Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Insects ; 15(9)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39336654

RESUMO

The following study was conducted to generate a transgenic Sf9 cell line for rapid and easy virus quantification in the baculovirus expression system (BES). The hr3 (homologous region 3) and 39K and p10 promoters were used as the expression structures to induce rapid and intense expression of the enhanced green fluorescent protein gene in cells in response to viral infection. Of 20 transgenic Sf9 cell lines generated using the piggyBac system, the cell line that showed the highest fluorescence expression in the shortest time in response to viral infection was selected and named Sf9-QE. The average diameter of the Sf9-QE cells was around 16 µm, which is 2 µm smaller than the average diameter of Sf9 cells, whereas the rate of cell proliferation was around 1.6 times higher in the Sf9-QE cells. Virus quantification using the Sf9-QE cell line did not produce significantly different results compared to the other cell lines; however, the time required for complete virus quantification was approximately 5.3 to 6.0 days for the Sf9-QE cells, which is around 4 to 6 days shorter than the time required for the other cell lines, enabling convenient and accurate virus quantification via fluorescence photometry within around 6.0 to 6.3 days. The properties of the Sf9-QE cells were stable for up to at least 100 passages.

2.
Vaccines (Basel) ; 12(8)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39203975

RESUMO

The enormous effects of avian influenza on poultry production and the possible health risks to humans have drawn much attention to this disease. The H9N2 subtype of avian influenza virus is widely prevalent among poultry, posing a direct threat to humans through infection or by contributing internal genes to various zoonotic strains of avian influenza. Despite the widespread use of H9N2 subtype vaccines, outbreaks of the virus persist due to the rapid antigenic drift and shifts in the influenza virus. As a result, it is critical to develop a broader spectrum of H9N2 subtype avian influenza vaccines and evaluate their effectiveness. In this study, a recombinant baculovirus expressing the broad-spectrum HA protein was obtained via bioinformatics analysis and a baculovirus expression system (BES). This recombinant hemagglutinin (HA) protein displayed cross-reactivity to positive sera against several subbranch H9 subtype AIVs. An adjuvant and purified HA protein were then used to create an rHA vaccine candidate. Evaluation of the vaccine demonstrated that subcutaneous immunization of the neck with the rHA vaccine candidate stimulated a robust immune response, providing complete clinical protection against various H9N2 virus challenges. Additionally, virus shedding was more effectively inhibited by rHA than by the commercial vaccine. Thus, our findings illustrate the efficacy of the rHA vaccine candidate in shielding chickens against the H9N2 virus challenge, underscoring its potential as an alternative to conventional vaccines.

3.
Int J Mol Sci ; 25(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39000366

RESUMO

As a highly pathogenic avian virus, H5 influenza poses a serious threat to livestock, the poultry industry, and public health security. Hemagglutinin (HA) is both the dominant epitope and the main target of influenza-neutralizing antibodies. Here, we designed a nanoparticle hemagglutinin influenza vaccine to improve the immunogenicity of the influenza vaccine. In this study, HA5 subtype influenza virus was used as the candidate antigen and was combined with the artificially designed double-branch scaffold protein I53_dn5 A and B. A structurally correct and bioactive trimer HA5-I53_dn5B/Y98F was obtained through secretion and purification using an insect baculovirus expression system; I53_dn5A was obtained by purification using a prokaryotic expression system. HA5-I53_dn5B/Y98F and I53_dn5A self-assembled into spherical nanoparticles (HA5-I53_dn5) in vitro with a diameter of about 45 nm. Immunization and serum test results showed that both HA5-I53_dn5B/Y98F and HA5-I53_dn5 could induce HA5-specific antibodies; however, the immunogenicity of HA5-I53_dn5 was better than that of HA5-I53_dn5B/Y98F. Groups treated with HA5-I53_dn5B and HA5-I53_dn5 nanoparticles produced IgG antibody titers that were not statistically different from those of the nanoparticle-containing adjuvant group. This production of trimerized HA5-I53_dn5B and HA5-I53_dn5 nanoparticles using baculovirus expression provides a reference for the development of novel, safe, and efficient influenza vaccines.


Assuntos
Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vacinas contra Influenza , Nanopartículas , Vacinas contra Influenza/imunologia , Animais , Nanopartículas/química , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Camundongos , Camundongos Endogâmicos BALB C , Formação de Anticorpos/imunologia , Feminino , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Humanos
4.
Vopr Virusol ; 69(2): 175-186, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38843023

RESUMO

INTRODUCTION: The COVID-19 pandemic caused by SARS-CoV-2 has created serious health problems worldwide. The most effective way to prevent the occurrence of new epidemic outbreaks is vaccination. One of the modern and effective approaches to vaccine development is the use of virus-like particles (VLPs). The aim of the study is to develop a technology for production of VLP based on recombinant SARS-CoV-2 proteins (E, M, N and S) in insect cells. MATERIALS AND METHODS: Synthetic genes encoding coronavirus proteins E, M, N and S were used. VLP with various surface proteins of strains similar to the Wuhan virus, Delta, Alpha and Omicron were developed and cloned into the pFastBac plasmid. The proteins were synthesized in the baculovirus expression system and assembled into VLP in the portable Trichoplusia ni cell. The presence of insertion in the baculovirus genome was determined by PCR. ELISA and immunoblotting were used to study the antigenic activity of VLP. VLP purification was performed by ultracentrifugation using 20% sucrose. Morphology was assessed using electron microscopy and dynamic light scattering. RESULTS: VLPs consisting of recombinant SARS-CoV-2 proteins (S, M, E and N) were obtained and characterized. The specific binding of antigenic determinants in synthesized VLPs with antibodies to SARS-CoV-2 proteins has been demonstrated. The immunogenic properties of VLPs have been studied. CONCLUSION: The production and purification of recombinant VLPs consisting of full-length SARS-CoV-2 proteins with a universal set of surface antigens have been developed and optimized. Self-assembling particles that mimic the coronavirus virion induce a specific immune response against SARS-CoV-2.


Assuntos
Baculoviridae , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas de Partículas Semelhantes a Vírus , Animais , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Humanos , COVID-19/virologia , COVID-19/imunologia , Baculoviridae/genética , Baculoviridae/metabolismo , Vacinas contra COVID-19/imunologia , Anticorpos Antivirais/imunologia , Proteínas M de Coronavírus/genética , Proteínas M de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia , Fosfoproteínas
5.
Vaccines (Basel) ; 12(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38932396

RESUMO

Influenza viruses can cause highly infectious respiratory diseases, posing noteworthy epidemic and pandemic threats. Vaccination is the most cost-effective intervention to prevent influenza and its complications. However, reliance on embryonic chicken eggs for commercial influenza vaccine production presents potential risks, including reductions in efficacy due to HA gene mutations and supply delays due to scalability challenges. Thus, alternative platforms are needed urgently to replace egg-based methods and efficiently meet the increasing demand for vaccines. In this study, we employed a baculovirus expression vector system to engineer HA, NA, and M1 genes from seasonal influenza strains A/H1N1, A/H3N2, B/Yamagata, and B/Victoria, generating virus-like particle (VLP) vaccine antigens, H1N1-VLP, H3N2-VLP, Yamagata-VLP, and Victoria-VLP. We then assessed their functional and antigenic characteristics, including hemagglutination assay, protein composition, morphology, stability, and immunogenicity. We found that recombinant VLPs displayed functional activity, resembling influenza virions in morphology and size while maintaining structural integrity. Comparative immunogenicity assessments in mice showed that our quadrivalent VLPs were consistent in inducing hemagglutination inhibition and neutralizing antibody titers against homologous viruses compared to both commercial recombinant HA and egg-based vaccines (Vaxigrip). The findings highlight insect cell-based VLP vaccines as promising candidates for quadrivalent seasonal influenza vaccines. Further studies are worth conducting.

6.
Vet Microbiol ; 294: 110108, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729093

RESUMO

H7N9 subtype avian influenza virus (AIV) poses a great challenge to poultry industry. Virus-like particle (VLP) is a prospective alternative for the traditional egg-based influenza vaccines. N-linked glycosylation (NLG) regulates the efficacy of influenza vaccines, whereas the impact of NLG modifications on the efficacy of influenza VLP vaccines remains unclear. Here, H7N9 VLPs were assembled in insect cells through co-infection with the baculoviruses expressing the NLG-modified hemagglutinin (HA), neuraminidase and matrix proteins, and the VLP vaccines were assessed in chickens and mice. NLG modifications significantly enhanced hemagglutination-inhibition and virus neutralization antibody responses in mice, rather than in chickens, because different immunization strategies were used in these animal models. The presence of dual NLG at residues 133 and 158 significantly elevated HA-binding IgG titers in chickens and mice. The VLP vaccines conferred complete protection and significantly suppressed virus replication and lung pathology post challenge with H7N9 viruses in chickens and mice. VLP immunization activated T cell immunity-related cytokine response and inhibited inflammatory cytokine response in mouse lung. Of note, the presence of dual NLG at residues 133 and 158 optimized the capacity of the VLP vaccine to stimulate interleukin-4 expression, inhibit virus shedding or alleviate lung pathology in chickens or mice. Intriguingly, the VLP vaccine with NLG addition at residue 133 provided partial cross-protection against the H5Nx subtype AIVs in chickens and mice. In conclusion, dual NLG at residues 133 and 158 in HA can be potentially used to enhance the efficacy of H7N9 VLP vaccines in chickens and mammals.


Assuntos
Anticorpos Antivirais , Galinhas , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Subtipo H7N9 do Vírus da Influenza A , Vacinas contra Influenza , Influenza Aviária , Camundongos Endogâmicos BALB C , Vacinas de Partículas Semelhantes a Vírus , Animais , Galinhas/imunologia , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Camundongos , Subtipo H7N9 do Vírus da Influenza A/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Glicosilação , Influenza Aviária/prevenção & controle , Influenza Aviária/imunologia , Influenza Aviária/virologia , Anticorpos Antivirais/sangue , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Feminino , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Citocinas , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia
7.
Viruses ; 16(4)2024 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-38675835

RESUMO

Many protein expression systems are primarily utilised to produce a single, specific recombinant protein. In contrast, most biological processes such as virus assembly rely upon a complex of several interacting proteins rather than the activity of a sole protein. The high complexity of the baculovirus genome, coupled with a multiphase replication cycle incorporating distinct transcriptional steps, made it the ideal system to manipulate for high-level expression of a single, or co-expression of multiple, foreign proteins within a single cell. We have developed and utilised a series of recombinant baculovirus systems to unravel the sequential assembly process of a complex non-enveloped model virus, bluetongue virus (BTV). The high protein yields expressed by the baculovirus system not only facilitated structure-function analysis of each viral protein but were also advantageous to crystallography studies and supported the first atomic-level resolution of a recombinant viral protein, the major BTV capsid protein. Further, the formation of recombinant double-shelled virus-like particles (VLPs) provided insights into the structure-function relationships among the four major structural proteins of the BTV whilst also representing a potential candidate for a viral vaccine. The baculovirus multi-gene expression system facilitated the study of structurally complex viruses (both non-enveloped and enveloped viruses) and heralded a new generation of viral vaccines.


Assuntos
Baculoviridae , Proteínas Recombinantes , Baculoviridae/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Animais , Expressão Gênica , Vírus Bluetongue/genética , Vetores Genéticos/genética , Montagem de Vírus , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/química
8.
Open Vet J ; 14(1): 350-359, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633177

RESUMO

Background: Equine influenza (EI) is a transmissible viral respiratory sickness of the Equidae family. Two viruses, H7N7 and H3N8 caused EI; however, H7N7 has not been detected for decades. H3N8 has circulated and bifurcated into Eurasian and American lineages. The latter subsequently diversified into Kentucky, South America, and Florida sub-lineages. Florida clade 1 (FC1) and Florida clade 2 (FC2) strains are the only circulating EI viruses (EIVs) in the meantime. Immunization is considered the major means for the prevention and control of EI infection. Using disparate technologies and platforms, several vaccines have been developed and commercialized. According to the recommendations of the World Organization for Animal Health (WOAH), all commercial vaccines shall comprise representatives of both FC1 and FC2 strains. Unfortunately, most of the commercially available vaccines were not updated to incorporate a representative of FC2 strains. Aim: The purpose of this research was to develop a new EI vaccine candidate that incorporates the hemagglutinin (HA) antigen from the currently circulating FC2. Methods: In this study, we report the expression of the full-length recombinant HA gene of FC2 in the baculovirus expression system. Results: The HA recombinant protein has been proven to maintain its biological characteristics by hemadsorption (HAD) and hemagglutination tests. Moreover, using a reference-specific serum, the specificity of the HA has been confirmed through the implementation of immunoperoxidase and western immunoblotting assays. Conclusion: In conclusion, we report the expression of specific biologically active recombinant HA of FC2, which would act as a foundation for the generation of an updated EI subunit or virus vector vaccine candidates.


Assuntos
Vírus da Influenza A Subtipo H3N8 , Vírus da Influenza A Subtipo H7N7 , Infecções por Orthomyxoviridae , Vacinas , Cavalos , Animais , Hemaglutininas , Vírus da Influenza A Subtipo H3N8/genética , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/veterinária , Baculoviridae
9.
Int J Nanomedicine ; 19: 2429-2440, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476285

RESUMO

Purpose: COVID-19 is rampant throughout the world, which has caused great damage to human lives and seriously hindered the development of the global economy. Aiming at the treatment of SARS-CoV-2, in this study, we proposed a novel fenobody strategy based on ferritin (Fe) self-assembly technology. Methods: The neutralizing nanobody H11-D4 of SARS-CoV-2 fused to the C-terminus of end-modified human ferritin was expressed in E. coli and silkworm baculovirus expression systems. A large number of nanoparticles were successfully self-assembled in silkworms, while relatively few nanoparticles can be observed in the treated products from E. coli by electron microscopy. Subsequently, the fenobody's expression level and neutralizing activity were then evaluated. Results: The results showed that the IC50 of H11-D4 and fenobody Fe-H11-D4 expressed in E. coli were 171.1 nmol L-1 and 20.87 nmol L-1, respectively. However, the IC50 of Fe-HD11-D4 expressed in silkworms was 1.46 nmol L-1 showing better neutralization activity. Conclusion: Therefore, fenobodies can be well self-assembled in silkworm baculovirus expression system, and ferritin self-assembly technology can effectively improve nanobody neutralization activity.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Ferritinas , Escherichia coli , Anticorpos Neutralizantes , Anticorpos Antivirais
10.
Front Immunol ; 14: 1251001, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942329

RESUMO

Introduction: Porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) are major intestinal coronaviruses that cause vomiting, diarrhea, dehydration, and mortality in piglets. These viruses coexist and lead to significant economic losses in the swine industry. Virus-like particles (VLPs) have emerged as promising alternatives to conventional inactivated vaccines due to their exceptional safety, efficacy, and ability to provide multi-disease protection with a single dose. Methods: Our study focused on specific antigenic epitopes from the PEDV S protein (SS2 and 2C10 regions) and the TGEV S protein (A and D sites) as target candidates. These epitopes were integrated into the ADDomer framework, and we successfully generated recombinant proteins AD, AD-P, AD-T, and AD-PT using the baculovirus expression vector system (BEVS). By meticulously optimizing conditions in High Five cells, we successfully expressed and purified the recombinant proteins. Subsequently, we developed the recombinant ADDomer-VLP vaccine and conducted a comprehensive evaluation of its efficacy in piglets. Results: Following ultrafiltration concentration and sucrose gradient centrifugation purification, the recombinant proteins self-assembled into VLPs as observed by transmission electron microscopy (TEM). Administration of the vaccine did not result in any adverse reactions in the immunized piglets. Additionally, no significant instances of fever were detected in any of the experimental groups, and there were no notable changes in average daily weight gain compared to the control group that received PBS. The recombinant ADDomer-VLP vaccines demonstrated strong immunogenicity, effectively stimulating the production of neutralizing antibodies against both PEDV and TGEV. Moreover, the recombinant ADDomer-VLP vaccine induced elevated levels of IFN-γ, IL-2, and IL-4, and enhanced cytotoxic T lymphocyte (CTL) activity in the peripheral blood of piglets. Discussion: These recombinant VLPs have demonstrated the ability to induce strong cellular and humoral immune responses in piglets, making them an incredibly promising platform for the rapid and simplified development of epitope vaccines.


Assuntos
Vírus da Gastroenterite Transmissível , Vacinas de Partículas Semelhantes a Vírus , Animais , Suínos , Vírus da Gastroenterite Transmissível/genética , Epitopos , Anticorpos Antivirais , Vacinas Sintéticas , Imunidade
11.
Vaccines (Basel) ; 11(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37631886

RESUMO

H7N9 avian influenza virus (AIV) has caused huge losses in the poultry industry and impacted human public health security, and still poses a potential threat. Currently, immune prevention and control of avian influenza relies on traditional inactivated vaccines; however, they have some limitations and genetically engineered avian influenza subunit vaccines may be potential candidate vaccines. In this study, a T169A mutation in the HA protein derived from H7N9 AIV A/Chicken/Guangdong/16876 (H7N9-16876) was generated using the baculovirus expression system (BVES). The results showed that the mutant (HAm) had significantly increased thermostability compared with the wild-type HA protein (HA-WT). Importantly, immunizing chickens with HAm combined with ISA 71VG elicited higher cross-reactive hemagglutination inhibition (HI) antibody responses and cytokine (IFN-γ and IL-4) secretion. After a lethal challenge with heterologous H7N9 AIV, the vaccine conferred chickens with 100% (10/10) clinical protection and effectively inhibited viral shedding, with 90% (9/10) of the chickens showing no virus shedding. The thermostability of HAm may represent an advantage in practical vaccine manufacture and application. In general, the HAm generated in this study represents a promising subunit vaccine candidate for the prevention and control of H7N9 avian influenza.

12.
Front Vet Sci ; 10: 1126785, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323845

RESUMO

Crimean-Congo hemorrhagic fever (CCHF) is a zoonotic disease caused by Crimean-Congo hemorrhagic fever virus (CCHFV), which can cause severe clinical disease and even death in humans. In recent years, the disease has spread to a wider area, posing a major public health threat to China as well as the Middle East, Europe and Africa, and there is no safe and effective vaccine to prevent the disease. Recently, it has been shown that using the Zera fusion to target proteins can enhance immunogenicity and improve the potential for developing viral vaccines. Based on this finding, in this study, two vaccine candidates, Zera-Gn and Zera-Np, were prepared using an insect baculovirus system expressing CCHFV glycoprotein (Gn) and nucleocapsid protein (Np) fused with Zera tags, and evaluated for immunogenicity in BALB/c mice. The obtainedresults showed that both Zera-Gn and Zera-Np recombinant nanoparticles were successfully expressed, and Zera-Gn had good induction of humoral and cellular immunity in mice, and its immunogenicity was significantly higher than that of Zera-Np. The results indicated that Zera-Gn self-assembled nanoparticles prepared by fusing Zera tags with CCHFV spike-in protein Gn have the potential to be a candidate vaccine for CCHF, and this study provides a reference for the development of Zera self-assembled nanoparticle vaccine for CCHF.

13.
Bioengineering (Basel) ; 10(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36829616

RESUMO

Antibody fragments are used in the clinic as important therapeutic proteins for treatment of indications where better tissue penetration and less immunogenic molecules are needed. Several expression platforms have been employed for the production of these recombinant proteins, from which E. coli and CHO cell-based systems have emerged as the most promising hosts for higher expression. Because antibody fragments such as Fabs and scFvs are smaller than traditional antibody structures and do not require specific patterns of glycosylation decoration for therapeutic efficacy, it is possible to express them in systems with reduced post-translational modification capacity and high expression yield, for example, in plant and insect cell-based systems. In this review, we describe different bioengineering technologies along with their opportunities and difficulties to manufacture antibody fragments with consideration of stability, efficacy and safety for humans. There is still potential for a new production technology with a view of being simple, fast and cost-effective while maintaining the stability and efficacy of biotherapeutic fragments.

14.
Viruses ; 14(10)2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36298794

RESUMO

Adaptive laboratory evolution has been used to improve production of influenza hemagglutinin (HA)-displaying virus-like particles (VLPs) in insect cells. However, little is known about the underlying biological mechanisms promoting higher HA-VLP expression in such adapted cell lines. In this article, we present a study of gene expression patterns associated with high-producer insect High Five cells adapted to neutral pH, in comparison to non-adapted cells, during expression of influenza HA-VLPs. RNA-seq shows a decrease in the amount of reads mapping to host cell genomes along infection, and an increase in those mapping to baculovirus and transgenes. A total of 1742 host cell genes were found differentially expressed between adapted and non-adapted cells throughout infection, 474 of those being either up- or down-regulated at both time points evaluated (12 and 24 h post-infection). Interestingly, while host cell genes were found up- and down-regulated in an approximately 1:1 ratio, all differentially expressed baculovirus genes were found to be down-regulated in infected adapted cells. Pathway analysis of differentially expressed genes revealed enrichment of ribosome biosynthesis and carbohydrate, amino acid, and lipid metabolism. In addition, oxidative phosphorylation and protein folding, sorting and degradation pathways were also found to be overrepresented. These findings contribute to our knowledge of biological mechanisms of insect cells during baculovirus-mediated transient expression and will assist the identification of potential engineering targets to increase recombinant protein production in the future.


Assuntos
Vacinas contra Influenza , Influenza Humana , Animais , Humanos , Hemaglutininas/genética , Baculoviridae/genética , Insetos/genética , Proteínas Recombinantes/genética , Expressão Gênica , Aminoácidos/genética , Carboidratos , RNA
15.
Biol Open ; 11(9)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36017723

RESUMO

The δ-endotoxin Cry4Aa from Bacillus thuringiensis israelensis (Bti) has insecticidal characteristics specific to insects of the order Diptera. Although Cry4Aa has shown potential as an effective proteinaceous pesticide against mosquitoes, it has an ultraviolet (UV)-intolerant property that limits its outdoor use. Our previous research showed that protein microcrystal polyhedra from Bombyx mori cypovirus can encapsulate diverse foreign proteins and maintain long-term protein activity under hostile environmental conditions, including UV irradiation. In this study, we report the development of polyhedra encapsulating the Cry4Aa insecticidal activity domain by using a modified baculovirus expression system. We confirmed the oral intake of recombinant polyhedra introduced into the experimental environment by the larvae of a mosquito, Aedes albopictus, and delivery of encapsulated proteins into the digestive tract. The polyhedra encapsulating partial Cry4Aa showed mosquito larvicidal activity during incubation of larvae with 50% lethal-dose value of 23.717×104 cubes for 10 Aedes albopictus larvae in 1 ml water. In addition, polyhedra showed a specific property to reduce the impact of UV-C irradiation on the activity of encapsulated partial Cry4Aa, thus demonstrating the effectiveness of encapsulating Bti δ-endotoxins inside polyhedra to increase the availability of proteinaceous pesticides for outdoor use for mosquito control.


Assuntos
Aedes , Bacillus thuringiensis , Praguicidas , Reoviridae , Aedes/metabolismo , Animais , Bacillus thuringiensis/química , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Endotoxinas/química , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacologia , Larva/metabolismo , Praguicidas/metabolismo , Praguicidas/farmacologia , Reoviridae/metabolismo , Água/metabolismo
16.
J Genet Eng Biotechnol ; 20(1): 98, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35792966

RESUMO

BACKGROUND: The baculovirus expression vector system has been developed for expressing a wide range of proteins, including enzymes, glycoproteins, recombinant viruses, and vaccines. The availability of the SARS-CoV-2 genome sequence has enabled the synthesis of SARS-CoV2 proteins in a baculovirus-insect cell platform for various applications. The most cloned SARS-CoV-2 protein is the spike protein, which plays a critical role in SARS-CoV-2 infection. It is available in its whole length or as subunits like S1 or the receptor-binding domain (RBD). Non-structural proteins (Nsps), another recombinant SARS-CoV-2 protein generated by the baculovirus expression vector system (BEV), are used in the identification of new medications or the repurposing of existing therapies for the treatment of COVID-19. Non-SARS-CoV-2 proteins generated by BEV for SARS-CoV-2 diagnosis or treatment include moloney murine leukemia virus reverse transcriptase (MMLVRT), angiotensin converting enzyme 2 (ACE2), therapeutic proteins, and recombinant antibodies. The recombinant proteins were modified to boost the yield or to stabilize the protein. CONCLUSION: This review covers the wide application of the recombinant protein produced using the baculovirus expression technology for COVID-19 research. A lot of improvements have been made to produce functional proteins with high yields. However, there is still room for improvement and there are parts of this field of research that have not been investigated yet.

17.
Biosci Rep ; 42(6)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35642592

RESUMO

Baculovirus expression vector system (BEVS) has been recognized as a potent protein expression system in engineering valuable enzymes and vaccines. Various fusion tags facilitate protein purification, leaving the potential risk to influence the target protein's biological activity negatively. It is of great interest to consider removing the additional tags using site-specific proteases, such as human rhinoviruses (HRV) 3C protease. The current study validated the cleavage activity of 3C protease in Escherichia coli and silkworm-BEVS systems by mixing the cell or fat body lysates of 3C protein and 3C site containing target protein in vitro. Further verification has been performed in the fat body lysate from co-expression of both constructs, showing remarkable cleavage efficiency in vivo silkworm larvae. We also achieved the glutathione-S-transferase (GST) tag-cleaved product of the VP15 protein from the White spot syndrome virus after purification, suggesting that we successfully established a coinfection-based recognition-and-reaction BEVS platform for the tag-free protein engineering.


Assuntos
Bombyx , Proteases Virais 3C , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Bombyx/genética , Bombyx/metabolismo , Cisteína Endopeptidases/metabolismo , Digestão , Escherichia coli/genética , Escherichia coli/metabolismo , Frequência Cardíaca , Humanos , Proteínas Virais/metabolismo
18.
Cancers (Basel) ; 14(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35681615

RESUMO

Extracellular vesicles (EVs) are cell-derived lipid membrane capsules that can deliver functional molecules, such as nucleic acids, to target cells. Currently, the application of EVs is limited because of the difficulty of loading cargo into EVs. We constructed hybrid EVs by the fusion of liposomes and insect cell-derived EVs expressing recombinant programmed cell death 1 (PD-1) protein and baculoviral fusogenic glycoprotein gp64, and evaluated delivery of the model cargo molecule, Texas Red-labeled dextran (TR-Dex), into the cytosol. When PD-1 hybrid EVs were added to HeLa cells, the intracellular uptake of the hybrid EVs was increased compared with hybrid EVs without PD-1. After cellular uptake, the PD-1 hybrid EVs were shown to be localized to late endosomes or lysosomes. The results of fluorescence resonance energy transfer (FRET) indicated that membrane fusion between the hybrid EVs and organelles had occurred in the acidic environment of the organelles. When TR-Dex-loaded liposomes were fused with the PD-1 EVs, confocal laser scanning microscopy indicated that TR-Dex was distributed throughout the cells, which suggested that endosomal escape of TR-Dex, through membrane fusion between the hybrid EVs and acidic organelles, had occurred. These engineered PD-1 hybrid EVs have potential as delivery carriers for biopharmaceuticals.

19.
Methods Mol Biol ; 2507: 295-312, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35773588

RESUMO

G protein-coupled receptors (GPCRs) are involved in a variety of human physiological processes and are attractive targets for treating various diseases. Yet, despite the importance as therapeutic targets, only 97 unique GPCR structures have been determined to date. A key challenge in their structural biology study is to obtain adequate protein samples because GPCRs usually have the low expression in native tissues. The in vitro recombinant expression provides the possibility to obtain large quantities of high-quality proteins suitable for three-dimensional structure determination by crystallography or single particle cryo-EM methods. For GPCR protein production, eukaryotic expression systems, such as baculovirus system and mammalian system, are the most widely used. In this chapter, we provide an overview of the methodological approaches on GPCRs expression and purification optimization using insect cells and mammalian cells, which is the prerequisite conditions for structural biology studies.


Assuntos
Baculoviridae , Receptores Acoplados a Proteínas G , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Cristalografia , Eucariotos/metabolismo , Humanos , Insetos/metabolismo , Mamíferos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
20.
FEBS Open Bio ; 12(6): 1178-1187, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35384397

RESUMO

Extracellular vesicles (EVs) have potential biomedical applications, particularly as a means of transport for therapeutic agents. There is a need for rapid and efficient EV-liposome membrane fusion that maintains the integrity of hybrid EVs. We recently described Sf9 insect cell-derived EVs on which functional membrane proteins were presented using a baculovirus-expression system. Here, we developed hybrid EVs by membrane fusion of small liposomes and EVs equipped with baculoviral fusogenic proteins. Single-particle analysis of EV-liposome complexes revealed controlled introduction of liposome components into EVs. Our findings and methodology will support further applications of EV engineering in biomedicine.


Assuntos
Vesículas Extracelulares , Lipossomos , Vesículas Extracelulares/metabolismo , Lipossomos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA