Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.341
Filtrar
1.
Neurosurg Rev ; 47(1): 721, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39356341

RESUMO

Assessing the extent of damage to the posterior limb of the internal capsule (PLIC) is important for early prediction of clinical outcomes in intracerebral hemorrhage (ICH) patients. Currently, using MRI to reconstruct the extent of damage to PLIC is not suitable for quick assessment of prognosis in emergency settings. We aimed to investigate whether the PLIC damage quantified by non-contrast computed tomography (NCCT) is associated with clinical outcomes after basal ganglia intracerebral hemorrhage (BG-ICH). This study retrospectively included 146 BG-ICH patients from the Department of Neurosurgery at the Second Affiliated Hospital of Chongqing Medical University. The damage to the PLIC was quantified using Tangency X measured by NCCT. The importance of features is determined using the Boruta algorithm and Least Absolute Shrinkage and Selection Operator (LASSO) regression. Multivariate logistic regression models were established to examine the impact of PLIC damage on outcomes. Restricted Cubic Splines (RCS) were used to explore potential nonlinear relationships, and Receiver Operating Characteristic (ROC) curves were used to compare the predictive performance of Tangency X with other scoring systems for 6-month neurological outcomes (poor outcomes [mRS: 3-6]). In the multivariate logistic regression adjusting for all covariates, Tangency X was independently associated with an increased risk of poor outcomes (OR = 1.32, 95% CI: 1.17-1.52) in BG-ICH patients. There is a nonlinear relationship between Tangency X and poor outcomes. Specifically, the risk of poor outcomes increases by 1.29 times (OR = 1.29, 95% CI: 1.09-1.67) for each additional 1 mm increase in Tangency X beyond 4 mm. We next observed that the AUC for Tangency X in predicting poor outcomes is 0.8511. The extent of PLIC damage measured by NCCT may represent a promising predictor of poor outcomes after BG-ICH.


Assuntos
Hemorragia dos Gânglios da Base , Cápsula Interna , Tomografia Computadorizada por Raios X , Humanos , Feminino , Cápsula Interna/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Hemorragia dos Gânglios da Base/diagnóstico por imagem , Idoso , Tomografia Computadorizada por Raios X/métodos , Estudos Retrospectivos , Resultado do Tratamento , Adulto , Prognóstico
3.
Artigo em Inglês | MEDLINE | ID: mdl-39362408

RESUMO

BACKGROUND: The neurobiological differences between women who have experienced a peripartum episode and those who have only had episodes outside of this period are not well understood. METHODS: 64 parous female patients with major depressive disorder that have either a positive (n=30) or negative (n=34) history of peripartum depression (PPD) underwent MRI acquisition to obtain structural brain images. An independent two-sample t-test comparing patients with and without a history of PPD was performed using voxel-based morphometry analysis (VBM). Additionally, polygenic risk scores (PRSs) for estradiol were calculated and a moderation analysis was conducted between 3 estradiol PRSs and PPD history status on extracted cluster volumes using IBM SPSS PROCESS macro. RESULTS: The VBM analysis identified larger grey matter volumes in bilateral clusters encompassing the putamen, pallidum, caudate, and thalamus in patients with PPD history compared to patients without a history. The moderation analysis identified a significant interaction of 2 estradiol PRSs and PPD history on grey matter cluster volumes with a positive effect in PPD women and a negative effect in women with no history of PPD. CONCLUSIONS: Our findings demonstrate that women who have experienced a peripartum episode are neurobiologically distinct from women who have no history of PPD in a cluster within the basal ganglia, an area important for motivation, decision-making, and emotional processing. Furthermore, we show that the genetic load for estradiol has a differing effect in this area based on PPD status which supports the claim that PPD is associated with sensitivity to sex steroid hormones.

4.
Neurobiol Dis ; 201: 106689, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39366457

RESUMO

Beta band oscillations in the sensorimotor cortex and subcortical structures, such as the subthalamic nucleus (STN) and internal pallidum (GPi), are closely linked to motor control. Recent research suggests that low-beta (14.5-23.5 Hz) and high-beta (23.5-35 Hz) cortico-STN coherence arise through distinct networks, possibly reflecting indirect and hyperdirect pathways. In this study, we sought to probe whether low- and high-beta coherence also exhibit different functional roles in facilitating and inhibiting movement. Twenty patients with Parkinson's disease who had deep brain stimulation electrodes implanted in either STN or GPi performed a classical go/nogo task while undergoing simultaneous magnetoencephalography and local field potentials recordings. Subjects' expectations were manipulated by presenting go- and nogo-trials with varying probabilities. We identified a lateral source in the sensorimotor cortex for low-beta coherence, as well as a medial source near the supplementary motor area for high-beta coherence. Task-related coherence time courses for these two sources revealed that low-beta coherence was more strongly implicated than high-beta coherence in the performance of go-trials. Accordingly, average pre-stimulus low-beta but not high-beta coherence or spectral power correlated with overall reaction time across subjects. High-beta coherence during unexpected nogo-trials was higher compared to expected nogo-trials at a relatively long latency of 3 s after stimulus presentation. Neither low- nor high-beta coherence showed a significant correlation with patients' symptom severity at baseline assessment. While low-beta cortico-subcortical coherence appears to be related to motor output, the role of high-beta coherence requires further investigation.

5.
MedComm (2020) ; 5(10): e764, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39376737

RESUMO

This study investigated alterations in functional connectivity (FC) within cortico-basal ganglia-thalamo-cortical (CBTC) circuits and identified critical connections influencing poststroke motor recovery, offering insights into optimizing brain modulation strategies to address the limitations of traditional single-target stimulation. We delineated individual-specific parallel loops of CBTC through probabilistic tracking and voxel connectivity profiles-based segmentation and calculated FC values in poststroke patients and healthy controls, comparing with conventional atlas-based FC calculation. Support vector machine (SVM) analysis distinguished poststroke patients from controls. Connectome-based predictive modeling (CPM) used FC values within CBTC circuits to predict upper limb motor function. Poststroke patients exhibited decreased ipsilesional connectivity within the individual-specific CBTC circuits. SVM analysis achieved 82.8% accuracy, 76.6% sensitivity, and 89.1% specificity using individual-specific parallel loops. Additionally, CPM featuring positive connections/all connections significantly predicted Fugl-Meyer assessment of upper extremity scores. There were no significant differences in the group comparisons of conventional atlas-based FC values, and the FC values resulted in SVM accuracy of 75.0%, sensitivity of 67.2%, and specificity of 82.8%, with no significant CPM capability. Individual-specific parallel loops show superior predictive power for assessing upper limb motor function in poststroke patients. Precise mapping of the disease-related circuits is essential for understanding poststroke brain reorganization.

6.
Exp Neurol ; 383: 114991, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39389161

RESUMO

The alterations in the basal ganglia circuitry are core pathological hallmark in Huntington's Disease (HD) and traditionally linked to its sever motor symptoms. Recently it was shown that optogenetic stimulation of cortical afferences to the striatum is able to reverse motor symptoms in HD mice. However, the specific contribution of the direct and indirect striatal output pathways from the dorsolateral (DLS) and dorsomedial striatum (DMS) to the motor phenotype is still not clear. Here, we aim to uncover the contributions of these striatal subcircuits to motor control in wild type (WT) and HD mice by using the symptomatic R6/1 mice. We systematically evaluated locomotion, exploratory behavior, and motor learning effects of the selective optogenetic stimulation of D1 or A2A expressing neurons (direct and indirect pathway, respectively), in DLS or DMS. Bilateral optogenetic stimulation of the direct pathway from DLS and the indirect pathway from DMS resulted in subtle locomotor enhancements, while unaltering exploratory behavior. Additionally, bilateral stimulation of the indirect pathway from the DLS improved performance in the accelerated rotarod task, suggesting a role in motor learning. In contrast, in HD mice, stimulation of these pathways did not modulate any of these behaviors. Overall, this study highlights that selective stimulation of direct and indirect pathways from DLS and DMS have subtle impact in locomotion, exploratory activity or motor learning. The lack of responses in HD mice also suggests that strategies involving cortico-striatal circuits rather than striatal output circuits might be a better strategy for managing motor symptoms in movement disorders.

7.
Curr Biol ; 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39413788

RESUMO

A key challenge of learning a new task is that the environment is high dimensional-there are many different sensory features and possible actions, with typically only a small reward-relevant subset. Although animals can learn to perform complex tasks that involve arbitrary associations between stimuli, actions, and rewards,1,2,3,4,5,6 a consistent and striking result across varied experimental paradigms is that in initially acquiring such tasks, large differences between individuals are apparent in the learning process.7,8,9,10,11,12 What neural mechanisms contribute to initial task acquisition, and why do some individuals learn a new task much more quickly than others? To address these questions, we recorded longitudinally from dopaminergic (DA) axon terminals in mice learning a visual decision-making task.7 Across striatum, DA responses tracked idiosyncratic and side-specific learning trajectories, consistent with widespread reward prediction error coding across DA terminals. However, even before any rewards were delivered, contralateral-side-specific visual responses were present in DA terminals, primarily in the dorsomedial striatum (DMS). These pre-existing responses predicted the extent of learning for contralateral stimuli. Moreover, activation of these terminals improved contralateral performance. Thus, the initial conditions of a projection-specific and feature-specific DA signal help explain individual learning trajectories. More broadly, this work suggests that functional heterogeneity across DA projections may serve to bias target regions toward learning about different subsets of task features, providing a potential mechanism to address the dimensionality of the initial task learning problem.

8.
Cereb Cortex ; 34(10)2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39390710

RESUMO

Humans perceive a pulse, or beat, underlying musical rhythm. Beat strength correlates with activity in the basal ganglia and supplementary motor area, suggesting these regions support beat perception. However, the basal ganglia and supplementary motor area are part of a general rhythm and timing network (regardless of the beat) and may also represent basic rhythmic features (e.g. tempo, number of onsets). To characterize the encoding of beat-related and other basic rhythmic features, we used representational similarity analysis. During functional magnetic resonance imaging, participants heard 12 rhythms-4 strong-beat, 4 weak-beat, and 4 nonbeat. Multi-voxel activity patterns for each rhythm were tested to determine which brain areas were beat-sensitive: those in which activity patterns showed greater dissimilarities between rhythms of different beat strength than between rhythms of similar beat strength. Indeed, putamen and supplementary motor area activity patterns were significantly dissimilar for strong-beat and nonbeat conditions. Next, we tested whether basic rhythmic features or models of beat strength (counterevidence scores) predicted activity patterns. We found again that activity pattern dissimilarity in supplementary motor area and putamen correlated with beat strength models, not basic features. Beat strength models also correlated with activity pattern dissimilarities in the inferior frontal gyrus and inferior parietal lobe, though these regions encoded beat and rhythm simultaneously and were not driven by beat alone.


Assuntos
Percepção Auditiva , Mapeamento Encefálico , Imageamento por Ressonância Magnética , Córtex Motor , Música , Humanos , Masculino , Feminino , Adulto , Adulto Jovem , Córtex Motor/fisiologia , Córtex Motor/diagnóstico por imagem , Percepção Auditiva/fisiologia , Periodicidade , Estimulação Acústica/métodos , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem
9.
Front Aging Neurosci ; 16: 1408685, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39385827

RESUMO

Background: Voxel-mirrored homotopic connectivity (VMHC) is utilized to assess the functional connectivity of neural networks by quantifying the similarity between corresponding regions in the bilateral hemispheres of the brain. The exploration of VMHC abnormalities in basal ganglia ischemic stroke (BGIS) patients across different cerebral hemispheres has been limited. This study seeks to establish a foundation for understanding the functional connectivity status of both brain hemispheres in BGIS patients through the utilization of VMHC analysis utilizing resting-state functional magnetic resonance imaging (rs-fMRI). Methods: This study examined a total of 38 patients with left basal ganglia ischemic stroke (LBGIS), 44 patients with right basal ganglia ischemic stroke (RBGIS), and 41 individuals in a healthy control (HC) group. Rs-fMRI studies were performed on these patients, and the pre-processed rs-fMRI data were analyzed using VMHC method. Subsequently, the VMHC values were compared between three groups using a one-way ANOVA and post hoc analysis. Correlation analysis with clinical scales was also conducted. Results: The results indicated that compared to the HC group, significant differences were detected in postcentral gyrus, extending to precentral gyrus in both BGIS groups. Post hoc analysis showed that in the pairwise ROI-based comparison, individuals with LBGIS and RBGIS exhibited reduced VMHC values compared to HC groups. There was no significant difference between the LBGIS and RBGIS groups. In the LBGIS group, the VMHC value showed a negative correlation with NIHSS and a positive correlation with BI. Conclusion: The analysis of VMHC in rs-fMRI revealed a pattern of brain functional remodeling in patients with unilateral BGIS, marked by reduced synchronization and coordination between hemispheres. This may contribute to the understanding of the neurological mechanisms underlying motor dysfunction in these patients.

10.
Eur J Neurosci ; 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39419545

RESUMO

Research into the function of deep brain structures has benefited greatly from microelectrode recordings in animals. This has helped to unravel physiological processes in the healthy and malfunctioning brain. Translation to the human is necessary for improving basic understanding of subcortical structures and their implications in diseases. The use of microelectrode recordings as a standard component of deep brain stimulation surgery offers the most viable route for studying the electrophysiology of single cells and local neuronal populations in important deep structures of the human brain. Most of the studies in the basal ganglia have targeted the motor loop and movement disorder pathophysiology. In recent years, however, research has diversified to include limbic and cognitive processes. This review aims to provide an overview of advances in neuroscience made using intraoperative and post-operative recordings with a focus on non-motor activity in the basal ganglia.

11.
Front Neurol ; 15: 1406271, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39410998

RESUMO

Introduction: Spontaneous intracerebral hemorrhage is the second most common subtype of stroke. Therefore, this study aimed to investigate the risk factors affecting the prognosis of patients with basal ganglia cerebral hemorrhage after neuroendoscopy. Methods: Between January 2020 and January 2024, 130 patients with basal ganglia cerebral hemorrhage who underwent neuroendoscopy were recruited from two independent centers. We split this dataset into training (n = 79), internal validation (n = 22), and external validation (n = 29) sets. The least absolute shrinkage and selection operator-regression algorithm was used to select the top 10 important radiomic features of different regions (perioperative hemorrhage area [PRH], perioperative surround area [PRS], postoperative hemorrhage area [PSH], and postoperative edema area [PSE]). The black hole, island, blend, and swirl signs were evaluated. The top 10 radiomic features and 4 radiological features were combined to construct the k-nearest neighbor classification (KNN), logistic regression (LR), and support vector machine (SVM) models. Finally, the performance of the perioperative hemorrhage and postoperative edema machine learning models was validated using another independent dataset (n = 29). The primary outcome is mRS at 6 months after discharge. The mRS score greater than 3 defined as functional independence. Results: A total of 12 models were built: PRH-KNN, PRH-LR, PRH-SVM, PRS-KNN, PRS-LR, PRS-SVM, PSH-KNN, PSH-LR, PSH-SVM, PSE-KNN, PSE-LR, and PSE-SVM, with corresponding areas under the curve (AUC) values in the internal validation set of 0.95, 0.91, 0.94, 0.52, 0.91, 0.54, 0.67, 0.9, 0.72, 0.92, 0.92, and 0.95, respectively. The AUC values of the PRH-KNN, PRH-LR, PRH-SVM, PSE-KNN, PSE-LR, and PSE-SVM in the external validation were 0.9, 0.92, 0.89, 0.91, 0.92, and 0.88, respectively. Conclusion: The model built based on computed tomography images of different regions accurately predicted the prognosis of patients with basal ganglia cerebral hemorrhage treated with neuroendoscopy. The models built based on the preoperative hematoma area and postoperative edema area showed excellent predictive efficacy in external verification, which has important clinical significance.

12.
Front Neuroanat ; 18: 1469250, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39417047

RESUMO

The basal ganglia are involved in motor control and action selection, and their impairment manifests in movement disorders such as Parkinson's disease (PD) and dystonia, among others. The complex neuronal circuitry of the basal ganglia is located deep inside the brain and presents significant treatment challenges. Conventional treatment strategies, such as invasive surgeries and medications, may have limited effectiveness and may result in considerable side effects. Non-invasive ultrasound (US) treatment approaches are becoming increasingly recognized for their therapeutic potential for reversibly permeabilizing the blood-brain barrier (BBB), targeting therapeutic delivery deep into the brain, and neuromodulation. Studies conducted on animals and early clinical trials using ultrasound as a therapeutic modality have demonstrated promising outcomes for controlling symptom severity while preserving neural tissue. These results could improve the quality of life for patients living with basal ganglia impairments. This review article explores the therapeutic frontiers of ultrasound technology, describing the brain mechanisms that are triggered and engaged by ultrasound. We demonstrate that this cutting-edge method could transform the way neurological disorders associated with the basal ganglia are managed, opening the door to less invasive and more effective treatments.

13.
Toxicol Sci ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39331844

RESUMO

Welding fumes contain various metals. Past studies, however, mainly focused on Manganese (Mn)-related neurotoxicity. This study investigated welding-related mixed metal exposure effects on MRI metrics in the basal ganglia (BG) and their dose-response relationship. Subjects with (N = 23) and without (N = 24) a welding exposure history were examined. Metal exposure was estimated with exposure history questionnaire and whole blood metal levels. T1 (weighted-intensity and relaxation time; estimates of brain Mn accumulation), diffusion tensor imaging [Axial (AD), mean (MD), radial diffusivity (RD), and fractional anisotropy (FA); estimates of microstructural differences] metrics in BG [caudate nucleus, putamen, and globus pallidus (GP)] and voxel-based morphometry (for volume) were examined and related with metal exposure measures. Compared to controls, welders showed higher GP R1 (1/T1; p = 0.034) but no differences in blood metal and T1-weighted (T1W) values in any ROIs (p's > 0.120). They also had higher AD and MD values in the GP (p's < 0.033) but lower FA values in the putamen (p = 0.039) with no morphologic differences. In welders, higher blood Mn and Vanadium (V) levels predicted higher BG R1 and T1W values (p's < 0.015). There also were significant overall metal mixture effects on GP T1W and R1 values. Moreover, GP AD and MD values showed non-linear associations with BG T1W values: They increased with increasing T1W values only above certain threshold of T1 values. The current findings suggest that Mn and V individually but also metal mixtures jointly predict GP T1 signals that may in turn contribute to altered DTI metrics in the BG after certain exposure threshold levels.

14.
Intern Med ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39343569

RESUMO

We present a 76-year-old man with cryptogenic new-onset refractory status epilepticus (C-NORSE) with an initial abnormal signal in the nucleus accumbens and a remarkable hyperintense signal on T1-weighted magnetic resonance imaging in the bilateral basal ganglia (BG). His status epilepticus did not respond to most anti-epileptic therapies or immunotherapies, and he died of sepsis. An autopsy revealed severe neuronal loss and hypertrophic astrocytes in the BG and limbic system, with no signs of inflammation or malignancy. This case suggests that lesions in the BG may reflect secondary degeneration and predict poor outcomes in C-NORSE.

15.
Cureus ; 16(8): e67105, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39290934

RESUMO

Diabetic striatopathy (DS) is an acute hyperkinetic movement disorder arising from non-ketotic hyperglycemia. This condition predominantly affects females and is more common in the elderly, highlighting the interplay between diabetes, striatal pathology, and neurological movement disorders. DS is characterized by involuntary movements, such as hemichorea or hemiballism, and distinctive neuroimaging findings that can be mistaken for more common cerebrovascular events. In this case report, we describe a 67-year-old female with a history of poorly controlled type 2 diabetes mellitus who presented with the sudden onset of involuntary movements affecting her left upper and lower limbs. Clinical examination and laboratory investigations revealed hyperglycemia without ketosis. Neuroimaging via computed tomography (CT) of the brain identified a hyper density in the right lentiform nucleus, consistent with DS. The patient was treated with vesicular monoamine transporter 2 (VMAT) inhibitors, oral hypoglycemic agents, and insulin, resulting in marked symptom improvement over 10 days. This case underscores the importance of recognizing DS as a differential diagnosis in patients with hyperkinetic movement disorders and hyperglycemia. Proper diagnosis and management, including stringent glycemic control, are crucial for symptom resolution.

16.
Neurosci Res ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39341460

RESUMO

Operant learning is a behavioral paradigm where animals learn to associate their actions with consequences, adapting their behavior accordingly. This review delves into the neural circuits that underpin operant learning in rodents, emphasizing the dynamic interplay between neural pathways, synaptic plasticity, and gene expression changes. We explore the cortico-basal ganglia circuits, highlighting the pivotal role of dopamine in modulating these pathways to reinforce behaviors that yield positive outcomes. We include insights from recent studies, which reveals the intricate roles of midbrain dopamine neurons in integrating action initiation and reward feedback, thereby enhancing movement-related activities in the dorsal striatum. Additionally, we discuss the molecular diversity of striatal neurons and their specific roles in reinforcement learning. The review also covers advances in transcriptome analysis techniques, such as single-cell RNA sequencing, which have provided deeper insights into the gene expression profiles associated with different neuronal populations during operant learning.

17.
Curr Neurol Neurosci Rep ; 24(11): 561-569, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39259429

RESUMO

PURPOSE OF REVIEW: This review aims to rediscuss the leading theories concerning the role of basal ganglia and the thalamus in the genesis of aphasic symptoms in the absence of gross anatomical lesions in cortical language areas as assessed by conventional neuroimaging studies. RECENT FINDINGS: New concepts in language processing and modern neuroimaging techniques have enabled some progress in resolving the impasse between the current dominant theories: (a) direct and specific linguistic processing and (b) subcortical structures as processing relays in domain-general functions. Of particular interest are studies of connectivity based on functional magnetic resonance imaging (MRI) and tractography that highlight the impact of white matter pathway lesions on aphasia development and recovery. Connectivity studies have put into evidence the central role of the arcuate fasciculus (AF), inferior frontal occipital fasciculus (IFOF), and uncinate fasciculus (UF) in the genesis of aphasia. Regarding the thalamus, its involvement in lexical-semantic processing through modulation of the frontal cortex is becoming increasingly apparent.


Assuntos
Afasia , Tálamo , Humanos , Afasia/fisiopatologia , Afasia/diagnóstico por imagem , Afasia/etiologia , Afasia/patologia , Tálamo/diagnóstico por imagem , Tálamo/fisiopatologia , Tálamo/patologia , Gânglios da Base/diagnóstico por imagem , Gânglios da Base/fisiopatologia , Gânglios da Base/patologia , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/fisiopatologia , Imageamento por Ressonância Magnética
18.
Environ Res ; 263(Pt 1): 119990, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39304016

RESUMO

Children are regularly exposed to chemical contaminants that may influence brain development. However, relatively little is known about how these contaminants impact the developing human brain. Here, we combined silicone wristband exposure assessments with neuroimaging for the first time to examine how chemical contaminant mixtures are associated with the developing basal ganglia-a brain region key for the healthy development of emotion, reward, and motor processing, and which may be particularly susceptible to contaminant harm. Further, we examined demographic disparities in exposures to clarify which children were at highest risk for any contaminant-associated neurobiological changes. Participants included 62 community children (average age 7.00 years, 53% female, 66% White) who underwent structural neuroimaging to provide data on their basal ganglia structure and wore a silicone wristband for seven days to track their chemical contaminant exposure. 45 chemical contaminants-including phthalates and their alternatives, brominated flame retardants, organophosphate esters, pesticides, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls-were detected in over 75% of wristbands. Notable demographic disparities in exposure were present, such that Non-White and lower-income children were more exposed to several contaminants. Exposure to chemical contaminant mixtures was not associated with overall basal ganglia volume; however, two organophosphate esters (2IPPDPP and 4IPPDPP) were both associated with a larger globus pallidus, a basal ganglia sub-region. Results highlight demographic disparities in exposure and suggest possible risks to a brain region key for healthy emotional development.

19.
Cureus ; 16(8): e66870, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39280525

RESUMO

Propionic acidemia (PA) is a rare metabolic disorder stemming from genetic mutations, often causing hyperammonemia, acidosis, and basal ganglia issues. Its symptoms range from vomiting to neurological abnormalities, with severe cases presenting in neonates. Neurological complications including stroke-like episodes are common, requiring immediate attention. An eight-month-old boy with PA presented to the emergency department with respiratory distress, cough, and lethargy. Initial evaluation showed acidemia and elevated ammonia levels. He tested positive for rhinovirus and was diagnosed with acute viral bronchiolitis. While his respiratory symptoms improved, he developed neurological deficits, including hypotonia and weakness. Neurology consultations explored possible diagnoses such as botulism or acute inflammatory demyelinating polyneuropathy (AIDP). Imaging revealed basal ganglia abnormalities consistent with PA progression. Due to aspiration risk, he was transferred to the pediatric intensive care unit for supportive care. Despite unremarkable lumbar puncture and MRI results, new metabolic brain changes were noted, particularly in the basal ganglia. He was managed for weakness and feeding difficulties due to a metabolic stroke. After adjusting nutritional support and discussing long-term feeding options, he was discharged on day 29 with a nasogastric tube due to his inability to meet caloric goals orally. Neurological complications in PA, such as basal ganglia abnormalities and stroke-like episodes, are well-documented. Our case illustrates how an acute respiratory illness can obscure underlying neurological deficits, leading to delayed diagnosis. Symptoms resembling other conditions, such as descending hypotonia in our case, broaden the differential diagnosis to include botulism toxicity and AIDP. This report demonstrates the variety of clinical features patients with PA can present with and the importance of working up a metabolic crisis in addition to conditions with overlapping symptoms.

20.
Clin Imaging ; 115: 110281, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39270429

RESUMO

PURPOSE: To characterize brain MR imaging findings in a cohort of 58 patients with ECD and to evaluate relationship between these findings and the BRAFV600E pathogenic variant. METHODS: ECD patients of any gender and ethnicity, aged 2-80 years, with biopsy-confirmed ECD were eligible to enroll in this study. Two radiologists experienced in evaluating ECD CNS disease activity reviewed MRI studies. Any disagreements were resolved by a third reader. Frequencies of observed lesions were reported. The association between the distribution of CNS lesions and the BRAFV600Epathogenic variant was evaluated using Fisher's exact test and odd ratio. RESULTS: The brain MRI of all 58 patients with ECD revealed some form of CNS lesions, most likely due to ECD. Cortical lesions were noted in 27/58 (46.6 %) patients, cerebellar lesions in 15/58 (25.9 %) patients, brain stem lesions in 17/58 cases (29.3 %), and pituitary lesions in 10/58 (17.2 %) patients. Premature cortical atrophy was observed in 8/58 (13.8 %) patients. BRAFV600E pathogenic variant was significantly associated with cerebellar lesions (p = 0.016) and bilateral brain stem lesions (p = 0.043). A trend toward significance was noted for cerebral atrophy (p = 0.053). CONCLUSION: The study provides valuable insights into the brain MRI findings in ECD and their association with the BRAFV600E pathogenic variant, particularly its association in cases with bilateral lesions. We are expanding our understanding of how ECD affects cerebral structures. Knowledge of MRI CNS lesion patterns and their association with mutations such as the BRAF variant is helpful for both prognosis and clinical management.


Assuntos
Doença de Erdheim-Chester , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Doença de Erdheim-Chester/diagnóstico por imagem , Doença de Erdheim-Chester/genética , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Idoso , Adulto , Adolescente , Criança , Idoso de 80 Anos ou mais , Adulto Jovem , Pré-Escolar , Estudos Retrospectivos , Proteínas Proto-Oncogênicas B-raf/genética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA