RESUMO
Interpreting the phenotypes of bla SHV alleles in Klebsiella pneumoniae genomes is complex. Whilst all strains are expected to carry a chromosomal copy conferring resistance to ampicillin, they may also carry mutations in chromosomal bla SHV alleles or additional plasmid-borne bla SHV alleles that have extended-spectrum ß-lactamase (ESBL) activity and/or ß-lactamase inhibitor (BLI) resistance activity. In addition, the role of individual mutations/a changes is not completely documented or understood. This has led to confusion in the literature and in antimicrobial resistance (AMR) gene databases [e.g. the National Center for Biotechnology Information (NCBI) Reference Gene Catalog and the ß-lactamase database (BLDB)] over the specific functionality of individual sulfhydryl variable (SHV) protein variants. Therefore, the identification of ESBL-producing strains from K. pneumoniae genome data is complicated. Here, we reviewed the experimental evidence for the expansion of SHV enzyme function associated with specific aa substitutions. We then systematically assigned SHV alleles to functional classes (WT, ESBL and BLI resistant) based on the presence of these mutations. This resulted in the re-classification of 37 SHV alleles compared with the current assignments in the NCBI's Reference Gene Catalog and/or BLDB (21 to WT, 12 to ESBL and 4 to BLI resistant). Phylogenetic and comparative genomic analyses support that (i) SHV-1 (encoded by bla SHV-1) is the ancestral chromosomal variant, (ii) ESBL- and BLI-resistant variants have evolved multiple times through parallel substitution mutations, (iii) ESBL variants are mostly mobilized to plasmids and (iv) BLI-resistant variants mostly result from mutations in chromosomal bla SHV. We used matched genome-phenotype data from the KlebNET-GSP AMR Genotype-Phenotype Group to identify 3999 K. pneumoniae isolates carrying one or more bla SHV alleles but no other acquired ß-lactamases to assess genotype-phenotype relationships for bla SHV. This collection includes human, animal and environmental isolates collected between 2001 and 2021 from 24 countries. Our analysis supports that mutations at Ambler sites 238 and 179 confer ESBL activity, whilst most omega-loop substitutions do not. Our data also provide support for the WT assignment of 67 protein variants, including 8 that were noted in public databases as ESBL. These eight variants were reclassified as WT because they lack ESBL-associated mutations, and our phenotype data support susceptibility to third-generation cephalosporins (SHV-27, SHV-38, SHV-40, SHV-41, SHV-42, SHV-65, SHV-164 and SHV-187). The approach and results outlined here have been implemented in Kleborate v2.4.1 (a software tool for genotyping K. pneumoniae), whereby known and novel bla SHV alleles are classified based on causative mutations. Kleborate v2.4.1 was updated to include ten novel protein variants from the KlebNET-GSP dataset and all alleles in public databases as of November 2023. This study demonstrates the power of sharing AMR phenotypes alongside genome data to improve the understanding of resistance mechanisms.
Assuntos
Klebsiella pneumoniae , beta-Lactamases , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/classificação , Klebsiella pneumoniae/efeitos dos fármacos , beta-Lactamases/genética , beta-Lactamases/classificação , Genótipo , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Genoma Bacteriano , Plasmídeos/genética , Testes de Sensibilidade Microbiana , Mutação , Infecções por Klebsiella/microbiologia , AlelosRESUMO
Faster and more accurate analytical methods are needed to support the advancement of recombinant adeno-associated virus (rAAV) production systems. Recently, biolayer interferometry (BLI) has been developed for high-throughput AAV capsid titer measurement by functionalizing the AAVX ligand onto biosensor probes (AAVX-BLI). In this work, an AAVX-BLI method was evaluated using Octet AAVX biosensors across four rAAV serotypes (rAAV2, -5, -8, and -9) and applied in an upstream and downstream processing context. AAVX-BLI measured the capsid titer across a wide concentration range (1 × 1010-1 × 1012 capsids/mL) for different rAAV serotypes and sample backgrounds with reduced measurement variance and error compared to an enzyme-linked immunosorbent assay (ELISA) method. Biosensors were regenerated for repeated use, with lysate samples showing reduced regeneration capacity compared to purified and supernatant samples. The AAVX-BLI method was applied in a transfection optimization study where direct capsid titer measurement of culture supernatants generated a representative response surface for the total vector genome (VG) titer. For rAAV purification, AAVX-BLI was used to measure dynamic binding capacity with POROS CaptureSelect AAVX affinity chromatography, showing resin breakthrough dependence on the operating flow rate. Measurement accuracy, serotype and sample background flexibility, and high sample throughput make AAVX-BLI an attractive alternative to other capsid titer measurement techniques.
