RESUMO
BACKGROUND: Radiation-induced lung injury (RILI) is a serious complication of radiation therapy, and it is mediated by long non-coding RNAs (lncRNAs). STUDY DESIGN AND METHODS: Mouse lung tissues were examined using RNA-Seq and RNA-Seq libraries 72 h after the administration of 6 Gy of X-ray irradiation. The target mRNAs were functionally annotated and the target lncRNA-based miRNAs and target miRNA-based mRNAs were predicted after irradiation to establish the lncRNA-miRNA-mRNA ceRNA axis. RESULTS: The analyses showed that relative to unirradiated controls, 323 mRNAs, 114 miRNAs, and 472 lncRNAs were significantly up-regulated following irradiation, whereas 1907 mRNAs, 77 miRNAs, and 1572 lncRNAs were significantly down-regulated following irradiation. Voltage-gated ion channels, trans-membrane receptor protein tyrosine kinases, and vascular endothelial growth factor have all been associated with dysregulated miRNA-mRNA relationships. KEGG pathway analysis of the dysregulated miRNA-mRNA targets revealed involvement in pathways associated with the hedgehog signaling pathway-fly, ErbB signaling, VEGF signaling, axon guidance, and focal adhesion. KEGG analysis of differentially expressed showed enrichment of mRNAs in primary immunodeficiency, the intestinal immune axis for IgA production, hematopoietic cell lineages, systemic lupus erythematosus, and Th1 and Th2 cell differentiation. Finally, the ceRNA network revealed that BNIP1 was a critical mRNA modulated by the most significant upregulation of lncRNA E230013L22Rik. CONCLUSION: In summary, the lncRNA-miRNA-mRNA ceRNA axis of RILI was constructed following irradiation in a mouse model. RNA dysregulation in the early stage of RILI may lead to severe complications at a later stage, with BNIP1 contributing to radiation-induced cellular apoptosis in RILI.
RESUMO
BNIP1 (BCL2 interacting protein 1) is a soluble N-ethylmaleimide-sensitive factor-attachment protein receptor involved in ER membrane fusion. We identified the homozygous BNIP1 intronic variant c.84+3A>T in the apparently unrelated patients 1 and 2 with disproportionate short stature. Radiographs showed abnormalities affecting both the axial and appendicular skeleton and spondylo-epiphyseal dysplasia. We detected ~80% aberrantly spliced BNIP1 pre-mRNAs, reduced BNIP1 mRNA level to ~80%, and BNIP1 protein level reduction by ~50% in patient 1 compared to control fibroblasts. The BNIP1 ortholog in Drosophila, Sec20, regulates autophagy and lysosomal degradation. We assessed lysosome positioning and identified a decrease in lysosomes in the perinuclear region and an increase in the cell periphery in patient 1 cells. Immunofluorescence microscopy and immunoblotting demonstrated an increase in LC3B-positive structures and LC3B-II levels, respectively, in patient 1 fibroblasts under steady-state condition. Treatment of serum-starved fibroblasts with or without bafilomycin A1 identified significantly decreased autophagic flux in patient 1 cells. Our data suggest a block at the terminal stage of autolysosome formation and/or clearance in patient fibroblasts. BNIP1 together with RAB33B and VPS16, disease genes for Smith-McCort dysplasia 2 and a multisystem disorder with short stature, respectively, highlight the importance of autophagy in skeletal development.
Assuntos
Autofagossomos , Autofagia , Animais , Autofagossomos/metabolismo , Autofagia/genética , Drosophila , Homozigoto , Humanos , Lisossomos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismoRESUMO
The mitochondrial targeting domain (MTD) of Noxa has necrosis-inducing activity when conjugated with cell-penetrating peptide (CPP). In this study, we report another MTD-like motif, B1MLM, found in BNIP1, a pro-apoptotic BH3-only protein found in the endoplasmic reticulum membrane. The B1MLM peptide, conjugated with CPP, induced necrosis in a way similar to that of R8:MTD. R8:B1MLM caused an intracellular calcium spike, mitochondrial reactive oxygen species generation, and mitochondrial fragmentation. The cytosolic calcium spike was likely due to the opening of the mitochondrial permeability transition pore.
Assuntos
Sinalização do Cálcio , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Células HeLa , Humanos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Necrose , Proteínas Proto-Oncogênicas c-bcl-2/genética , Espécies Reativas de Oxigênio/metabolismoRESUMO
Disturbances in the normal functions of the endoplasmic reticulum (ER) can lead to the accumulation of unfolded proteins and disturbance of Ca(2+) regulation within the lumen of ER, and arouse a series of complicated response termed unfolded protein response (UPR), which is aimed initially at reestablishing homeostasis and normal physiology but can ultimately trigger cell death if the UPR fails to compensate for damage. Here we show that ER locating human RING finger E3 ligase RNF186 participates in the process of ER stress-mediated apoptosis. Overexpression of RNF186 stimulates upregulation of ER sensor proteins and rapid transmission of ER Ca(2+) in Hela cells, while RNF186 knockdown exhibits a moderate degree of resistance to ER stress, indicating RNF186 can arouse stress signaling at ER. We further identified the Bcl-2 family protein BNip1 as one of the substrates of RNF186. BNip1 co-localizes with RNF186 at ER and is poly-ubiquitinated by RNF186 through K29 and K63 linkage in vivo. This modification promotes BNip1 transportation to mitochondria but has no influence on its protein level. The half-life of RNF186 is prolonged under ER stress, probably because of the inhibition on its self-ubiquitination and subsequent degradation by proteasomes. In addition, the ubiquitination of BNip1 is greatly enhanced when ER stress occurred, possibly due to RNF186 accumulation. More importantly, knockdown of BNip1 attenuates the stress signals at ER induced by RNF186. These results collectively indicate that BNip1 functions as a downstream modulator of RNF186 to direct ER stress-associated apoptotic signaling. Our study might reveal a novel E3 ligase-mediated mechanism for modulating ER stress.