Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Biomol NMR Assign ; 17(1): 129-134, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37160842

RESUMO

The S. aureus extracellular adherence protein (Eap) and its homologs, EapH1 and EapH2, serve roles in evasion of the human innate immune system. EapH1 binds with high-affinity and inhibits the neutrophil azurophilic granule proteases neutrophil elastase, cathepsin-G and proteinase-3. Previous structural studies using X-ray crystallography have shown that EapH1 binds to neutrophil elastase and cathepsin-G using a globally similar binding mode. However, whether the same holds true in solution is unknown and whether the inhibitor experiences dynamic changes following binding remains uncertain. To facilitate solution-phase structural and biochemical studies of EapH1 and its complexes with neutrophil granule proteases, we have characterized EapH1 by multidimensional NMR spectroscopy. Here we report a total of 100% of the non-proline backbone resonance assignments of EapH1 with BMRB accession number 50,304.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Inibidores de Serina Proteinase , Humanos , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/metabolismo , Neutrófilos/metabolismo , Elastase de Leucócito/metabolismo , Staphylococcus aureus/química , Staphylococcus aureus Resistente à Meticilina/metabolismo , Ressonância Magnética Nuclear Biomolecular
2.
Biomol NMR Assign ; 15(2): 389-395, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34173222

RESUMO

DNA double-strand breaks (DSBs) represent the most cytotoxic DNA lesions, as-if mis- or unrepaired-they can cause cell death or lead to genome instability, which in turn can cause cancer. DSBs are repaired by two major pathways termed homologous recombination and non-homologous end-joining (NHEJ). NHEJ is responsible for repairing the vast majority of DSBs arising in human cells. Defects in NHEJ factors are also associated with microcephaly, primordial dwarfism and immune deficiencies. One of the key proteins important for mediating NHEJ is XRCC4. XRCC4 is a dimer, with the dimer interface mediated by an extended coiled-coil. The N-terminal head domain forms a mixed alpha-beta globular structure. Numerous factors interact with the C-terminus of the coiled-coil domain, which is also associated with significant self-association between XRCC4 dimers. A range of construct lengths of human XRCC4 were expressed and purified, and the 1-164 variant had the best NMR properties, as judged by consistent linewidths, and chemical shift dispersion. In this work we report the 1H, 15 N and 13C backbone resonance assignments of human XRCC4 in the solution form of the 1-164 construct. Assignments were obtained by heteronuclear multidimensional NMR spectroscopy. In total, 156 of 161 assignable residues of XRCC4 were assigned to resonances in the TROSY spectrum, with an additional 11 resonances assigned to His-Tag residues. Prediction of solution secondary structure from a chemical shift analysis using the TALOS + webserver is in good agreement with the published X-ray crystal structures of this protein.


Assuntos
Reparo do DNA por Junção de Extremidades
3.
Biomol NMR Assign ; 15(2): 323-328, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33870481

RESUMO

The human UDP-glucuronosyltransferase (UGT) family of enzymes catalyze the covalent addition of glucuronic acid to a wide range of compounds, generally rendering them inactive. Although important for clearance of environmental toxins and metabolites, UGT activation can lead to inappropriate glucuronidation of therapeutics underlying drug resistance. Indeed, 50% of medications are glucuronidated. To better understand this mode of resistance, we studied the UGT2B7 enzyme associated with glucuronidation of cancer drugs such as Tamoxifen and Sorafenib. We report 1H, 13C and 15N backbone (> 90%) and side-chain assignments (~ 78% completeness according to CYANA) for the C-terminal domain of UGT2B7 (UGT2B7-C). Given the biomedical importance of this family of enzymes, our assignments will provide a key tool for improving understanding of the biochemical basis for substrate selectivity and other aspects of enzyme activity. This in turn will inform on drug design to overcome UGT-related drug resistance.


Assuntos
Ressonância Magnética Nuclear Biomolecular
4.
Biomol NMR Assign ; 15(2): 249-253, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33751378

RESUMO

Methylcrotonyl-CoA carboxylase (MCCC) is a biotin dependent enzyme, that plays a crucial role in leucine metabolism. The enzyme comprises a biotin carboxylase (BC), a carboxyltransferase (CT), and a biotin carboxyl carrier protein (BCCP) domain. MCCC is synthesized as an apo-protein, and is posttranslationally modified at a lysine residue, conserved in the biotin carboxyl carrier protein (BCCP) domain. In order to understand the structure, function and interactions of L. major MCCC, we have expressed and characterized its domains. Here we report the complete chemical shift assignments of MCCC BCCP domain of L. major. Furthermore, we have used the assignments to generate a model of the same, using CS-Rosetta. We have also followed its chemical shift perturbations upon biotin modification. Changes were observed at the lysine 51 amide, that undergoes biotin modification, and a few others present in its immediate neighborhood.


Assuntos
Ressonância Magnética Nuclear Biomolecular
5.
Int J Biol Macromol ; 165(Pt B): 2508-2519, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33470198

RESUMO

Nuclear-export-protein (NEP) plays multiple-functions during influenza virus replication-cycle and shows unique pattern of conserved residues, which altogether make NEP a potential target for developing novel anti-influenza drugs. However, the mechanistic structural biology of NEP has not been fully characterized so far owing to its tendency to aggregate in solution. As structural information is important to guide rational drug-discovery process; therefore, procedural optimization efforts are going on to achieve properly folded NEP in sub-millimolar concentrations for solution-NMR investigations. As a first step in this direction, the refolding-cum-aggregation behavior of recombinant-NEP with N-terminal purification-tag (referred here as NEPN) at different urea-concentrations has been investigated here by NMR-based methods. Several attempts were made to refold denatured NEP-N through step-dialysis. However, owing to its strong tendency to aggregate, excessive precipitation was observed at sub-higher levels of urea concentration (5.0 ± 1.0 M). Finally, we used drip-dilution method with 10.5 M urea-denatured NEP-N and were able to refold NEP-N instantly. The amide 1H dispersion of 3.6 ppm (6.6-10.2 ppm) in the 15N-HSQC-spectra of instantly refolded NEP-N confirmed the folded state. This successful instant-refolding of NEP-N has been reported for the first-time and the underlying mechanism has been rationalized through establishing the complete backbone-resonance-assignments of NEP-N at 9.7 M urea-denatured state.


Assuntos
Vírus da Influenza A Subtipo H1N1/genética , Ureia/química , Proteínas não Estruturais Virais/química , Sequência de Aminoácidos , Diálise , Escherichia coli/genética , Escherichia coli/metabolismo , Ressonância Magnética Nuclear Biomolecular , Agregados Proteicos , Desnaturação Proteica , Redobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas não Estruturais Virais/isolamento & purificação
6.
Biomol NMR Assign ; 13(2): 349-356, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31396843

RESUMO

ß-Phosphoglucomutase (ßPGM) is a magnesium-dependent phosphoryl transfer enzyme that catalyses the reversible isomerisation of ß-glucose 1-phosphate and glucose 6-phosphate, via two phosphoryl transfer steps and a ß-glucose 1,6-bisphosphate intermediate. Substrate-free ßPGM is an essential component of the catalytic cycle and an understanding of its dynamics would present significant insights into ßPGM functionality, and enzyme catalysed phosphoryl transfer in general. Previously, 30 residues around the active site of substrate-free ßPGMWT were identified as undergoing extensive millisecond dynamics and were unassignable. Here we report 1H, 15N and 13C backbone resonance assignments of the P146A variant (ßPGMP146A) in its substrate-free form, where the K145-A146 peptide bond adopts a trans conformation in contrast to all crystal structures of ßPGMWT, where the K145-P146 peptide bond is cis. In ßPGMP146A millisecond dynamics are suppressed for all but 17 residues, allowing 92% of backbone resonances to be assigned. Secondary structure predictions using TALOS-N reflect ßPGM crystal structures, and a chemical shift comparison between substrate-free ßPGMP146A and ßPGMWT confirms that the solution conformations are very similar, except for the D137-A147 loop. Hence, the isomerisation state of the 145-146 peptide bond has little effect on structure but the cis conformation triggers millisecond dynamics in the hinge (V12-T16), the nucleophile (D8) and residues that coordinate the transferring phosphate group (D8 and S114-S116), and the D137-A147 loop (V141-A142 and K145). These millisecond dynamics occur in addition to those for residues involved in coordinating the catalytic MgII ion and the L44-L53 loop responsible for substrate discrimination.