RESUMO
Background: In vitro-transcribed (IVT) mRNA has been established as a promising platform for therapeutics and vaccine development. Double-stranded RNA (dsRNA) is a major impurity of IVT mRNA and can trigger unfavored immune responses, potentially causing adverse events in patients. Existing dsRNA detection and quantitation methods, such as gel electrophoresis, ELISA, or homogeneous time-resolved fluorescence (HTRF), have low sensitivity or are time-consuming. A recently published lateral flow immunoassay (LFSA) was shown to be fast, but it lacks the sensitivity for dsRNA with uridine modifications. Methods: In this study, we provided a possible explanation for the reduced sensitivity of existing quantitation methods for dsRNA with modified uridines by characterizing the binding affinities of commonly used anti-dsRNA antibodies. Then, a rapid and sensitive biolayer interferometry (BLI) dsRNA detection assay utilizing Flock House Virus (FHV) B2 protein was developed to overcome the challenges in dsRNA detection and the reduced sensitivity. Results: This assay allows the detection of dsRNA with different uridine modifications (ψ, m1ψ, 5 moU) with similar sensitivity as dsRNA without modification. Furthermore, we demonstrated this method can be used to quantify both short and long dsRNA, as well as hairpin-structured dsRNA, providing a more comprehensive detection for dsRNA impurities. Moreover, we applied this assay to monitor dsRNA removal through a purification process. Conclusions: Taken together, this BLI method could enable real-time monitoring of impurities in IVT mRNA production to prevent immunogenicity stemming from dsRNA.
RESUMO
Gastric cancer (GC) is a significant healthcare concern, and the identification of high-risk patients is crucial. Indeed, gastric precancerous conditions present significant diagnostic challenges, particularly early intestinal metaplasia (IM) detection. This study developed a deep learning system to assist in IM detection using image patches from gastric corpus examined using virtual chromoendoscopy in a Western country. Utilizing a retrospective dataset of endoscopic images from Sant'Andrea University Hospital of Rome, collected between January 2020 and December 2023, the system extracted 200 × 200 pixel patches, classifying them with a voting scheme. The specificity and sensitivity on the patch test set were 76% and 72%, respectively. The optimization of a learnable voting scheme on a validation set achieved a specificity of 70% and sensitivity of 100% for entire images. Despite data limitations and the absence of pre-trained models, the system shows promising results for preliminary screening in gastric precancerous condition diagnostics, providing an explainable and robust Artificial Intelligence approach.
RESUMO
The bioluminescent Leishmania infantum BALB/c mouse model was used to evaluate the parasiticidal drug action kinetics of the reference drugs miltefosine, paromomycin, sodium stibogluconate, and liposomal amphotericin B. Infected mice were treated for 5 days starting from 7 days post-infection, and parasite burdens were monitored over time via bioluminescence imaging (BLI). Using nonlinear regression analyses of the BLI signal, the parasite elimination half-life (t1/2) in the liver, bone marrow, and whole body was determined and compared for the different treatment regimens. Significant differences in parasiticidal kinetics were recorded. A single intravenous dose of 0.5 mg/kg liposomal amphotericin B was the fastest acting with a t1/2 of less than 1 day. Intraperitoneal injection of paromomycin at 320 mg/kg for 5 days proved to be the slowest with a t1/2 of about 5 days in the liver and 16 days in the bone marrow. To conclude, evaluation of the cidal kinetics of the different antileishmanial reference drugs revealed striking differences in their parasite elimination half-lives. This BLI approach also enables an in-depth pharmacodynamic comparison between novel drug leads and may constitute an essential tool for the design of potential drug combinations.
Assuntos
Antiprotozoários , Leishmania infantum , Leishmaniose Visceral , Medições Luminescentes , Camundongos Endogâmicos BALB C , Animais , Leishmania infantum/efeitos dos fármacos , Antiprotozoários/farmacologia , Antiprotozoários/farmacocinética , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Camundongos , Feminino , Fígado/parasitologia , Fígado/efeitos dos fármacos , Medula Óssea/parasitologia , Medula Óssea/efeitos dos fármacos , Cinética , Modelos Animais de DoençasRESUMO
Primary tracheal tumours are extremely rare, that originate from Schwann cells. We report a case of a primary tracheal schwannoma. A 60-year-old male who presented with noisy breathing, shortness of breath, and blood streaked phlegm. Chest CT scan showed an endotracheal mass which was resected bronchoscopically using Rigid bronchoscopy, electrocautery snare and cryoextraction. Biopsy confirmed the diagnosis of schwannoma.
RESUMO
Objectives: Detailed superiority of CAD EYE (Fujifilm, Tokyo, Japan), an artificial intelligence for polyp detection/diagnosis, compared to endoscopists is not well examined. We examined endoscopist's ability using movie sets of colorectal lesions which were detected and diagnosed by CAD EYE accurately. Methods: Consecutive lesions of ≤10 mm were examined live by CAD EYE from March-June 2022 in our institution. Short unique movie sets of each lesion with and without CAD EYE were recorded simultaneously using two recorders for detection under white light imaging (WLI) and linked color imaging (LCI) and diagnosis under blue laser/light imaging (BLI). Excluding inappropriate movies, 100 lesions detected and diagnosed with CAD EYE accurately were evaluated. Movies without CAD EYE were evaluated first by three trainees and three experts. Subsequently, movies with CAD EYE were examined. The rates of accurate detection and diagnosis were evaluated for both movie sets. Results: Among 100 lesions (mean size: 4.7±2.6 mm; 67 neoplastic/33 hyperplastic), mean accurate detection rates of movies without or with CAD EYE were 78.7%/96.7% under WLI (p<0.01) and 91.3%/97.3% under LCI (p<0.01) for trainees and 85.3%/99.0% under WLI (p<0.01) and 92.6%/99.3% under LCI (p<0.01) for experts. Mean accurate diagnosis rates of movies without or with CAD EYE for BLI were 85.3%/100% for trainees (p<0.01) and 92.3%/100% for experts (p<0.01), respectively. The significant risk factors of not-detected lesions for trainees were right-sided, hyperplastic, not-reddish, in the corner, halation, and inadequate bowel preparation. Conclusions: Unique movie sets with and without CAD EYE could suggest it's efficacy for lesion detection/diagnosis.
RESUMO
Infections caused by Cryptococcus neoformans and Cryptococcus gattii remain a challenge to our healthcare systems as they are still difficult to treat. In order to improve treatment success, in particular for infections that have disseminated to the central nervous system, a better understanding of the disease is needed, addressing questions like how it evolves from a pulmonary to a brain disease and how novel treatment approaches can be developed and validated. This requires not only clinical research and research on the microorganisms in a laboratory environment but also preclinical models in order to study cryptococci in the host. We provide an overview of available preclinical models, with particular emphasis on models of cryptococcosis in rodents. In order to further improve the characterization of rodent models, in particular the dynamic aspects of disease manifestation, development, and ultimate treatment, preclinical in vivo imaging methods are increasingly used, mainly in research for oncological, neurological, and cardiac diseases. In vivo imaging applications for fungal infections are rather sparse. A second aspect of this review is how research on models of cryptococcosis can benefit from in vivo imaging methods that not only provide information on morphology and tissue structure but also on function, metabolism, and cellular properties in a non-invasive way.
RESUMO
Bioluminescence imaging (BLI) is a non-invasive state-of-the-art-method for longitudinal tracking of tumor cells in mice. The technique is commonly used to determine bone metastatic burden in vivo and also suitable ex vivo to detect even smallest bone micro-metastases in spontaneous metastasis xenograft models. However, it is unclear to which extent ex vivo BLI correlates with alternative methods for metastasis quantification. Here, we compared ex vivo BLI, human DNA-based Alu-qPCR, and histology for the quantification of bone vs. lung metastases, which are amongst the most common sites of metastasis in prostate cancer (PCa) patients and spontaneous PCa xenograft models. Data from 93 immunodeficient mice were considered, each of which were subcutaneously injected with luciferase/RGB-labeled human PCa PC-3 cells. The primary tumors were resected at ~ 0.75 cm³ and mice were sacrificed ~ 3 weeks after surgery and immediately examined by ex vivo BLI. Afterwards, the right lungs and hind limbs with the higher BLI signal (BLIHi bone) were processed for histology, whereas the left lung lobes and hind limbs with the lower BLI signal (BLILo bone) were prepared for Alu-qPCR. Our data demonstrate remarkable differences in the correlation coefficients of the different methods for lung metastasis detection (r ~ 0.8) vs. bone metastasis detection (r ~ 0.4). However, the BLI values of the BLIHi and BLILo bones correlated very strongly (r ~ 0.9), indicating that the method per se was reliable under identical limitations; the overall level of metastasis to contralateral bones was astonishingly similar. Instead, the level of lung metastasis only weakly to moderately correlated with the level of bone metastasis formation. Summarized, we observed a considerable discrepancy between ex vivo BLI and histology/Alu-qPCR in the quantification of bone metastases, which was not observed in the case of lung metastases. Future studies using ex vivo BLI for bone metastasis quantification should combine multiple methods to accurately determine metastatic load in bone samples.
Assuntos
Neoplasias Ósseas , Neoplasias Pulmonares , Masculino , Camundongos , Humanos , Animais , Xenoenxertos , Modelos Animais de Doenças , Pulmão , Transplante Heterólogo , Neoplasias Ósseas/secundárioRESUMO
Antimicrobial resistance is a growing global health problem, and it is especially relevant among liver transplant recipients where infections, particularly when caused by microorganisms with a difficult-to-treat profile, are a significant cause of morbidity and mortality. We provide here a complete dissection of the antibiotics active against multidrug-resistant Gram-negative bacteria approved over the last years, focusing on their activity spectrum, toxicity profile and PK/PD properties, including therapeutic drug monitoring, in the setting of liver transplantation. Specifically, the following drugs are presented: ceftolozane/tazobactam, ceftazidime/avibactam, meropenem/vaborbactam, imipenem/relebactam, cefiderocol, and eravacycline. Overall, studies on the safety and optimal employment of these drugs in liver transplant recipients are limited and especially needed. Nevertheless, these pharmaceuticals have undeniably enhanced therapeutic options for infected liver transplant recipients.
Assuntos
Antibacterianos , Transplante de Fígado , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-NegativasRESUMO
The engineering of bispecific antibodies that exhibit optimal affinity and functional activity presents a significant scientific challenge. To tackle this, investigators employ an assortment of protein assay techniques, such as label-free interaction methodologies, which offer rapidity and convenience for the evaluation of extensive sample sets. These assays yield intricate data pertaining to the affinity towards target antigens and Fc-receptors, instrumental in predicting cellular test outcomes. Nevertheless, the fine-tuning of affinity is of paramount importance to mitigate potential adverse effects while maintaining efficient obstruction of ligand-receptor interactions. In this research, biolayer interferometry (BLI) was utilized to probe the functional characteristics of bispecific antibodies targeting cluster of differentiation 47 (CD47) and programmed death-ligand 1 (PD-L1) antigens, encompassing affinity, concurrent binding to two disparate antigens, and the inhibition of ligand-receptor interactions. The findings derived from BLI were juxtaposed with data from in vitro signal regulatory protein-α (SIRP-α)/CD47 blockade reporter bioassays for two leading bispecific antibody candidates, each demonstrating distinct affinity to CD47.
Assuntos
Anticorpos Biespecíficos , Neoplasias , Humanos , Anticorpos Biespecíficos/farmacologia , Antígeno CD47 , Antígeno B7-H1 , Ligantes , Proteínas , Neoplasias/metabolismoRESUMO
Adeno-associated virus (AAV) vectors are among the most prominent viral vectors for in vivo gene therapy, and their investigation and development using high-throughput techniques have gained increasing interest. However, sample throughput remains a bottleneck in most analytical assays. In this study, we compared commonly used analytical methods for AAV genome titer, capsid titer, and transducing titer determination with advanced methods using AAV2, AAV5, and AAV8 as representative examples. For the determination of genomic titers, we evaluated the suitability of qPCR and four different digital PCR methods and assessed the respective advantages and limitations of each method. We found that both ELISA and bio-layer interferometry provide comparable capsid titers, with bio-layer interferometry reducing the workload and having a 2.8-fold higher linear measurement range. Determination of the transducing titer demonstrated that live-cell analysis required less manual effort compared with flow cytometry. Both techniques had a similar linear range of detection, and no statistically significant differences in transducing titers were observed. This study demonstrated that the use of advanced analytical methods provides faster and more robust results while simultaneously increasing sample throughput and reducing active bench work time.
RESUMO
IMPORTANCE: The increased feasibility of whole-genome sequencing has generated significant interest in using such molecular diagnostic approaches to characterize difficult-to-treat, antimicrobial-resistant (AMR) infections. Nevertheless, there are current limitations in the accurate prediction of AMR phenotypes based on existing AMR gene database approaches, which primarily correlate a phenotype with the presence/absence of a single AMR gene. Our study utilized a large cohort of cephalosporin-susceptible Escherichia coli bacteremia samples to determine how increasing the dosage of narrow-spectrum ß-lactamase-encoding genes in conjunction with other diverse ß-lactam/ß-lactamase inhibitor (BL/BLI) genetic determinants contributes to progressively more severe BL/BLI phenotypes. We were able to characterize the complexity of the genetic mechanisms underlying progressive BL/BLI resistance including the critical role of ß-lactamase encoding gene amplification. For the diverse array of AMR phenotypes with complex mechanisms involving multiple genomic factors, our study provides an example of how composite risk scores may improve understanding of AMR genotype/phenotype correlations.
Assuntos
Infecções por Escherichia coli , Inibidores de beta-Lactamases , Humanos , Inibidores de beta-Lactamases/farmacologia , Escherichia coli/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Lactamas , Infecções por Escherichia coli/tratamento farmacológico , Fenótipo , beta-Lactamas/farmacologia , Monobactamas , beta-Lactamases/genética , Testes de Sensibilidade MicrobianaRESUMO
The entry of the SARS-CoV-2 virus into a human host cell begins with the interaction between the viral spike protein (S protein) and human angiotensin-converting enzyme 2 (hACE2). Therefore, a possible strategy for the treatment of this infection is based on inhibiting the interaction of the two abovementioned proteins. Compounds that bind to the SARS-CoV-2 S protein at the interface with the alpha-1/alpha-2 helices of ACE2 PD Subdomain I are of particular interest. We present a stepwise optimisation of helical peptide foldamers containing trans-2-aminocylopentanecarboxylic acid residues as the folding-inducing unit. Four rounds of optimisation led to the discovery of an 18-amino-acid peptide with high affinity for the SARS-CoV-2 S protein (Kd = 650 nM) that inhibits this protein-protein interaction with IC50 = 1.3 µM. Circular dichroism and nuclear magnetic resonance studies indicated the helical conformation of this peptide in solution.
Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Enzima de Conversão de Angiotensina 2 , SARS-CoV-2 , Peptídeos/farmacologiaRESUMO
Aspergillus fumigatus is an environmental mold that causes life-threatening respiratory infections in immunocompromised patients. The plateaued effectiveness of antifungal therapy and the increasing prevalence of triazole-resistant isolates have led to an urgent need to optimize and expand the current treatment options. For the transition of in vitro research to in vivo models in the time- and resource-consuming preclinical drug development pipeline, Galleria mellonella larvae have been introduced as a valuable in vivo screening intermediate. Despite the high potential of this model, the current readouts of fungal infections in G. mellonella are insensitive, irreproducible, or invasive. To optimize this model, we aimed for the longitudinal quantification of the A. fumigatus burden in G. mellonella using noninvasive bioluminescence imaging (BLI). Larvae were infected with A. fumigatus strains expressing a red-shifted firefly luciferase, and the substrate dosage was optimized for the longitudinal visualization of the fungal burden without affecting larval health. The resulting photon flux was successfully validated for fungal quantification against colony forming units (CFU) analyses, which revealed an increased dynamic range from BLI detection. Comparison of BLI to survival rates and health index scores additionally revealed improved sensitivity for the early discrimination of differences in fungal burdens as early as 1 day after infection. This was confirmed by the improved detection of treatment efficacy against triazole-susceptible and -resistant strains. In conclusion, we established a refined G. mellonella aspergillosis model that enables the noninvasive real-time quantification of A. fumigatus by BLI. This model provides a quick and reproducible in vivo system for the evaluation of treatment options and is in line with 3Rs recommendations. IMPORTANCE Triazole-resistant Aspergillus fumigatus strains are rapidly emerging, and resistant infections are difficult to treat, causing mortality rates of up to 88%. The recent WHO priority list underscores A. fumigatus as one of the most critical fungal pathogens for which innovative antifungal treatment should be (urgently) prioritized. Here, we deliver a Galleria mellonella model for triazole-susceptible and -resistant A. fumigatus infections combined with a statistically powerful quantitative, longitudinal readout of the A. fumigatus burden for optimized preclinical antifungal screening. G. mellonella larvae are a convenient invertebrate model for in vivo antifungal screenings, but so far, the model has been limited by variable and insensitive observational readouts. We show that bioluminescence imaging-based fungal burden quantification outperforms these readouts in reliability, sensitivity, and time to the detection of treatment effects in both triazole-susceptible and -resistant infections and can thus lead to better translatability from in vitro antifungal screening results to in vivo confirmation in mouse and human studies.
Assuntos
Antifúngicos , Mariposas , Humanos , Animais , Camundongos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Aspergillus fumigatus , Triazóis/farmacologia , Reprodutibilidade dos Testes , Farmacorresistência Fúngica , Mariposas/microbiologia , Larva/microbiologia , Testes de Sensibilidade MicrobianaRESUMO
After more than two decades of research and development, adeno-associated virus (AAV) has become one of the dominant delivery vectors in gene therapy. Despite the focused research, the cell entry pathway for AAV is still not fully understood. Universal AAV receptor (AAVR) has been identified to be involved in cellular entry of different AAV serotypes. With the unveiling of the high-resolution AAV-AAVR complex structure by cryogenic electron microscopy, the atomic level interaction between AAV and AAVR has become the focus of study in recent years. However, the serotype dependence of this binding interaction and the effect of pH have not been studied. Here, orthogonal approaches including bio-layer interferometry (BLI), size-exclusion chromatography coupled to multi-angle laser scattering (SEC-MALS) and sedimentation velocity analytical ultracentrifugation (SV-AUC) were utilized to study the interaction between selected AAV serotypes and AAVR under different pH conditions. A robust BLI method was developed and the equilibrium dissociation binding constants (KD) between different AAV serotypes (AAV1, AAV5 and AAV8) and AAVR was measured. The binding constants measured by BLI together with orthogonal methods (SEC-MALS and SV-AUC) all confirmed that AAV5 has the strongest binding affinity followed by AAV1 while AAV8 binds the weakest. It was also observed that lower pH promotes the binding between AAV and AAVR and neutral or slightly basic conditions lead to very weak binding. These data indicate that for certain serotypes, AAVR may play a prominent role in trafficking AAV to the Golgi rather than acting as a host cell receptor. Information obtained from these combinatorial biophysical methods can be used to engineer future generations of AAVs to have better transduction efficiency.
Assuntos
Dependovirus , Dependovirus/genética , Dependovirus/química , Concentração de Íons de Hidrogênio , Ligação Proteica , SorogrupoRESUMO
Introduction: The location of T-cells during tumor progression and treatment provides crucial information in predicting the response in vivo. Methods: Here, we investigated, using our bioluminescent, dual color, T-cell reporter mouse, termed TbiLuc, T-cell location and function during murine PDAC tumor growth and checkpoint blockade treatment with anti-PD-1 and anti-CTLA-4. Using this model, we could visualize T-cell location and function in the tumor and the surrounding tumor microenvironment longitudinally. We used murine PDAC clones that formed in vivo tumors with either high T-cell infiltration (immunologically 'hot') or low T-cell infiltration (immunologically 'cold'). Results: Differences in total T-cell bioluminescence could be seen between the 'hot' and 'cold' tumors in the TbiLuc mice. During checkpoint blockade treatment we could see in the tumor-draining lymph nodes an increase in bioluminescence on day 7 after treatment. Conclusions: In the current work, we showed that the TbiLuc mice can be used to monitor T-cell location and function during tumor growth and treatment.
Assuntos
Neoplasias , Camundongos , Animais , Linfócitos T CD8-Positivos , Testes Imunológicos , Microambiente TumoralRESUMO
Oxidation of low-density lipoproteins (LDLs) triggers a recognition by scavenger receptors such as lectin-like oxidized LDL receptor-1 (LOX-1) and is related to inflammation and cardiovascular diseases. Although LDLs that are recognized by LOX-1 can be risk-related LDLs, conventional LDL detection methods using commercially available recombinant receptors remain undeveloped. Using a bio-layer interferometry (BLI), we investigated the binding of recombinant LOX-1 (reLOX-1) and LDL receptors to the oxidized LDLs. The recombinant LDL receptor preferably bound minimally modified LDLs, while the reLOX-1 recognized extensively oxidized LDLs. An inversed response of the BLI was observed during the binding in the case of reLOX-1. AFM study showed that the extensively oxidized LDLs and aggregates of LDLs were observed on the surface, supporting the results. Altogether, a combined use of these recombinant receptors and the BLI method is useful in detecting high-risk LDLs such as oxidized LDLs and modified LDLs.
Assuntos
Lipoproteínas LDL , Receptores de LDL , Microscopia de Força Atômica , Receptores de LDL/metabolismo , Lipoproteínas LDL/metabolismo , Oxirredução , Receptores Depuradores Classe E/metabolismoRESUMO
Virulent Aeromonas hydrophila (vAh) strains that cause motile Aeromonas septicemia (MAS) in farmed channel catfish (Ictalurus punctatus) have been an important problem for more than a decade. However, the routes of infection of vAh in catfish are not well understood. Therefore, it is critical to study the pathogenicity of vAh in catfish. To this goal, a new bioluminescence expression plasmid (pAKgfplux3) with the chloramphenicol acetyltransferase (cat) gene was constructed and mobilized into vAh strain ML09-119, yielding bioluminescent vAh (BvAh). After determining optimal chloramphenicol concentration, plasmid stability, bacteria number-bioluminescence relationship, and growth kinetics, the catfish were challenged with BvAh, and bioluminescent imaging (BLI) was conducted. Results showed that 5 to 10 µg/mL chloramphenicol was suitable for stable bioluminescence expression in vAh, with some growth reduction. In the absence of chloramphenicol, vAh could not maintain pAKgfplux3 stably, with the half-life being 16 h. Intraperitoneal injection, immersion, and modified immersion (adipose fin clipping) challenges of catfish with BvAh and BLI showed that MAS progressed faster in the injection group, followed by the modified immersion and immersion groups. BvAh was detected around the anterior mouth, barbels, fin bases, fin epithelia, injured skin areas, and gills after experimental challenges. BLI revealed that skin breaks and gills are potential attachment and entry portals for vAh. Once vAh breaches the skin or epithelial surfaces, it can cause a systemic infection rapidly, spreading to all internal organs. To our best knowledge, this is the first study that reports the development of a bioluminescent vAh and provides visual evidence for catfish-vAh interactions. Findings are expected to provide a better understanding of vAh pathogenicity in catfish.
RESUMO
Activated hepatic stellate cells (HSCs) play a detrimental role in liver fibrosis progression. Natural killer (NK) cells are known to selectively recognize abnormal or transformed cells via their receptor activation and induce target cell apoptosis and, therefore, can be used as a potential therapeutic strategy for liver cirrhosis. In this study, we examined the therapeutic effects of NK cells in the carbon tetrachloride (CCl4)-induced liver cirrhosis mouse model. NK cells were isolated from the mouse spleen and expanded in the cytokine-stimulated culture medium. Natural killer group 2, member D (NKG2D)-positive NK cells were significantly increased after a week of expansion in culture. The intravenous injection of NK cells significantly alleviated liver cirrhosis by reducing collagen deposition, HSC marker activation, and macrophage infiltration. For in vivo imaging, NK cells were isolated from codon-optimized luciferase-expressing transgenic mice. Luciferase-expressing NK cells were expanded, activated and administrated to the mouse model to track them. Bioluminescence images showed increased accumulation of the intravenously inoculated NK cells in the cirrhotic liver of the recipient mouse. In addition, we conducted QuantSeq 3' mRNA sequencing-based transcriptomic analysis. From the transcriptomic analysis, 33 downregulated genes in the extracellular matrix (ECM) and 41 downregulated genes involved in the inflammatory response were observed in the NK cell-treated cirrhotic liver tissues from the 1532 differentially expressed genes (DEGs). This result indicated that the repetitive administration of NK cells alleviated the pathology of liver fibrosis in the CCl4-induced liver cirrhosis mouse model via anti-fibrotic and anti-inflammatory mechanisms. Taken together, our research demonstrated that NK cells could have therapeutic effects in a CCl4-induced liver cirrhosis mouse model. In particular, it was elucidated that extracellular matrix genes and inflammatory response genes, which were mainly affected after NK cell treatment, could be potential targets.