Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Inform ; 10(1): 24, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37688757

RESUMO

While a very few studies have been conducted on classifying loving kindness meditation (LKM) and non-meditation electroencephalography (EEG) data for a single session, there are no such studies conducted for multiple session EEG data. Thus, this study aims at classifying existing raw EEG meditation data on single and multiple sessions to come up with meaningful inferences which will be highly beneficial when developing algorithms that can support meditation practices. In this analysis, data have been collected on Pre-Resting (before-meditation), Post-Resting (after-meditation), LKM-Self and LKM-Others for 32 participants and hence allowing us to conduct six pairwise comparisons for the four mind tasks. Common Spatial Patterns (CSP) is a feature extraction method widely used in motor imaginary brain computer interface (BCI), but not in meditation EEG data. Therefore, using CSP in extracting features from meditation EEG data and classifying meditation/non-meditation instances, particularly for multiple sessions will create a new path in future meditation EEG research. The classification was done using Linear Discriminant Analysis (LDA) where both meditation techniques (LKM-Self and LKM-Others) were compared with Pre-Resting and Post-Resting instances. The results show that for a single session of 32 participants, around 99.5% accuracy was obtained for classifying meditation/Pre-Resting instances. For the 15 participants when using five sessions of EEG data, around 83.6% accuracy was obtained for classifying meditation/Pre-Resting instances. The results demonstrate the ability to classify meditation/Pre-Resting data. Most importantly, this classification is possible for multiple session data as well. In addition to this, when comparing the classification accuracies of the six mind task pairs; LKM-Self, LKM-Others and Post-Resting produced relatively lower accuracies among them than the accuracies obtained for classifying Pre-Resting with the other three. This indicates that Pre-Resting has some features giving a better classification indicating that it is different from the other three mind tasks.

2.
Front Neurogenom ; 4: 1171910, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38234470

RESUMO

Novel wearable neurotechnology is able to provide insight into its wearer's cognitive processes and offers ways to change or enhance their capacities. Moreover, it offers the promise of hands-free device control. These brain-computer interfaces are likely to become an everyday technology in the near future, due to their increasing accessibility and affordability. We, therefore, must anticipate their impact, not only on society and individuals broadly but also more specifically on sectors such as traffic and transport. In an economy where attention is increasingly becoming a scarce good, these innovations may present both opportunities and challenges for daily activities that require focus, such as driving and cycling. Here, we argue that their development carries a dual risk. Firstly, BCI-based devices may match or further increase the intensity of cognitive human-technology interaction over the current hands-free communication devices which, despite being widely accepted, are well-known for introducing a significant amount of cognitive load and distraction. Secondly, BCI-based devices will be typically harder than hands-free devices to both visually detect (e.g., how can law enforcement check when these extremely small and well-integrated devices are used?) and restrain in their use (e.g., how do we prevent users from using such neurotechnologies without breaching personal integrity and privacy?). Their use in traffic should be anticipated by researchers, engineers, and policymakers, in order to ensure the safety of all road users.

3.
Front Hum Neurosci ; 16: 1016862, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36483633

RESUMO

Brain-Computer Interface (BCI) systems for motor rehabilitation after stroke have proven their efficacy to enhance upper limb motor recovery by reinforcing motor related brain activity. Hybrid BCIs (h-BCIs) exploit both central and peripheral activation and are frequently used in assistive BCIs to improve classification performances. However, in a rehabilitative context, brain and muscular features should be extracted to promote a favorable motor outcome, reinforcing not only the volitional control in the central motor system, but also the effective projection of motor commands to target muscles, i.e., central-to-peripheral communication. For this reason, we considered cortico-muscular coupling (CMC) as a feature for a h-BCI devoted to post-stroke upper limb motor rehabilitation. In this study, we performed a pseudo-online analysis on 13 healthy participants (CTRL) and 12 stroke patients (EXP) during executed (CTRL, EXP unaffected arm) and attempted (EXP affected arm) hand grasping and extension to optimize the translation of CMC computation and CMC-based movement detection from offline to online. Results showed that updating the CMC computation every 125 ms (shift of the sliding window) and accumulating two predictions before a final classification decision were the best trade-off between accuracy and speed in movement classification, independently from the movement type. The pseudo-online analysis on stroke participants revealed that both attempted and executed grasping/extension can be classified through a CMC-based movement detection with high performances in terms of classification speed (mean delay between movement detection and EMG onset around 580 ms) and accuracy (hit rate around 85%). The results obtained by means of this analysis will ground the design of a novel non-invasive h-BCI in which the control feature is derived from a combined EEG and EMG connectivity pattern estimated during upper limb movement attempts.

4.
Front Hum Neurosci ; 16: 983226, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966997

RESUMO

Implantable neurotechnology devices such as Brain Computer Interfaces (BCIs) and Deep Brain Stimulators (DBS) are an increasing part of treating or exploring potential treatments for neurological and psychiatric disorders. While only a few devices are approved, many promising prospects for future devices are under investigation. The decision to participate in a clinical trial can be challenging, given a variety of risks to be taken into consideration. During the consent process, prospective participants might lack the language to consider those risks, feel unprepared, or simply not know what questions to ask. One tool to help empower participants to play a more active role during the consent process is a Question Prompt List (QPL). QPLs are communication tools that can prompt participants and patients to articulate potential concerns. They offer a structured list of disease, treatment, or research intervention-specific questions that research participants can use as support for question asking. While QPLs have been studied as tools for improving the consent process during cancer treatment, in this paper, we suggest they would be helpful in neurotechnology research, and offer an example of a QPL as a template for an informed consent tool in neurotechnology device trials.

6.
Front Hum Neurosci ; 13: 393, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31780914

RESUMO

We report results of a study that utilizes a BCI to drive an interactive interface countermeasure that allows users to self-regulate sustained attention while performing an ecologically valid, long-duration business logistics task. An engagement index derived from EEG signals was used to drive the BCI while fNIRS measured hemodynamic activity for the duration of the task. Participants (n = 30) were split into three groups (1) no countermeasures (NOCM), (2) continuous countermeasures (CCM), and (3) event synchronized, level-dependent countermeasures (ECM). We hypothesized that the ability to self-regulate sustained attention through a neurofeedback mechanism would result in greater task engagement, decreased error rate and improved task performance. Data were analyzed by wavelet coherence analysis, statistical analysis, performance metrics and self-assessed cognitive workload via RAW-TLX. We found that when the BCI was used to deliver continuous interface countermeasures (CCM), task performance was moderately enhanced in terms of total 14,785 (σ = 423) and estimated missed sales 7.46% (σ = 1.76) when compared to the NOCM 14,529 (σ = 510), 9.79% (σ = 2.75), and the ECM 14,180 (σ = 875), 9.62% (σ = 4.91) groups. An "actions per minute" (APM) metric was used to determine interface interaction activity which showed that overall the CCM and ECM groups had a higher APM of 3.460 (SE = 0.140) and 3.317 (SE = 0.139) respectively when compared with the NOCM group 2.65 (SE = 0.097). Statistical analysis showed a significant difference between ECM - NOCM and CCM - NOCM (p < 0.001) groups, but no significant difference between the ECM - CCM groups. Analysis of the RAW-TLX scores showed that the CCM group had lowest total score 7.27 (σ = 3.1) when compared with the ECM 9.7 (σ = 3.3) and NOCM 9.2 (σ = 3.4) groups. No statistical difference was found between the RAW-TLX or the subscales, except for self-perceived performance (p < 0.028) comparing the CCM and ECM groups. The results suggest that providing a means to self-regulate sustained attention has the potential to keep operators engaged over long periods, and moderately increase on-task performance while decreasing on-task error.

7.
Bioengineering (Basel) ; 6(2)2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31108931

RESUMO

The purpose of this research study was to explore the possibility to develop a brain-computer interface (BCI). The main objective was that the BCI should be able to recognize brain activity. BCI is an emerging technology which focuses on communication between software and hardware and permitting the use of brain activity to control electronic devices, such as wheelchairs, computers and robots. The interface was developed, and consists of EEG Bitronics, Arduino and a computer; moreover, two versions of the BCIANNET software were developed to be used with this hardware. This BCI used artificial neural network (ANN) as a main processing method, with the Butterworth filter used as the data pre-processing algorithm for ANN. Twelve subjects were measured to collect the datasets. Tasks were given to subjects to stimulate brain activity. The purpose of the experiments was to test and confirm the performance of the developed software. The aim of the software was to separate important rhythms such as alpha, beta, gamma and delta from other EEG signals. As a result, this study showed that the Levenberg-Marquardt algorithm is the best compared with the backpropagation, resilient backpropagation, and error correction algorithms. The final developed version of the software is an effective tool for research in the field of BCI. The study showed that using the Levenberg-Marquardt learning algorithm gave an accuracy of prediction around 60% on the testing dataset.

8.
Neurocomputing (Amst) ; 343: 154-166, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32226230

RESUMO

The non-stationary nature of electroencephalography (EEG) signals makes an EEG-based brain-computer interface (BCI) a dynamic system, thus improving its performance is a challenging task. In addition, it is well-known that due to non-stationarity based covariate shifts, the input data distributions of EEG-based BCI systems change during inter- and intra-session transitions, which poses great difficulty for developments of online adaptive data-driven systems. Ensemble learning approaches have been used previously to tackle this challenge. However, passive scheme based implementation leads to poor efficiency while increasing high computational cost. This paper presents a novel integration of covariate shift estimation and unsupervised adaptive ensemble learning (CSE-UAEL) to tackle non-stationarity in motor-imagery (MI) related EEG classification. The proposed method first employs an exponentially weighted moving average model to detect the covariate shifts in the common spatial pattern features extracted from MI related brain responses. Then, a classifier ensemble was created and updated over time to account for changes in streaming input data distribution wherein new classifiers are added to the ensemble in accordance with estimated shifts. Furthermore, using two publicly available BCI-related EEG datasets, the proposed method was extensively compared with the state-of-the-art single-classifier based passive scheme, single-classifier based active scheme and ensemble based passive schemes. The experimental results show that the proposed active scheme based ensemble learning algorithm significantly enhances the BCI performance in MI classifications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA