlighting the impact of the in vitro system on predictive performance. In this study, endogenous Abcb1 knock-out MDCKII cells overexpressing MDR1 of human, mouse, rat or cynomolgus monkey origin were used. Good correlations between ERs of 83 drugs determined in each cell line suggest limited species specificities. All cell lines differentiated CNS-penetrating compounds based on ERs with high efficiency and sensitivity. The correlation between in vivo and predicted Kp,uu,brain was the highest using total ER of human MDR1 and BCRP and optimized scaling factors. MDR1 interactors were tested on all MDR1 orthologs using digoxin and quinidine as substrates. We found several examples of inhibition dependent on either substrate or transporter abundance. In summary, this assay system has the potential for early-stage brain penetration screening. IC50 comparison between orthologs is complex; correlation with transporter abundance data is not necessarily proportional and requires the understanding of modes of transporter inhibition.
RESUMO
Escherichia coli K1 is the leading cause of neonatal gram-negative bacterial meningitis, but the pathogenesis of E coli K1 meningitis remains unclear. Blood-brain barrier (BBB) penetration is a crucial step in E coli meningitis development. Here, we uncovered the crucial role of CsiR, a GntR family regulator, in E coli K1 virulence. During infection, csiR expression was induced due to the derepression by Fur in the blood and human brain microvascular endothelial cells (HBMECs). CsiR positively regulated ilvB expression, which is associated with branched chain amino acid synthesis. Furthermore, we revealed that IlvB activated the FAK/PI3K pathway of HBMECs to induce actin cytoskeleton rearrangements, thereby promoting the bacterial invasion and penetration of the BBB. Overall, this study reveals a CsiR-mediated virulence regulation pathway in E coli K1, which may provide a useful target for the prevention or therapy of E coli meningitis.
Assuntos
Barreira Hematoencefálica , Células Endoteliais , Proteínas de Escherichia coli , Escherichia coli , Transdução de Sinais , Humanos , Barreira Hematoencefálica/microbiologia , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/microbiologia , Proteínas de Escherichia coli/metabolismo , Ferro/metabolismo , Virulência , Meningite devida a Escherichia coli/microbiologia , Meningite devida a Escherichia coli/metabolismo , Animais , Regulação Bacteriana da Expressão Gênica , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/metabolismo , CamundongosRESUMO
Doxorubicin (DOX) is widely used as a chemotherapeutic agent for both hematologic and solid tumors and is a reasonable candidate for glioma treatment. However, its effectiveness is hindered by significant toxicity and drug resistance. Moreover, the presence of the blood-brain barrier (BBB) brings a crucial challenge to glioma therapy. In response, a GSH-responsive and actively targeted nanoprodrug delivery system (cRGD/PSDOX-Cur@NPs) are developed. In this system, a disulfide bond-bridged DOX prodrug (PEG-SS-DOX) is designed to release specifically in the high glutathione (GSH) tumor environment, markedly reducing the cardiotoxicity associated with DOX. To further address DOX resistance, curcumin, serving as a P-glycoprotein (P-gp) inhibitor, effectively increased cellular DOX concentration. Consequently, cRGD/PSDOX-Cur@NPs exhibited synergistic anti-tumor effects in vitro. Furthermore, in vivo experiments validated the superior BBB penetration and brain-targeting abilities of cRGD/PSDOX-Cur@NPs, showcasing the remarkable potential for treating both subcutaneous and orthotopic gliomas. This research underscores that this nanoprodrug delivery system presents a novel approach to inhibiting glioma while addressing resistance and systemic toxicity.
Assuntos
Doxorrubicina , Sistemas de Liberação de Medicamentos , Glioma , Pró-Fármacos , Glioma/tratamento farmacológico , Glioma/patologia , Doxorrubicina/farmacologia , Doxorrubicina/química , Animais , Humanos , Sistemas de Liberação de Medicamentos/métodos , Linhagem Celular Tumoral , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Glutationa/metabolismo , Glutationa/química , Nanopartículas/química , Camundongos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Curcumina/química , Curcumina/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologiaRESUMO
Design of amyloid ß-protein (Aß) inhibitors is considered an effective strategy for the prevention and treatment of Alzheimer's disease (AD). However, the limited blood-brain barrier (BBB) penetration and poor Aß-targeting capability restricts the therapeutic efficiency of candidate drugs. Herein, we have proposed to engineer transthyretin (TTR) by fusion of the Aß-targeting peptide KLVFF and cell-penetrating peptide Penetratin to TTR, and derived a fusion protein, KLVFF-TTR-Penetratin (KTP). Moreover, to introduce the scavenging activity for reactive oxygen species (ROS), a nanocomposite of KTP and manganese dioxide nanoclusters (KTP@MnO2) was fabricated by biomineralization. Results revealed that KTP@MnO2 demonstrated significantly enhanced inhibition on Aß aggregation as compared to TTR. The inhibitory effect was increased from 18%, 33%, and 49% (10, 25, and 50 µg/mL TTR, respectively) to 52%, 81%, and 100% (10, 25, and 50 µg/mL KTP@MnO2). In addition, KTP@MnO2 could penetrate the BBB and target amyloid plaques. Moreover, multiple ROS, including hydroxyl radicals, superoxide radicals, hydrogen peroxide, and Aß-induced-ROS, which cannot be scavenged by TTR, were scavenged by KTP@MnO2, thus resulting in the mitigation of cellular oxidative damages. More importantly, cell culture and in vivo experiments with AD nematodes indicated that KTP@MnO2 at 50 µg/mL increased the viability of Aß-treated cells from 66% to more than 95%, and completely cleared amyloid plaques in AD nematodes and extended their lifespan by 7 d. Overall, despite critical aspects such as the stability, metabolic distribution, long-term biotoxicity, and immunogenicity of the nanocomposites in mammalian models remaining to be investigated, this work has demonstrated the multifunctionality of KTP@MnO2 for targeting Aß in vivo, and provided new insights into the design of multifunctional nanocomposites of protein-metal clusters against AD.
Assuntos
Doença de Alzheimer , Peptídeos Penetradores de Células , Fragmentos de Peptídeos , Animais , Humanos , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Compostos de Manganês/farmacologia , Óxidos/farmacologia , Pré-Albumina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Placa Amiloide/metabolismo , Mamíferos/metabolismoRESUMO
Restoration of blood-brain barrier (BBB) dysfunction, which drives worse outcomes of ischemic stroke, is a potential target for therapeutic opportunities, whereas a sealed BBB blocks the therapeutics entrance into the brain, making the BBB protection strategy paradoxical. Post ischemic stroke, hypoxia/hypoglycemia provokes the up-regulation of transmembrane glucose transporters and iron transporters due to multiple metabolic disorders, especially in brain endothelial cells. Herein, we develop a myricetin oligomer-derived nanostructure doped with Ce to bypass the BBB which is cointermediated by glucose transporters and iron transporters such as glucose transporters 1 (GLUT1), sodium/glucose cotransporters 1 (SGLT1), and transferrin(Tf) reporter (TfR). Moreover, it exhibits BBB restoration capacity by regulating the expression of tight junctions (TJs) through the activation of protective autophagy. The myricetin oligomers scaffold not only acts as targeting moiety but is the prominent active entity that inherits all diverse pharmacological activities of myricetin. The suppression of oxidative damage, M1 microglia activation, and inflammatory factors makes it a multitasking nanoagent with a single component as the scaffold, targeting domain and curative components.
Assuntos
Flavonoides , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Barreira Hematoencefálica/metabolismo , AVC Isquêmico/metabolismo , Células Endoteliais/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transferrina/metabolismo , Ferro/metabolismo , Autofagia , Glucose/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismoRESUMO
Due to the blood-brain barrier (BBB), the application of chemical drugs for glioblastoma treatment is severely limited. Recently, exosomes have been widely applied for drug delivery to the brain. However, the differences in brain targeting efficiency among exosomes derived from different cell sources, as well as the premature drug leakage during circulation, still limit the therapeutic efficacy. Here, we designed a functional oligopeptide-modified exosome loaded with doxorubicin (Pep2-Exos-DOX) for glioblastoma treatment. BV2 mouse microglial cell line was selected as the exosome source due to the favorable BBB penetration. To avoid drug release in the circulation, a redox-response oligopeptide was designed for incorporation into the membranes of exosomes to lock the drug during circulation. The enrichment of the drug in glioblastoma was confirmed. Pharmacodynamic evaluation showed Pep2-Exos-DOX possessed significant anti-cancer activity against glioblastoma as well as relative biosafety. This exosome-based drug delivery system modified with redox-response oligopeptides provides us a novel strategy for brain diseases treatment.
Assuntos
Neoplasias Encefálicas , Exossomos , Glioblastoma , Animais , Camundongos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Linhagem Celular Tumoral , Exossomos/metabolismo , Neoplasias Encefálicas/metabolismo , Doxorrubicina , Oligopeptídeos/metabolismoRESUMO
Mitochondrial dysfunction is a pivotal event in Alzheimer's disease (AD) pathogenesis. Lithospermic acid B (LA) has shown promise in safeguarding mitochondria, yet the underlying mechanism remains elusive. Here, we present evidence that LA rejuvenated AD-related mitochondrial pool by co-activating mitophagy and mitochondria biogenesis via PINK1/LC3B/P62 and PGC-1α/Nrf2. To advance in vivo application, hydrophilic LA was encapsulated in liposome (MT-LIP@LA) composed of D-mannosamine-cholesterol/DSPE-PEG2000-Tet1/lecithin (molar ratio, 3:0.3:10) for cascaded brain-neuron targeting. MT-LIP demonstrated 4.3-fold enhanced brain accumulation (2.57%dose/g-brain) than LIP (0.60%dose/g-brain) and precisely targeted neurons at AD lesion sites. Mechanism studies unraveled factors contributing to the preeminent brain targeting ability of MT-LIP: (1) high-density modified mannose efficiently binds to glucose transporter 1 (GLUT1) on blood-brain barrier (BBB); (2) prone to trafficking towards caveolin-Golgi pathway during transcytosis. This augmented therapeutic platform efficiently restored mitochondrial health, prevented neurodegeneration, and ameliorated memory deficits in 3 × Tg-AD transgenic mice. Our studies revealed the underlying pharmacological mechanism of LA and provided a concise but efficient platform for neuronal mitochondria quality control in vivo.
Assuntos
Doença de Alzheimer , Benzofuranos , Depsídeos , Camundongos , Animais , Doença de Alzheimer/metabolismo , Lipossomos/metabolismo , Mitocôndrias/metabolismo , Encéfalo/metabolismo , Camundongos TransgênicosRESUMO
Nanobodies (Nbs) hold significant potential in molecular imaging due to their unique characteristics. However, there are challenges to overcome when it comes to brain imaging. To address these obstacles, collaborative efforts and interdisciplinary research are needed. This article aims to raise awareness and encourage collaboration among researchers from various fields to find solutions for effective brain imaging using Nbs. By fostering cooperation and knowledge sharing, we can make progress in overcoming the existing limitations and pave the way for improved molecular imaging techniques in the future.
Assuntos
Anticorpos de Domínio Único , Anticorpos de Domínio Único/metabolismo , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/metabolismo , Imagem Molecular/métodosRESUMO
Glioma is one of the most serious central nervous system diseases, with high mortality and poor prognosis. Despite the continuous development of existing treatment methods, the median survival time of glioma patients is still only 15 months. The main treatment difficulties are the invasive growth of glioma and the obstruction of the blood-brain barrier (BBB) to drugs. With rapid advancements in nanotechnology, inorganic nanoparticles (INPs) have shown favourable application prospects in the diagnosis and treatment of glioma. Due to their extraordinary intrinsic features, INPs can be easily fabricated, while doping with other elements and surface modification by biological ligands can be used to enhance BBB penetration, targeted delivery and biocompatibility. Guided glioma theranostics with INPs can improve and enhance the efficacy of traditional methods such as chemotherapy, radiotherapy and gene therapy. New strategies, such as immunotherapy, photothermal and photodynamic therapy, magnetic hyperthermia therapy, and multifunctional inorganic nanoplatforms, have also been facilitated by INPs. This review emphasizes the current state of research and clinical applications of INPs, including glioma targeting and BBB penetration enhancement methods, in vivo and in vitro biocompatibility, and diagnostic and treatment strategies. As such, it provides insights for the development of novel glioma treatment strategies.
RESUMO
The most successful therapeutic strategy in the treatment of Alzheimer's disease (AD) is directed toward increasing levels of the neurotransmitter acetylcholine (ACh) by inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), the enzymes responsible for its hydrolysis. In this paper, we extended our study on 4-aminoquinolines as human cholinesterase inhibitors on twenty-six new 4-aminoquinolines containing an n-octylamino spacer on C(4) and different substituents on the terminal amino group. We evaluated the potency of new derivatives to act as multi-targeted ligands by determining their inhibition potency towards human AChE and BChE, ability to chelate biometals Fe, Cu and Zn, ability to inhibit the action of ß-secretase 1 (BACE1) and their antioxidant capacity. All of the tested derivatives were very potent inhibitors of human AChE and BChE with inhibition constants (Ki) ranging from 0.0023 to 1.6 µM. Most of the compounds were estimated to be able to cross the blood-brain barrier (BBB) by passive transport and were nontoxic to human neuronal, kidney and liver cells in concentrations in which they inhibit cholinesterases. Generally, newly synthesised compounds were weak reductants compared to standard antioxidants, but all possessed a certain amount of antioxidant activity compared to tacrine. Of the eleven most potent cholinesterase inhibitors, eight compounds also inhibited BACE1 activity at 10-18%. Based on our overall results, compounds 8 with 3-fluorobenzyl, 11 with 3-chlorobenzyl and 17 with 3-metoxy benzyl substituents on the terminal amino group stood out as the most promising for the treatment of AD; they strongly inhibited AChE and BChE, were non-toxic on HepG2, HEK293 and SH-SY5Y cells, had the potential to cross the BBB and possessed the ability to chelate biometals and/or inhibit the activity of BACE1 within a range close to the therapeutically desired degree of inhibition.
Assuntos
Doença de Alzheimer , Neuroblastoma , Oligoelementos , Humanos , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/metabolismo , Ligantes , Células HEK293 , Simulação de Acoplamento Molecular , Ácido Aspártico Endopeptidases/metabolismo , Aminoquinolinas/farmacologia , Relação Estrutura-AtividadeRESUMO
The purinergic P2X7 receptor (P2X7R) is an adenosine triphosphate (ATP)- gated cation channel protein. Although extracellular ATP (eATP) is maintained at the nanomolar concentration range under normal conditions, it is elevated to micromolar levels in response to cell stress or damage, resulting in activation of P2X7R in the brain. The binding of eATP to P2X7R in glial cells in the brain activates the NLRP3 inflammasome and releases pro-inflammatory cytokines, such as IL-1ß, IL-6, IL-18, and TNFα. Depression has been demonstrated to be strongly associated with neuroinflammation activated by P2X7R. Therefore, P2X7R is an attractive therapeutic target for depression. Multinational pharmaceutical companies, including AstraZeneca, GlaxoSmithKline, Janssen, Lundbeck, and Pfizer, have developed CNS-penetrating P2RX7 antagonists. Several of these have been evaluated in clinical trials. This review summarizes the recent development of P2X7R antagonists as novel antidepressant agents in terms of structural optimization, as well as in vitro/in vivo evaluation and physicochemical properties of representative compounds.
Assuntos
Inflamassomos , Receptores Purinérgicos P2X7 , Humanos , Inflamassomos/metabolismo , Citocinas/metabolismo , Antidepressivos/farmacologia , Trifosfato de Adenosina/metabolismo , Antagonistas do Receptor Purinérgico P2X/farmacologiaRESUMO
This study focused on exploring the ability of self-assembled DNA frameworks to cross the blood-brain barrier (BBB). We designed and assembled a series of DNA origami structures with equal quantity of nucleic acid materials but different morphologies and rigidities, such as barrel, soccer ball, icosahedron, and compared their transport efficiency in an inâ vitro BBB model. It was observed that the relatively large and soft structures could better penetrate the BBB through a lysosome irrelative transcytosis process, while the smallest and most rigid structure was blocked severally accompanied with an obvious lysosome digestion once internalized by the endothelial cells.
Assuntos
Barreira Hematoencefálica , Células Endoteliais , Transcitose , Transporte Biológico , DNARESUMO
Considering that acetylcholinesterase (AChE) inhibition is the most important mode of action expected of a potential drug used for the treatment of symptoms of Alzheimer's disease (AD), our previous pilot study of 4-aminoquinolines as potential human cholinesterase inhibitors was extended to twenty-two new structurally distinct 4-aminoquinolines bearing an adamantane moiety. Inhibition studies revealed that all of the compounds were very potent inhibitors of AChE and butyrylcholinesterase (BChE), with inhibition constants (Ki) ranging between 0.075 and 25 µM. The tested compounds exhibited a modest selectivity between the two cholinesterases; the most selective for BChE was compound 14, which displayed a 10 times higher preference, while compound 19 was a 5.8 times more potent inhibitor of AChE. Most of the compounds were estimated to be able to cross the blood-brain barrier (BBB) by passive transport. Evaluation of druglikeness singled out fourteen compounds with possible oral route of administration. The tested compounds displayed modest but generally higher antioxidant activity than the structurally similar AD drug tacrine. Compound 19 showed the highest reducing power, comparable to those of standard antioxidants. Considering their simple structure, high inhibition of AChE and BChE, and ability to cross the BBB, 4-aminoquinoline-based adamantanes show promise as structural scaffolds for further design of novel central nervous system drugs. Among them, two compounds stand out: compound 5 as the most potent inhibitor of both cholinesterases with a Ki constant in low nano molar range and the potential to cross the BBB, and compound 8, which met all our requirements, including high cholinesterase inhibition, good oral bioavailability, and antioxidative effect. The QSAR model revealed that AChE and BChE inhibition was mainly influenced by the ring and topological descriptors MCD, Nnum, RP, and RSIpw3, which defined the shape, conformational flexibility, and surface properties of the molecules.
RESUMO
A series of potent, selective, and highly permeable human neuronal nitric oxide synthase inhibitors (hnNOS) based on the 2-aminopyridine scaffold with a shortened amino sidechain is reported. A rapid and simple protocol was developed to access these inhibitors in excellent yields. Neuronal nitric oxide synthase (nNOS) is a novel therapeutic target for the treatment of various neurological disorders. The major challenges in designing nNOS inhibitors in humans focus on potency, selectivity over other isoforms of nitric oxide synthases (NOSs), and blood-brain barrier permeability. In this context, we discovered a promising inhibitor, 6-(3-(4,4-difluoropiperidin-1-yl)propyl)-4-methylpyridin-2-amine dihydrochloride, that exhibits excellent potency for rat (Kiâ¯=â¯46â¯nM) and human nNOS (Kiâ¯=â¯48â¯nM), respectively, with 388-fold human eNOS and 135-fold human iNOS selectivity. It also displayed excellent permeability (Peâ¯=â¯17.3â¯×â¯10-6 cm s-1) through a parallel artificial membrane permeability assay, a model for blood-brain permeability. We found that increasing lipophilicity by incorporation of fluorine atoms on the backbone of the inhibitors significantly increased potential blood-brain barrier permeability. In addition to measuring potency, isoform selectivity, and permeability of NOS inhibitors, we also explored structure-activity relationships via structures of key inhibitors complexed to various isoforms of nitric oxide synthases.
Assuntos
Aminopiridinas , Óxido Nítrico , Aminopiridinas/química , Aminopiridinas/farmacologia , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Óxido Nítrico Sintase , Óxido Nítrico Sintase Tipo I/química , Óxido Nítrico Sintase Tipo I/metabolismo , Isoformas de Proteínas , RatosRESUMO
Amyloid-ß (Aß) toxicity is considered to be companioned by Tau phosphorylation in Alzheimer's disease (AD). The clinical AD therapy is usually subjected to low blood-brain barrier (BBB) penetration and complex interaction mechanisms between Aß and phosphorylated Tau. A "Drug-Carrier" synergy therapy is herein designed to simultaneously target Aß and Tau-associated pathways for AD treatment. To imitate natural nanoparticle configuration, the endogenous apolipoprotein A-I and its mimicking peptide 4F fused angiopep-2 (Ang) are sequentially grafted onto lipid nanocomposite (APLN), providing liberty of BBB crossing and microglia targeted Aß clearance. For synergy treatment, methylene blue (MB) is further assembled into APLN (APLN/MB) for Tau aggregation inhibition. After intravenous administration, the optimized density (5 wt%) of Ang ligands dramatically enhances APLN/MB intracerebral shuttling and accumulation, which is 2.15-fold higher than that Ang absent-modification. The site-specific release of MB collaborates APLN to promote Aß capture for microglia endocytosis clearance and reduce p-Tau level by 25.31% in AD pathogenesis. In AD-Aß-Tau bearing mouse models, APLN/MB can relieve AD symptoms, rescue neuron viability and cognitive functions. Collectively, it is confirmed that "Drug-Carrier" synergy therapy of APLN/MB is a promising approach in the development of AD treatments.
Assuntos
Doença de Alzheimer , Nanocompostos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/uso terapêutico , Animais , Biomimética , Portadores de Fármacos/uso terapêutico , Lipídeos/uso terapêutico , Azul de Metileno/farmacologia , Azul de Metileno/uso terapêutico , Camundongos , Fosforilação , Proteínas tau/metabolismo , Proteínas tau/uso terapêuticoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: The stems of Ephedra sinica and the fruits of Terminalia chebula are combined using in traditional Mongolian medicine formula "Gurigumu-7" for liver diseases. E. sinica stems contains ephedrine with broncho-dilatory activity. However, ephedrine can pass through the blood-brain barrier (BBB) and excite the central nervous system (CNS) to cause insomnia and restlessness. AIM OF THE STUDY: The present study was to investigate the structures and bioactivities of new compounds formed in vivo after co-administration of E. sinica stems and T. chebula fruits. MATERIALS AND METHODS: Pharmacokinetic investigation was carried out in rats. A parallel artificial membrane permeability measurement system was used to determine BBB permeability. Ex vivo experiments using tracheal rings of guinea pig was performed to examine the tracheal relaxation effect. In vivo hepatoprotective tests were carried out in Tg (fabp10a: dsRed) liver transgenic zebrafish. The fluorescent probe, 2,7-dichlorodihydrofluorescein diacetate, was used to measure reactive oxygen species, and UHPLC-MS was used to determine glutathione concentrations after derivatization with N-ethylmaleimide. RESULTS: New ephedrine derivatives (1 and 2) formed in vivo and reached their maximum serum concentrations at 0.5 h after administration of the two herbal drugs. Compounds 1 and 2 showed lower BBB permeability than ephedrine, suggesting that they have less adverse effects on the CNS. Compounds 1 and 2 relaxed the tracheal rings and had strong hepatoprotective effect on transgenic zebrafish with liver specific expression of RFP. Compounds 1 and 2 significantly reduced the level of reactive oxygen species while increasing that of glutathione in thioacetamide-treated zebrafish, which might be the hepatoprotective mechanism. CONCLUSION: These results provided evidences that the chemical constituents in various herbal drugs in a medicinal formula can interact to generate new compounds with fewer side effects and increased or additive bioactivity.
Assuntos
Ephedra sinica/química , Efedrina , Extratos Vegetais/farmacologia , Distúrbios do Início e da Manutenção do Sono , Terminalia/química , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Broncodilatadores/farmacologia , Sistema Nervoso Central/efeitos dos fármacos , Combinação de Medicamentos , Efedrina/análogos & derivados , Efedrina/farmacocinética , Cobaias , Extratos Vegetais/química , Ratos , Distúrbios do Início e da Manutenção do Sono/induzido quimicamente , Distúrbios do Início e da Manutenção do Sono/prevenção & controleRESUMO
Brain cancer, also known as intracranial cancer, is one of the most invasive and fatal cancers affecting people of all ages. Despite the great advances in medical technology, improvements in transporting drugs into brain tissue have been limited by the challenge of crossing the blood-brain barrier (BBB). Fortunately, recent endeavors using gold-based nanomaterials (GBNs) have indicated the potential of these materials to cross the BBB. Therefore, GBNs might be an attractive therapeutic strategy against brain cancer. Herein, we aim to present a comprehensive summary of current understanding of the critical effects of the physicochemical properties and surface modifications of GBNs on BBB penetration for applications in brain cancer treatment. Furthermore, the most recent GBNs and their impressive performance in precise bioimaging and efficient inhibition of brain tumors are also summarized, with an emphasis on the mechanism of their effective BBB penetration. Finally, the challenges and future outlook in using GBNs for brain cancer treatment are discussed. We hope that this review will spark researchers' interest in constructing more powerful nanoplatforms for brain disease treatment.
RESUMO
Glioblastoma (GBM) is an aggressive malignancy and therapeutic options are limited due to the presence of the blood-brain barrier (BBB). RVG-29, a 29-amino-acid polypeptide derived from the rabies virus glycoprotein (RVG), has excellent brain-targeted capacity across the BBB. We reduced the size of this peptide to get a15-amino-acid polypeptide (RVG-15), while retaining its brain-targeted capacity across the BBB. First, we synthesized a novel nanocarrier RVG-15-PEG2000-DSPE. Next, DOX-loaded polymeric micelles (DOX RVG-15-PMs) were prepared in an electrostatic interaction-dependent manner. Finally, we evaluated its antitumor benefits in vitro at the cellular level and in vivo using an in situ tumour-bearing mouse model. MALDI-TOF-MS and FTIR spectra confirmed the successful synthesis of the novel nanocarrier. The prepared DOX RVG-15-PMs displayed even size distribution, a high entrapment efficiency and satisfactory in vitro release behaviour. In vitro blank RVG-15-PMs were excellent, safe and highly biocompatible as drug delivery carriers. DOX-loaded micelles were easily taken up by C6 cells and could effectively inhibit cancer development and metastasis. In vivo, DOX RVG-15-PMs delayed weight loss, prevented cancer cell metastasis and accelerated cancer cell apoptosis in tumour-bearing mice. Our novel brain-targeted nanocarrier is highly feasible, while DOX RVG-15-PMs exert significant antiglioma effects, both in vitro and in vivo.