Assuntos
Lactococcus lactis/enzimologia , Proteínas Mutantes/química , Ressonância Magnética Nuclear Biomolecular , Fosfoglucomutase/química , Proteínas Mutantes/genética , Fosfoglucomutase/genética
7.
J Biomol NMR ; 73(10-11): 531-544, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31281943

RESUMO

Assignment of backbone resonances is a necessary initial step in every protein NMR investigation. Standard assignment procedure is based on the set of 3D triple-resonance (1H-13C-15N) spectra and requires at least several days of experimental measurements. This limits its application to the proteins with low stability. To speed up the assignment procedure, combinatorial selective labeling (CSL) can be used. In this case, sequence-specific information is extracted from 2D spectra measured for several selectively 13C,15N-labeled samples, produced in accordance with a special CSL scheme. Here we review previous applications of the CSL approach and present novel deterministic 'CombLabel' algorithm, which generates CSL schemes minimizing the number of labeled samples and their price and maximizing assignment information that can be obtained for a given protein sequence. Theoretical calculations revealed that CombLabel software outperformed previously proposed stochastic algorithms. Current implementation of CombLabel robustly calculates CSL schemes containing up to six samples, which is sufficient for moderately sized (up to 200 residues) proteins. As a proof of concept, we calculated CSL scheme for the first voltage-sensing domain of human Nav1.4 channel, a 134 residue four helical transmembrane protein having extremely low stability in micellar solution (half-life ~ 24 h at 45 °C). Application of CSL doubled the extent of backbone resonance assignment, initially obtained by conventional approach. The obtained assignment coverage (~ 50%) is sufficient for ligand screening and mapping of binding interfaces.


Assuntos
Sequência de Aminoácidos , Proteínas de Membrana/química , Ressonância Magnética Nuclear Biomolecular/métodos , Humanos , Canal de Sódio Disparado por Voltagem NAV1.4/química , Estudo de Prova de Conceito , Ligação Proteica , Domínios Proteicos , Software , Coloração e Rotulagem , Fatores de Tempo
8.
Biomol NMR Assign ; 13(2): 287-293, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31025174

RESUMO

Enzyme I (EI) of the bacterial phosphotransferase system (PTS) utilizes phosphoenolpyruvate (PEP) as a source of energy in order to transport sugars across the cellular membrane. PEP binding to EI initiates a phosphorylation cascade that regulates a variety of essential pathways in the metabolism of bacterial cells. Given its central role in controlling bacterial metabolism, EI has been often suggested as a good target for antimicrobial research. Here, we report the 1HN, 15N, 13C', 1Hmethyl, and 13Cmethyl chemical shifts of the 128 kDa homodimer EI from the thermophile Thermoanaerobacter tengcongensis. In total 79% of the expected backbone amide correlations and 80% of the expected methyl TROSY peaks from U-[2H, 13C, 15N], Ileδ1-[13CH3], Val-Leu-[13CH3/12CD3] labeled EI were assigned. The reported assignments will enable future structural studies aimed at illuminating the fundamental mechanisms governing long-range interdomain communication in EI and at indicating new therapeutic strategies to combat bacterial infections.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química , Fosfotransferases (Aceptor do Grupo Nitrogenado)/química , Multimerização Proteica , Thermoanaerobacter/enzimologia , Estrutura Quaternária de Proteína
9.
Biomol NMR Assign ; 13(1): 249-254, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30868366

RESUMO

Human linker histone H1 plays a seminal role in eukaryotic DNA packaging. H1 has a tripartite structure consisting of a central, conserved globular domain, which adopts a winged-helix fold, flanked by two variable N- and C-terminal domains. Here we present the backbone resonance assignments of the N-terminal domain and globular domain of human linker histone H1x in the presence and absence of the secondary structure stabilizer sodium perchlorate. Analysis of chemical shift changes between the two conditions is consistent with induction of transient secondary structural elements in the N-terminal domain of H1x in high ionic strength, which suggests that the N-terminal domain adopts significant alpha-helical conformations in the presence of DNA.


Assuntos
Histonas/química , Ressonância Magnética Nuclear Biomolecular , Percloratos/farmacologia , Compostos de Sódio/farmacologia , Humanos , Domínios Proteicos , Estrutura Secundária de Proteína
10.
Biomol NMR Assign ; 13(1): 219-222, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30729401

RESUMO

Staphylococcus aureus is a ubiquitous and persistent pathogen of humans and livestock. The bacterium disrupts the host's innate immune system's ability to recognize and clear bacteria with optimal efficiency by expressing a wide variety of virulence proteins. Two single domain protein homologs (EapH1, EapH2) of the extracellular adherence protein (Eap) have been reported. Eap is a multidomain protein that participates in various protein-protein interactions that inhibit the innate immune response, including both the complement and Neutrophil Serine Proteases (NSPs). EapH1 and EapH2 are also inhibitors of NSPs (Stapels et al., Proc Natl Acad Sci 111:13187-13192, 2014), but lack the ability to inhibit the classical, and lectin pathways of the complement activation system (Woehl et al., J Immunol 193:6161-6171, 2014). We continue the characterization of Eap domains, here with the experiments on EapH2, we acquired a series of 2D and 3D NMR spectra of EapH2 in solution. We completed 99% of expected non-proline backbone 1H, 15N, and 13C resonance assignments of EapH2 and predicted secondary structure via the TALOS-N server. The assignment data have been deposited in the BMRB data bank under Accession Number 27540.


Assuntos
Proteínas de Bactérias/química , Evasão da Resposta Imune , Imunidade Inata , Ressonância Magnética Nuclear Biomolecular , Staphylococcus aureus/química , Staphylococcus aureus/imunologia , Estrutura Secundária de Proteína
11.
Biomol NMR Assign ; 12(2): 315-318, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29934866

RESUMO

A major component of phase II drug metabolism is the covalent addition of glucuronic acid to metabolites and xenobiotics. This activity is carried out by UDP-glucuronosyltransferases (UGT) which bind the UDP-glucuronic acid donor and catalyze the covalent addition of glucuronic acid sugar moieties onto a wide variety of substrates. UGTs play important roles in drug detoxification and were recently shown to act in an inducible form of multi-drug resistance in cancer patients. Despite their biological importance, structural understanding of these enzymes is limited. The C-terminal domain is identical for all UGT1A family members and required for binding to UDP-glucuronic acid as well as involved in contacts with substrates. Here, we report the backbone assignments for the C-terminal domain of UGT1A. These assignments are a critical tool for the development of a deeper biochemical understanding of substrate specificity and enzymatic activity.


Assuntos
Glucuronosiltransferase/química , Ressonância Magnética Nuclear Biomolecular , Glucuronosiltransferase/metabolismo , Humanos , Domínios Proteicos , Especificidade por Substrato
12.
Biomol NMR Assign ; 12(2): 297-301, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29858729

RESUMO

N6-methyladenosine (m6A) is the most abundant and reversible post-transcriptional modification in eukaryotic mRNA and long non-coding RNA (lncRNA). The central role of m6A in various physiological processes has generated considerable biological and pharmacological interest. Alkbh5 (AlkB homologue 5) belongs to the AlkB family and is a non-heme Fe(II)/α-ketoglutarate-dependent dioxygenase that selectively catalyzes the oxidative demethylation of m6A. Herein, we report the backbone 1H, 15N, 13C chemical shift assignment of a fully active, 26 kDa construct of human Alkbh5. Experiments were acquired at 25 °C by heteronuclear multidimensional NMR spectroscopy. Collectively, 92% of all backbone resonances were assigned, with 195 out of a possible 212 residues assigned in the 1H-15N TROSY spectrum. Using the program TALOS+, a secondary structure prediction was generated from the assigned backbone resonance that is consistent with the previously reported X-ray structure of the enzyme. The reported assignment will permit investigations of the protein structural dynamics anticipated to provide crucial insight regarding fundamental aspects in the recognition and enzyme regulation processes.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase/química , Ressonância Magnética Nuclear Biomolecular , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Biocatálise , Humanos , Modelos Moleculares , Conformação Proteica
13.
Biomol NMR Assign ; 12(1): 79-83, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29168057

RESUMO

Pentaerythritol tetranitrate reductase (PETNR) is a flavoenzyme possessing a broad substrate specificity and is a member of the Old Yellow Enzyme family of oxidoreductases. As well as having high potential as an industrial biocatalyst, PETNR is an excellent model system for studying hydrogen transfer reactions. Mechanistic studies performed with PETNR using stopped-flow methods have shown that tunneling contributes towards hydride transfer from the NAD(P)H coenzyme to the flavin mononucleotide (FMN) cofactor and fast protein dynamics have been inferred to facilitate this catalytic step. Herein, we report the near-complete 1H, 15N and 13C backbone resonance assignments of PETNR in a stoichiometric complex with the FMN cofactor in its native oxidized form, which were obtained using heteronuclear multidimensional NMR spectroscopy. A total of 97% of all backbone resonances were assigned, with 333 out of a possible 344 residues assigned in the 1H-15N TROSY spectrum. This is the first report of an NMR structural study of a flavoenzyme from the Old Yellow Enzyme family and it lays the foundation for future investigations of functional dynamics in hydride transfer catalytic mechanism.


Assuntos
Enterobacter cloacae/enzimologia , Ressonância Magnética Nuclear Biomolecular , Oxirredutases/química , Modelos Moleculares , Conformação Proteica em alfa-Hélice
14.
Biomol NMR Assign ; 12(1): 103-106, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29064000

RESUMO

Phosphoenolpyruvate binding to the C-terminal domain (EIC) of enzyme I of the bacterial phosphotransferase system (PTS) initiates a phosphorylation cascade that results in sugar translocation across the cell membrane and controls a large number of essential pathways in bacterial metabolism. EIC undergoes an expanded to compact conformational equilibrium that is regulated by ligand binding and determines the phosphorylation state of the overall PTS. Here, we report the backbone 1H, 15N and 13C chemical shift assignments of the 70 kDa EIC dimer from the thermophilic bacterium Thermoanaerobacter tengcongensis. Assignments were obtained at 70 °C by heteronuclear multidimensional NMR spectroscopy. In total, 90% of all backbone resonances were assigned, with 264 out of a possible 299 residues assigned in the 1H-15N TROSY spectrum. The secondary structure predicted from the assigned backbone resonance using the program TALOS+ is in good agreement with the X-ray crystal structure of T. tengcongensis EIC. The reported assignments will allow detailed structural and thermodynamic investigations on the coupling between ligand binding and conformational dynamics in EIC.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química , Fosfotransferases (Aceptor do Grupo Nitrogenado)/química , Thermoanaerobacter/enzimologia , Modelos Moleculares , Domínios Proteicos
15.
Biomol NMR Assign ; 11(2): 251-256, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28866776

RESUMO

Human phosphoglycerate kinase (PGK) is an energy generating glycolytic enzyme that catalyses the transfer of a phosphoryl group from 1,3-bisphosphoglycerate (BPG) to ADP producing 3-phosphoglycerate (3PG) and ATP. PGK is composed of two α/ß Rossmann-fold domains linked by a central α-helix and the active site is located in the cleft formed between the N-domain which binds BPG or 3PG, and the C-domain which binds the nucleotides ADP or ATP. Domain closure is required to bring the two substrates into close proximity for phosphoryl transfer to occur, however previous structural studies involving a range of native substrates and substrate analogues only yielded open or partly closed PGK complexes. X-ray crystallography using magnesium trifluoride (MgF3-) as a isoelectronic and near-isosteric mimic of the transferring phosphoryl group (PO3-), together with 3PG and ADP has been successful in trapping human PGK in a fully closed transition state analogue (TSA) complex. In this work we report the 1H, 15N and 13C backbone resonance assignments of human PGK in the solution conformation of the fully closed PGK:3PG:MgF3:ADP TSA complex. Assignments were obtained by heteronuclear multidimensional NMR spectroscopy. In total, 97% of all backbone resonances were assigned in the complex, with 385 out of a possible 399 residues assigned in the 1H-15N TROSY spectrum. Prediction of solution secondary structure from a chemical shift analysis using the TALOS-N webserver is in good agreement with the published X-ray crystal structure of this complex.


Assuntos
Difosfato de Adenosina/metabolismo , Fluoretos/metabolismo , Gliceraldeído 3-Fosfato/metabolismo , Compostos de Magnésio/metabolismo , Ressonância Magnética Nuclear Biomolecular , Fosfoglicerato Quinase/química , Fosfoglicerato Quinase/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice
16.
Biomol NMR Assign ; 11(1): 57-61, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27981425

RESUMO

Catechol O-methyltransferase (COMT) is an enzyme that plays a major role in catechol neurotransmitter deactivation. Inhibition of COMT can increase neurotransmitter levels, which provides a means of treatment for Parkinson's disease, schizophrenia and depression. COMT exists as two isozymes: a soluble cytoplasmic form (S-COMT), expressed in the liver and kidneys and a membrane-bound form (MB-COMT), found mostly in the brain. Here we report the backbone 1H, 15N and 13C chemical shift assignments of S-COMT in complex with S-adenosyl-L-methionine, 3,5-dinitrocatechol and Mg2+. Assignments were obtained by heteronuclear multidimensional NMR spectroscopy. In total, 97 % of all backbone resonances were assigned in the complex, with 205 out of a possible 215 residues assigned in the 1H-15N TROSY spectrum. Prediction of solution secondary structure from a chemical shift analysis using the TALOS+ webserver is in good agreement with published X-ray crystal structures.


Assuntos
Catecol O-Metiltransferase/química , Catecol O-Metiltransferase/metabolismo , Catecóis/metabolismo , Ressonância Magnética Nuclear Biomolecular , S-Adenosilmetionina/metabolismo , Sítios de Ligação , Humanos , Modelos Moleculares , Conformação Proteica , Solubilidade
17.
Biomol NMR Assign ; 10(2): 357-60, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27492395

RESUMO

A study describing the (1)H, (13)C and (15)N backbone and side chain chemical shift assignments and secondary structure of Skint-1 a prototypic member of a family of mouse genes, of which Skint-1 is involved in the development of the dendritic epidermal T cell (DETC) subset of γδ T cells.


Assuntos
Imunoglobulinas/química , Imunoglobulinas/metabolismo , Ressonância Magnética Nuclear Biomolecular , Subpopulações de Linfócitos T/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Animais , Ligantes , Camundongos , Estrutura Secundária de Proteína , Especificidade por Substrato
18.
Biomol NMR Assign ; 10(2): 253-7, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27098549

RESUMO

RNA modification is a post-transcriptional process by which certain nucleotides are altered after their initial incorporation into an RNA chain. Transfer RNAs (tRNAs) is the most heavily modified class of RNA molecules. These modifications expand the chemical and functional diversity of tRNAs and enhance their structural stability. To date, more than 100 modifications have been identified, the majority of which are specific from one domain of life. However, few modifications are extensively present in the three domains of life. Among those, the m(1)A nucleotide, which consists in the methylation at position 1 of the adenine aromatic ring, is found in tRNAs and ribosomal RNAs. In tRNAs, the m(1)A modification occurs at position 9, 14, 22, 57 and 58. The enzyme TrmK catalyzes the m(1)A formation at position 22. Here we report the backbone (1)H, (15)N and (13)C chemical shift assignments of TrmK from Bacillus subtilis obtained by heteronuclear multidimensional NMR spectroscopy as well as its secondary structure in solution as predicted by TALOS+. These assignments of TrmK pave the way for interaction studies with its tRNA substrates.


Assuntos
Bacillus subtilis/enzimologia , Ressonância Magnética Nuclear Biomolecular , tRNA Metiltransferases/química
19.
Biomol NMR Assign ; 10(1): 167-70, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26590577

RESUMO

The plakin repeat domain is a distinctive hallmark of the plakin superfamily of proteins, which are found within all epithelial tissues. Plakin repeat domains mediate the interactions of these proteins with the cell cytoskeleton and are critical for the maintenance of tissue integrity. Despite their biological importance, no solution state resonance assignments are available for any homologue. Here we report the essentially complete (1)H, (13)C and (15)N backbone chemical shift assignments of the singular 22 kDa plakin repeat domain of human envoplakin, providing the means to investigate its interactions with ligands including intermediate filaments.


Assuntos
Proteínas de Membrana/química , Ressonância Magnética Nuclear Biomolecular , Plaquinas/química , Precursores de Proteínas/química , Sequências Repetitivas de Aminoácidos , Sequência de Aminoácidos , Humanos
20.
Magn Reson Chem ; 53(2): 79-87, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25178811

RESUMO

Protein NMR spectroscopy has expanded dramatically over the last decade into a powerful tool for the study of their structure, dynamics, and interactions. The primary requirement for all such investigations is sequence-specific resonance assignment. The demand now is to obtain this information as rapidly as possible and in all types of protein systems, stable/unstable, soluble/insoluble, small/big, structured/unstructured, and so on. In this context, we introduce here two reduced dimensionality experiments ­ (3,2)D-hNCOcanH and (3,2)D-hNcoCAnH ­ which enhance the previously described 2D NMR-based assignment methods quite significantly. Both the experiments can be recorded in just about 2-3 h each and hence would be of immense value for high-throughput structural proteomics and drug discovery research. The applicability of the method has been demonstrated using alpha-helical bovine apo calbindin-D9k P43M mutant (75 aa) protein. Automated assignment of this data using AUTOBA has been presented, which enhances the utility of these experiments. The backbone resonance assignments so derived are utilized to estimate secondary structures and the backbone fold using Web-based algorithms. Taken together, we believe that the method and the protocol proposed here can be used for routine high-throughput structural studies of proteins.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Proteínas/química , Automação , Automação Laboratorial , Calbindinas/química , Estrutura Secundária de Proteína , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA