Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.375
Filtrar
1.
Biomed Pharmacother ; 179: 117385, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39241571

RESUMO

As the research on cancer-related treatment deepens, integrating traditional therapies with emerging interventions reveals new therapeutic possibilities. Melittin and phospholipase A2, the primary anti-cancer components of bee venom, are currently gaining increasing attention. This article reviews the various formulations of melittin in cancer therapy and its potential applications in clinical treatments. The reviewed formulations include melittin analogs, hydrogels, adenoviruses, fusion toxins, fusion peptides/proteins, conjugates, liposomes, and nanoparticles. The article also explored the collaborative therapeutic effects of melittin with natural products, synthetic drugs, radiotherapy, and gene expression regulatory strategies. Phospholipase A2 plays a key role in bee venom anti-cancer strategy due to its unique biological activity. Using an extensive literature review and the latest scientific results, this paper explores the current state and challenges of this field, with the aim to provide new perspectives that guide future research and potential clinical applications. This will further promote the application of bee venom in cancer therapy.

2.
Chemosphere ; 364: 143254, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39233294

RESUMO

Pesticide use is a major factor contributing to the global decline in bee populations. Sublethal effects, such as behavior alterations, are neglected in pesticide regulation for pollinators. However, these effects can bring important information to understanding the impacts of pesticides on bees' daily activities. In this study, we aimed to investigate the effects of the insecticide acetamiprid (7 ng/µL) and the fungicide azoxystrobin (10 ng/µL) on the behavior of the Neotropical solitary bee Centris analis. Female and male bees were exposed to these chemicals continuously for 48 h, followed by an additional 48 h without contaminated food, totaling 96 h of observation. We used five experimental groups: control, solvent control, insecticide, fungicide, and pesticide mixture (insecticide + fungicide). Behavioral alterations based on locomotion and light response were assessed by video tracking at 48 (end of pesticide exposure) and 96 h (end of bioassay). In addition, after recording bees at 96 h, the individuals were anesthetized for brain collection and histological evaluation of mushroom bodies to evaluate if pesticides can damage their neurons and impair the cognitive processes and responses of bees to sensory stimuli. Bees exposed to acetamiprid and pesticide mixture showed lethargic movements and impaired locomotion at 48 h. Notably, these behavioral effects were no longer evident after the bees consumed uncontaminated food for an additional 48 h, totaling 96 h from the start of pesticide exposure. Only fungicide exposure did not result in any behavioral or brain histological changes. Therefore, our study showed that acetamiprid at an estimated residual concentration, despite being classified as having low toxicity for bees, can cause significant initial locomotion disruption in solitary bees. These findings highlight the importance of considering sublethal effects in environmental risk assessment.

3.
Elife ; 132024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235447

RESUMO

Odour processing exhibits multiple parallels between vertebrate and invertebrate olfactory systems. Insects, in particular, have emerged as relevant models for olfactory studies because of the tractability of their olfactory circuits. Here, we used fast calcium imaging to track the activity of projection neurons in the honey bee antennal lobe (AL) during olfactory stimulation at high temporal resolution. We observed a heterogeneity of response profiles and an abundance of inhibitory activities, resulting in various response latencies and stimulus-specific post-odour neural signatures. Recorded calcium signals were fed to a mushroom body (MB) model constructed implementing the fundamental features of connectivity between olfactory projection neurons, Kenyon cells (KC), and MB output neurons (MBON). The model accounts for the increase of odorant discrimination in the MB compared to the AL and reveals the recruitment of two distinct KC populations that represent odorants and their aftersmell as two separate but temporally coherent neural objects. Finally, we showed that the learning-induced modulation of KC-to-MBON synapses can explain both the variations in associative learning scores across different conditioning protocols used in bees and the bees' response latency. Thus, it provides a simple explanation of how the time contingency between the stimulus and the reward can be encoded without the need for time tracking. This study broadens our understanding of olfactory coding and learning in honey bees. It demonstrates that a model based on simple MB connectivity rules and fed with real physiological data can explain fundamental aspects of odour processing and associative learning.


Assuntos
Cálcio , Odorantes , Olfato , Animais , Abelhas/fisiologia , Olfato/fisiologia , Cálcio/metabolismo , Corpos Pedunculados/fisiologia , Condutos Olfatórios/fisiologia , Antenas de Artrópodes/fisiologia
4.
J Agric Food Chem ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258845

RESUMO

In the realm of crop protection products, ensuring the safety of pollinators stands as a pivotal aspect of advancing sustainable solutions. Extensive research has been dedicated to this crucial topic as well as new approach methodologies in toxicity testing. Hence, within the agricultural and chemical industries, prioritizing pollinator safety remains a constant objective during the development of predictive tools. One of these tools includes computational models like quantitative structure-activity relationships (QSARs) that are valuable in predicting the toxicity of chemicals. This research uses bee toxicity data to develop artificial neural network classification models for predicting honey bee acute toxicity. Bee toxicity data from 1542 compounds were used to develop models; the sensitivity and specificity of the best model were 0.90 and 0.91, respectively. These in silico models can aid in the discovery of next-generation crop protection products. These tools can guide the screening and selection of next-generation crop protection molecules with high margins of safety to pollinators, and candidates with favorable sustainability profiles can be identified at the early discovery stage as precursors to in vivo data generation.

5.
Cureus ; 16(8): e66488, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39246940

RESUMO

Acute kidney injury (AKI) is a common complication following multiple honey bee stings and usually presents after 24-48 hours following the incidence. The severity of AKI is related to the number of stings. A single sting can cause an allergic reaction, and as the stings increase, a higher amount of venom is inoculated, leading to systemic poisoning. Bee venom can have direct or indirect effects on the kidneys. AKI is a combination of toxic and ischemic acute tubular necrosis. Patients may require dialysis, and the usual renal recovery time is 4-120 days. The patient with multiple honey bee stings needs emergency medical treatment, sometimes in the ICU setting, with the aim of treating or preventing anaphylaxis reactions. A case of AKI due to multiple honey bee stings is presented, which is rare but a known occurrence. The patient survived with a recovery of renal function.

6.
Int J Biol Macromol ; : 135362, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39245116

RESUMO

Recently, numerous studies have confirmed the importance of chitosan nanoparticles (CNP) as a viable drug delivery carrier for increasing the efficacy of anticancer drugs in cancer treatment. It is a macromolecule and natural biopolymer compound, more stable and safer in use than metal nanoparticles. Bee venom (BV), a form of defense venom, has been shown to have anti-tumor, neuroprotective, anti-inflammatory, analgesic, and anti-infectivity properties. Moreover, the regulation of cell death has been linked to reactive oxygen species (ROS)-mediated cell apoptosis, which induces mitochondrial damage and ER stress through oxidative stress events. Therefore, this study aimed to illustrate the ROS-mediated effect on the cancer cells treatment with CNP-loaded BV (CNP-BV) and explained the adverse effects of ROS generation on Mitochondria and ER. We have found that the targeted CNP-BV were high in cytotoxicity against MCF-7 (IC50 437.2 µg/mL) and HepG2 (IC50 109.5 µg/mL) through the induction of massive generation of ROS, which in turn results in activating the mitochondrial cascade and ER stress. These results highlighted the role of ROS generation in inducing apoptosis in cancer cells.

7.
Sci Total Environ ; 952: 175892, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39218107

RESUMO

The global decline of pollinators has become a major concern for the scientific community, policymakers, and the general public. Among the main drivers of diminishing bee populations is the widespread use of agrochemicals. To gain a comprehensive understanding of the foraging dynamics of bees at agrochemical-contaminated areas, it is essential to consider both environmental conditions and the specific foraging ecology of bee species. For the first time, we conducted a semi-field study to investigate whether stingless bees exhibit a preference for food contaminated with agrochemicals compared to non- contaminated food, under natural weather conditions. Colonies of Plebeia lucii Moure, 2004 were placed in a greenhouse and subjected to a preference test, where bees were given the freedom to choose between contaminated or non-contaminated food sources following a preliminary training period. Within the greenhouse, we placed feeders containing realistic concentrations of an insecticide (acephate: 2 mg a.i./L), a herbicide (glyphosate: 31.3 mg a.i./L), or a mixture of both, alongside non-contaminated food. Environmental variables (temperature, humidity, and light intensity) were monitored throughout the experiment. At higher temperatures, the foragers preferred food containing the mixture of both agrochemicals or uncontaminated food over the other treatments. At lower temperatures, by contrast, the bees preferred food laced with a single agrochemical (acephate or glyphosate) over uncontaminated food or the agrochemical mixture. Our findings indicate that agrochemical residues in nectar pose a significant threat to P. lucii colonies, as foragers do not actively avoid contaminated food, despite the detrimental effects of acephate and glyphosate on bees. Furthermore, we demonstrate that even minor, natural fluctuations in environmental conditions can alter the colony exposure risk. Despite the interplay between temperature and bees' preference for contaminated food, foragers consistently collected contaminated food containing both agrochemicals, whether isolated or in combination, throughout the whole experiment.

8.
Sci Total Environ ; 952: 175935, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39218110

RESUMO

Wild bees pollinate crops and wildflowers where they are frequently exposed to pesticides. Neonicotinoids are the most commonly used insecticide globally, but restrictions on their use and rising pest resistance have increased the demand for alternative pesticides. Flupyradifurone is a novel insecticide that has been licenced globally for use on bee-visited crops. Here, in a semi-field experiment, we exposed solitary bees (Osmia lignaria) to a commercial pesticide formulation (Sivanto Prime) containing flupyradifurone at label-recommended rates. We originally designed the experiment to examine sublethal effects, but contrary to our expectations, 100 % of bees released into pesticide-treated cages died within 3 days of exposure, compared to 0 % in control plots. Bees exposed to flupyradifurone a few days after the initial application survived but endured prolonged sublethal effects, including lower nesting success, impairment to foraging efficiency, and higher mortality. These results demonstrate that exposure to this novel insecticide poses significant threats to solitary bees and add to a growing body of evidence indicating that this pesticide can have negative impacts on wild bees at field-realistic concentrations. In the short-term, we recommend that commercial formulations containing flupyradifurone should be restricted to non-flowering crops while a reassessment of its safety can be conducted. In the long-term, environmental risk assessors should continue to develop risk assessments that are truly holistic and incorporate the ecological and life history traits of multiple pollinator species.

9.
J Invertebr Pathol ; 207: 108186, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39226984

RESUMO

Paenibacillus larvae is the causative agent of American Foulbrood (AFB), the most severe bacterial disease affecting honey bee (Apis mellifera) larvae. It was first reported in Uruguay in 1999. Here, we summarize the monitoring strategy carried out from 2001 to date, based on nationwide surveys sampling honey from colonies (2001/2002, 2011, 2021) or from honey storage tanks (2014-2019). We also discuss the actions carried out for the prevention of AFB outbreaks. Uruguay's experience in managing AFB for nearly 25 years without antibiotic use, might provide some helpful ideas for other countries working on AFB control programs.

10.
Heliyon ; 10(16): e35833, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39224368

RESUMO

A rapid high-performance liquid chromatography (HPLC) protocol for the determination of amino acids with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatization was successfully developed for assessing amino acid levels in six species of representative commercial bee pollen. Based on a poroshell column, a favorable chromatographic separation of seventeen amino acids was achieved in approximately 10 min with satisfactory resolution. The LOD and LOQ of this method were less than 0.034 µg/mL and 0.232 µg/mL, and the intra- and inter-day RSDs ranged between 0.86-5.28 % and 3.21-6.50 %, respectively. The matrix effect (ME) ranged from -8 to 3, implying that the matrix effect was not significant. Under the optimum conditions, the established method was adopted to determine amino acids in six types of bee pollens. The results showed that the total amino acid content ranged from 151.94 mg/g (Rosa rugosa) to 214.52 mg/g (Leonurus artemisia) in the six bee pollen species. Notably, proline (Pro), valine (Val), leucine (Leu), and phenylalanine (Phe) were abundant in the majority of samples. To identify the suspicious samples, principal component analysis (PCA) was performed, and each type of bee pollen was differentiated. Results showed that, in the market, the qualification rate of RR was 100 %, but that of NN was merely 62.5 %, revealing that a few of them were counterfeit. This method offers advantages such as high speed, low cost, and outstanding performance.

11.
Sci Total Environ ; : 175783, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39233091

RESUMO

Non-native species have the potential to detrimentally affect native species through resource competition, disease transmission, and other forms of antagonism. The western honey bee (Apis mellifera) is one such species that has been widely introduced beyond its native range for hundreds of years. There are strong concerns in the United States, and other countries, about the strain that high-density, managed honey bee populations could pose to already imperiled wild bee communities. While there is some experimental evidence of honey bees competing with wild bees for resources, few studies have connected landscape-scale honey bee apiary density with down-stream consequences for wild bee communities. Here, using a dataset from Maryland, US and joint species distribution models, we provide the largest scale, most phylogenetically resolved assessment of non-native honey bee density effects on wild bee abundance to date. As beekeeping in Maryland primarily consists of urban beekeeping, we also assessed the relative impact of developed land on wild bee communities. Six of the 33 wild bee genera we assessed showed a high probability (> 90 %) of a negative association with apiary density and/or developed land. These bees were primarily late-season, specialist genera (several long-horned genera represented) or small, ground nesting, season-long foragers (including several sweat bee genera). Conversely, developed land was associated with an increase in relative abundance for some genera including invasive Anthidium and other urban garden-associated genera. We discuss several avenues to ameliorate potentially detrimental effects of beekeeping and urbanization on the most imperiled wild bee groups. We additionally offer methodological insights based on sampling efficiency of different methods (hand netting, pan trapping, vane trapping), highlighting large variation in effect sizes across genera. The magnitude of sampling effect was very high, relative to the observed ecological effects, demonstrating the importance of integrated sampling, particularly for multi-species or community level assessments.

12.
Plant Biol (Stuttg) ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39222355

RESUMO

Flower colour polymorphisms are uncommon but widespread among angiosperms and can be maintained by a variety of balancing selection mechanisms. Anemone palmata is mostly yellow-flowered, but white-flowered plants coexist in some populations. We analysed the distribution of colour morphs of A. palmata across its range. We also characterised their colours and compared their vegetative and sexual reproductive traits, pollinator attention and fitness. The range of A. palmata is limited to the Western Mediterranean, while white-flowered plants are restricted to Portugal and SW Spain, where they occur at low proportions. Yellow flowers have a characteristic UV pattern, with a UV-absorbing centre and UV-reflecting periphery, which is absent in the white morph. Colour features of both morphs were highly delineated, making it easy for pollinators to distinguish them. Both morphs were protogynous, with the same duration of sexual stages, and the main floral traits related to pollinator attraction, apart from flower colour, were similar. Hymenoptera and Diptera were the main pollinators, showing preference for the yellow morph, clear partitioning of pollinator groups between the two colour morphs and a marked constancy to flower colour during foraging. Both morphs combined clonal propagation with sexual reproduction, but sexual reproductive potential was lower in white-flowered plants. Finally, female fitness was higher in the yellow morph. Pollinator partitioning and colour constancy could maintain this polymorphism, despite the lower visitation rate and fitness of white-flowered plants, which could facilitate their clonal propagation.

13.
PhytoKeys ; 244: 237-248, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086738

RESUMO

Pollen transfer efficiency (PTE; the proportion of pollen removed from flowers that reaches conspecific stigmas) is expected to vary with the type of pollinator and flower morphology, and to influence male siring success. Many species in the genus Erica are pollinated by bees (which consume pollen and should thus lower PTE) but during its radiation in the Cape, several independent shifts to both sunbird and long-proboscid fly (LP fly) pollinators, which do not consume pollen have taken place. Improvements in PTE could be one of the factors driving these pollinator shifts. PTE data for 15 Erica species (five for each of the three pollinator types) were collected and compared in relation to type of pollinator and anther exsertion. LP fly- and bird-pollinated species had higher PTE in comparison with bee-pollinated species. Species with inserted anthers had higher PTE than those with exserted anthers. This suggests that sunbirds and LP flies are more efficient pollinators than bees. Additionally, the study suggests that insertion of anthers within the corolla tube can reduce pollen losses.

14.
Nat Prod Res ; : 1-9, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105418

RESUMO

Quality control of propolis plays a pivotal role in ensuring the appropriate concentrations of active compounds, limiting unwanted substances, verifying authenticity, and adhering to regulatory standards. This study aimed to assess the identity and quality standards, the individual phenolic composition (LC-ESI-MS/MS), and the antioxidant and antiglycemic potential of commercial propolis extracts (CPEs) from Apis mellifera, Scaptotrigona bipunctata, and Melipona quadrifasciata bees. CPEs met wax content and oxidation activity criteria, surpassing minimum thresholds for total phenolic content (TPC) and flavonoid content (TFC), although stingless bee CPE did not test positive for 10% lead acetate. CPEs exhibited antioxidant and potential antiglycemic activities. Epicatechin among the thirty-three identified phenolics, showed significant correlation with TPC, DPPH, ABTS, and EC50 values of α-amylase enzyme. These promising attributes underscore the potential health benefits of commercial propolis extracts from Apis mellifera and stingless bees for further medicinal and nutritional applications.

15.
Heliyon ; 10(14): e34390, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39108870

RESUMO

High winter mortality of honey bees (Apis mellifera) has been observed in temperate regions over the past 30 years. Several biotic and abiotic stressors associated with winter colony losses have been identified, but the mechanisms and interactions underlying their effects remain unclear. We reviewed the effects of stressors on key overwintering biological traits, distinguishing between individual and colony traits. We found that disturbances at the level of individual traits can be amplified when transmitted to colony traits. By analyzing these cascading effects, we propose a concept of a feedback loop mechanism of winter mortality. We found that population size, social thermoregulation and honey reserve are integrative traits and can predict overwintering failure. Furthermore, we identified social thermoregulation as a good candidate for an early warning indicator. We therefore discuss existing tools for monitoring hive temperature to help mitigate the current high winter mortality of honey bees and support the sustainability of beekeeping.

16.
Sci Rep ; 14(1): 19013, 2024 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152125

RESUMO

The beekeeping industry plays a crucial role in local economies, contributing significantly to their growth. However, bee colonies often face the threat of American foulbrood (AFB), a dangerous disease caused by the Gram-positive bacterium Paenibacillus larvae (P. l.). While the antibiotic Tylosin has been suggested as a treatment, its bacterial resistance necessitates the search for more effective alternatives. This investigation focused on evaluating the potential of bee venom (BV) and silver nanoparticles (Ag NPs) as antibacterial agents against AFB. In vitro treatments were conducted using isolated AFB bacterial samples, with various concentrations of BV and Ag NPs (average size: 25nm) applied individually and in combination. The treatments were administered under both light and dark conditions. The viability of the treatments was assessed by monitoring the lifespans of treated bees and evaluating the treatment's efficiency within bee populations. Promising results were obtained with the use of Ag NPs, which effectively inhibited the progression of AFB. Moreover, the combination of BV and Ag NPs, known as bee venom/silver nanocomposites (BV/Ag NCs), significantly extended the natural lifespan of bees from 27 to 40 days. Notably, oral administration of BV in varying concentrations (1.53, 3.12, and 6.25 mg/mL) through sugary syrup doubled the bees' lifespan compared to the control group. The study established a significant correlation between the concentration of each treatment and the extent of bacterial inhibition. BV/Ag NCs demonstrated 1.4 times greater bactericidal efficiency under photo-stimulation with visible light compared to darkness, suggesting that light exposure enhances the effectiveness of BV/Ag NCs. The combination of BV and Ag NPs demonstrated enhanced antibacterial efficacy and prolonged honeybee lifespan. These results offer insights that can contribute to the development of safer and more efficient antibacterial agents for maintaining honeybee health.


Assuntos
Antibacterianos , Venenos de Abelha , Nanopartículas Metálicas , Paenibacillus larvae , Prata , Animais , Abelhas/microbiologia , Venenos de Abelha/farmacologia , Nanopartículas Metálicas/química , Prata/farmacologia , Prata/química , Antibacterianos/farmacologia , Paenibacillus larvae/efeitos dos fármacos , Longevidade/efeitos dos fármacos
17.
Vet Med Sci ; 10(5): e1573, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39087869

RESUMO

BACKGROUND: The study was conducted in Pawe district from Benishangul-Gumuz and Jawi and Fagita Lekoma districts from the Amhara region to investigate major honeybee pests, predators and diseases. METHODS: Using a purposive sampling technique, 183 households were interviewed, and 240 samples were collected for laboratory analysis of bee disease; data were analysed using descriptive statistics. RESULTS: The share of hive types owned by sampled respondents was 88.6%; overall, 1.1% and 10.3% were traditional, transitional and modern beehives, respectively. About 92% of the sample respondents acquired their base colonies by catching swarm bees on the apex of trees. The majority of beekeepers executed external inspections of their colony, whereas only 50% carried out internal inspections. Based on the responses of beekeepers, around 48.9%, 56.3% and 23.1% of colonies absconded every year from Pawe, Jawi and Fagita Lekoma districts, respectively. Ants, wax moths, bee lice, beetles, spiders, birds, monkeys and honey badgers were the major honeybee pests and predators discovered in study areas in decreasing order. Concerning the incidence of Varroa mites, Nosema apis and amoeba disease, 27.5%, 60% and 71.6% of samples showed positive results in study locations, respectively. CONCLUSIONS: From this result, we observed that ants, wax moths, bee lice, beetles, spiders, birds, monkeys and honey badgers were the major honeybee pests and predators. The prevalence of amoeba disease was comparatively higher in highland areas and in the summer season. This finding suggests the need for the alertness of beekeepers in controlling bee disease and pests and strengthening bee colonies through seasonal colony management. There should be a strict quarantine, and check-up undertaken when a new colony is purchased from one region to another is essential.


Assuntos
Criação de Abelhas , Animais , Abelhas/parasitologia , Etiópia/epidemiologia , Prevalência
18.
Front Microbiol ; 15: 1419917, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091304

RESUMO

The prevalent life-threatening microbial and cancer diseases and lack of effective pharmaceutical therapies created the need for new molecules with antimicrobial and anticancer potential. Bee venom (BV) was collected from honeybee workers, and melittin (NM) was extracted from BV and analyzed by urea-polyacrylamide gel electrophoresis (urea-PAGE). The isolated melittin was hydrolyzed with alcalase into new bioactive peptides and evaluated for their antimicrobial and anticancer activity. Gel filtration chromatography fractionated melittin hydrolysate (HM) into three significant fractions (F1, F2, and F3), that were characterized by electrospray ionization mass spectrometry (ESI-MS) and evaluated for their antimicrobial, anti-biofilm, antitumor, and anti-migration activities. All the tested peptides showed antimicrobial and anti-biofilm activities against Gram-positive and Gram-negative bacteria. Melittin and its fractions significantly inhibited the proliferation of two types of cancer cells (Huh-7 and HCT 116). Yet, melittin and its fractions did not affect the viability of normal human lung Wi-38 cells. The IC50 and selectivity index data evidenced the superiority of melittin peptide fractions over intact melittin. Melittin enzymatic hydrolysate is a promising novel product with high potential as an antibacterial and anticancer agent.

19.
Arch Insect Biochem Physiol ; 116(4): e22139, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39106355

RESUMO

Pollination is essential for achieving high yields and enhancing the quality of kiwifruit cultivation, both of which significantly influence growers' interests and consumers' preferences. However, compared to studies on yield, there are fewer studies exploring the impact of pollination methods on the flavor of kiwifruit Actinidia chinensis Planchon. This study examined the effects of bee (Apis mellifera L.) pollination and artificial pollination on the yield and flavor of kiwifruit in the main producing areas of China. Compared with those pollinated artificially, bee-pollinated kiwifruit exhibited a greater fruit set rate, heavier fruit weight, and greater number of seeds. Notably, the number of seeds was positively correlated with fruit weight in bee-pollinated kiwifruit, whereas no such correlation was detected in artificially pollinated fruit. Bee pollination not only enhanced the yield but also improved the flavor of kiwifruit. Specifically, bee-pollinated kiwifruit contained higher levels of sucrose and lower concentrations of glucose and fructose, while the acid content was less affected by pollination methods. Furthermore, significant differences were observed in the volatile organic compound (VOC) levels in kiwifruit subjected to different pollination treatments, with bee-pollinated fruit exhibiting a superior flavor. Our findings provide new insights into the beneficial role of bee pollination in enhancing kiwifruit yield and quality, underscoring the crucial importance of bees in kiwifruit pollination.


Assuntos
Actinidia , Frutas , Polinização , Abelhas/fisiologia , Animais , Actinidia/fisiologia , Actinidia/crescimento & desenvolvimento , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Paladar , China
20.
Artigo em Inglês | MEDLINE | ID: mdl-39098972

RESUMO

Antimicrobial resistance (AMR) is a major global public health problem. Nevertheless, the knowledge of the factors driving the spread of resistance among environmental microorganisms is limited, and few studies have been performed worldwide. Honey bees (Apis mellifera L.) have long been considered bioindicators of environmental pollution and more recently also of AMR. In this study, 53 bacterial strains isolated from the body surface of honey bees at three ontogenetic stages, collected from ten different geographic locations, were tested for their phenotypic and genotypic resistance to eight classes of the most widely used antimicrobials in human and veterinary medicine. Results showed that 83% of the strains were resistant to at least one antimicrobial and 62% were multidrug-resistant bacteria, with a prevalence of resistance to nalidixic acid, cefotaxime, and aztreonam. A high percentage of isolates harbouring at least one antimicrobial gene was also observed (85%). The gene encoding resistance to colistin mcr-1 was the most abundant, followed by those for tetracycline tetM and tetC. Geographical features influenced the distribution of these traits more than bacterial species or bee stage, supporting the use of honey bee colonies and their associated bacteria as indicators to monitor environmental resistance. This approach can improve the scientific understanding of this global threat by increasing data collection capacity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA