Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Evol Appl ; 14(1): 198-209, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33519965

RESUMO

Urban Norway rats (Rattus norvegicus) carry several pathogens transmissible to people. However, pathogen prevalence can vary across fine spatial scales (i.e., by city block). Using a population genomics approach, we sought to describe rat movement patterns across an urban landscape and to evaluate whether these patterns align with pathogen distributions. We genotyped 605 rats from a single neighborhood in Vancouver, Canada, and used 1,495 genome-wide single nucleotide polymorphisms to identify parent-offspring and sibling relationships using pedigree analysis. We resolved 1,246 pairs of relatives, of which only 1% of pairs were captured in different city blocks. Relatives were primarily caught within 33 meters of each other leading to a highly leptokurtic distribution of dispersal distances. Using binomial generalized linear mixed models, we evaluated whether family relationships influenced rat pathogen status with the bacterial pathogens Leptospira interrogans, Bartonella tribocorum, and Clostridium difficile, and found that an individual's pathogen status was not predicted any better by including disease status of related rats. The spatial clustering of related rats and their pathogens lends support to the hypothesis that spatially restricted movement promotes the heterogeneous patterns of pathogen prevalence evidenced in this population. Our findings also highlight the utility of evolutionary tools to understand movement and rat-associated health risks in urban landscapes.

2.
Acta Trop ; 212: 105672, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32835672

RESUMO

The aim of this study was to molecularly survey Bartonella spp. in rodents from the Valdivia Province, Southern Chile and from wild black rat-fleas in Guafo Island, Chilean Patagonia. Thrity-three spleens from synanthropic (Mus musculus, Rattus novergicus and Rattus rattus) and wild (Abrothrix longipilis, Oligoryzomys longicaudatus, Abrothrix sp.) rodents from Valdivia and 39 fleas/flea-pools (Plocopsylla sp. and Nosopsyllus sp.) from R. rattus in Guafo Island were obtained. All samples were screened by high-resolution melting (HRM) real-time PCR for Bartonella ITS locus (190 bp). ITS-Positive samples were further analyzed for two HRM real-time PCR assays targeting Bartonella rpoB (191 bp) and gltA (340 bp) gene fragments. All positive ITS, gltA and rpoB real-time PCR products were purified and sequenced. Bayesian inference trees were built for the gltA and rpoB gene fragments. Bartonella-ITS DNA was detected in 36.3% (12/33) [95% CI (22-53%)] of the tested rodents from Valdivia, being identified in all but O. longicaudatus rodent species captured in this study. ITS DNA was detected in 28% (11/39) [95% CI (16-43%)] of fleas/flea-pools from Guafo Island and identified in both Plocopsylla and Nosopsyllus genera. Sequencing and phylogenic analyses targeting three loci of Bartonella spp. allowed the identification of five genotypes in rodents from Southern Chile, potentially belonging to three different Bartonella spp. Those included Bartonella tribocorum identified from R. rattus, Bartonella rochalimae detected from Abrothix sp., and one novel genotype from uncharacterized Bartonella sp. identified in M. musculus, R. norvegicus, A. longipilis, and Abothrix sp., related to strains previously isolated in Phyllotis sp. from Peru. Additionally, two genotypes of B. tribocorum were identified in fleas from Guafo. In a nutshell, highly diverse and potentially zoonotic Bartonella spp. are described for the first time in wild and synanthropic rodents from Chile, and B. tribocorum was detected in wild back rat fleas from Guafo Island.


Assuntos
Bartonella/isolamento & purificação , Roedores/microbiologia , Sifonápteros/microbiologia , Animais , Bartonella/genética , Chile , Feminino , Genótipo , Masculino , Camundongos , Ratos
3.
Parasit Vectors ; 13(1): 235, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32381113

RESUMO

BACKGROUND: Bartonella spp. are vector-borne pathogens transmitted to humans via blood-sucking arthropods. Rodents such as the black rat (Rattus rattus) and Norway rat (R. norvegicus) are thought to be the main reservoirs. An infection with rodent-associated Bartonella spp. may cause severe symptoms in humans such as endocarditis and neuroretinitis. The current knowledge of Bartonella prevalence in rats from western Europe is scarce. METHODS: Rats and a few other rodent by-catches were trapped in the context of a rodenticide resistance study at different sites in Flanders, Belgium. During dissection, biometric data were collected, and spleen tissues were taken. DNA was extracted from spleen samples and tested for Bartonella spp. by conventional generic polymerase chain reaction (PCR). To determine the Bartonella species, a selected number of amplicons were sequenced and compared with GenBank entries. RESULTS: In total, 1123 rodents were trapped. The predominate species was R. norvegicus (99.64%). Other rodents trapped included: two water voles (Arvicola amphibius, 0.18%); one colour rat (R. norvegicus forma domestica, 0.09%); and one muskrat (Ondatra zibethicus, 0.09%). PCR analysis of 1097 rodents resulted in 410 (37.37%, 95% CI: 34.50-40.31%) Bartonella spp. DNA-positive samples. Bartonella tribocorum (94.68%, 95% CI: 88.02-98.25%) was the most frequently detected Bartonella species, followed by B. grahamii (3.19%, 95% CI: 0.66-9.04%) and B. doshiae (1.06%, 95% CI: 0.03-5.79%). An uncultured Bartonella species occurred in one water vole (1.06%, 95% CI: 0.03-5.79%). There was a significantly higher Bartonella prevalence in older rats compared to juveniles and a significant difference in Bartonella prevalence concerning the localisation of trapping sites. In contrast, there was no statistically significant difference in Bartonella prevalence regarding sex, degree of urbanisation and season. CONCLUSIONS: Based on the high prevalence found, we conclude that the Norway rat seems to be a key reservoir host for zoonotic B. tribocorum in Belgium.


Assuntos
Infecções por Bartonella/epidemiologia , Bartonella , Ratos/microbiologia , Roedores/microbiologia , Animais , Zoonoses Bacterianas/epidemiologia , Bartonella/classificação , Bartonella/genética , Bartonella/isolamento & purificação , Bélgica/epidemiologia , DNA Bacteriano , Reservatórios de Doenças/microbiologia , Humanos , Doenças Negligenciadas/epidemiologia , Patologia Molecular , Prevalência , Doenças dos Roedores/epidemiologia
4.
Pest Manag Sci ; 75(6): 1556-1563, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30624020

RESUMO

BACKGROUND: Norway rats (Rattus norvegicus) and black rats (R. rattus) are known to be cosmopolitan reservoirs for zoonotic agents. Nevertheless, little is known about prevalence and distribution of arthropod-borne pathogens in rats from Europe. Therefore, this survey focused on the detection of arthropod-borne pathogens. Spleen-derived DNA samples were available from 528 Norway rats and 74 black rats collected in several European countries. Further, these samples were processed by polymerase chain reaction for the detection of zoonotic pathogens such as Anaplasma phagocytophilum, Candidatus Neoehrlichia mikurensis (CNM), Babesia spp. and Bartonella spp. eventually followed by sequencing. RESULTS: Babesia spp. was not detected. Four Norway rat samples were positive for A. phagocytophilum DNA and two for CNM. In 50 rat samples, Bartonella spp. DNA was detected (8.1%; 95% Confidence interval (CI) 6.2-10.61). Whereas B. tribocorum (n = 45) and B. grahamii (n = 1) were carried exclusively in Norway rats from Central Europe (Belgium, Germany), B. coopersplainsensis (n = 4) was detected only in black rats from southern European countries (Spain, Italy). CONCLUSIONS: Pathogenic Bartonella spp. DNA was found in black and Norway rats from Germany, Italy, Spain and Belgium for the first time. Bartonellae were found focally in zoos suggesting Norway rats as a possible reservoir for B. tribocorum and black rats as a reservoir for B. coopersplainsensis in Europe. These findings should raise awareness of pathogenic Bartonella spp. in Norway rats, especially in terms of pest management control in zoos. Norway and black rats seem not to be predominantly involved in the life cycle of the other examined arthropod-borne pathogens in Europe. © 2019 Society of Chemical Industry.


Assuntos
Artrópodes/microbiologia , Doenças Transmissíveis/microbiologia , Reservatórios de Doenças , Animais , Feminino , Masculino , Ratos
5.
Biochim Biophys Acta ; 1828(9): 2015-25, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23735543

RESUMO

Bacteria use type IV secretion systems to transfer genetic material and proteins from donor to recipient cells, using proteins encoded by conjugative plasmids. Among those proteins the so-called Type IV Coupling Protein plays a central role in the process. One of the best studied members of this family is TrwB, the conjugative coupling protein of R388 plasmid. Previous studies indicated that the transmembrane domain of TrwB plays a role beyond the mere anchoring of the protein to the membrane. TrwB has also been shown to interact with other conjugative proteins, such as the VirB10-like protein of R388 TrwE. The goal of this study is to elucidate the role of the different domains of TrwB and TrwE in their biological function, and in both self- and TrwB-TrwE interactions. To this aim, a series of TrwB and TrwE deletion mutant proteins were constructed. Conjugation and interaction studies revealed that the transmembrane domain of TrwB, and particularly its second transmembrane helix, is needed for TrwB self-interaction and for R388 conjugative transfer and that there are contacts between TrwB and TrwE in the membrane. On the contrary, the lack of the TMD of TrwE does not completely abolish R388 conjugation although the interaction between TrwE-TrwB is lost. These results identify protein-protein interactions inside the membrane needed for T4SS function.


Assuntos
Membrana Celular/química , Conjugação Genética/genética , Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Membrana Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutação , Plasmídeos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA