Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.475
Filtrar
1.
Environ Int ; 190: 108919, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39094406

RESUMO

In agricultural environments, bees are routinely exposed to combinations of pesticides. For the most part, exposure to these pesticide mixtures does not result in acute lethal effects, but we know very little about potential sublethal effects and their consequences on reproductive success and population dynamics. In this study, we orally exposed newly emerged females of the solitary bee Osmia cornuta to environmentally-relevant levels of acetamiprid (a cyano-substituted neonicotinoid insecticide) singly and in combination with tebuconazole (a sterol-biosynthesis inhibitor (SBI) fungicide). The amount of feeding solution consumed during the exposure phase was lowest in bees exposed to the pesticide mixture. Following exposure, females were individually marked and released into oilseed rape field cages to monitor their nesting performance and assess their reproductive success. The nesting performance and reproductive success of bees exposed to the fungicide or the insecticide alone were similar to those of control bees and resulted in a 1.3-1.7 net population increases. By contrast, bees exposed to the pesticide mixture showed lower establishment, shortened nesting period, and reduced fecundity. Together, these effects led to a 0.5-0.6 population decrease. Female establishment and shortened nesting period were the main population bottlenecks. We found no effects of the pesticide mixture on nest provisioning rate, offspring body weight or sex ratio. Our study shows how sublethal pesticide exposure may affect several components of bee reproductive success and, ultimately, population growth. Our results calls for a rethinking of pollinator risk assessment schemes, which should target not only single compounds but also combinations of compounds likely to co-occur in agricultural environments.

2.
BMC Ecol Evol ; 24(1): 104, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095704

RESUMO

BACKGROUND: Understanding connections between biodiversity and ecosystem services can be enhanced by shifting focus from species richness to functional trait-based approaches, that when paired with comparative phylogenetic methods can provide even deeper insights. We investigated the functional ecology and phylogenetic diversity of pollination services provided by hymenopteran insects visiting apple flowers in orchards surrounded by either 'natural' or 'disturbed' landscapes in New South Wales, Australia. We assessed whether morphological and behavioural traits (hairiness, body size, glossa length, pollen load purity, and probability of loose pollen) exhibited non-random phylogenetic patterns. Then, explored whether bees, the primary pollinators in this system, filled unique or overlapping functional entities (FEs). For each landscape, we calculated phylogenetic diversity and used FEs to assess functional richness, evenness, and diversion. RESULTS: A phylogenomic matrix based on ultraconserved elements (UCEs; 1,382,620 bp from 1,969 loci) was used to infer a fully-resolved and well-supported maximum likelihood phylogeny for 48 hymenopteran morphospecies. There was no significant difference in species richness between landscape categories. Pollinator communities at natural sites had higher phylogenetic complexity (X = 2.37) and functional divergence (x̄ = 0.74 ± 0.02 s.e.) than disturbed sites (X = 1.65 and x̄ = 0.6 ± 0.01 s.e.). Hairiness showed significant phylogenetic clustering (K = 0.94), whereas body size, glossa length, and loose pollen showed weaker non-random phylogenetic patterns (K between 0.3-0.5). Pollen load purity showed no association with phylogeny. The assemblage of 17 bee morphospecies comprised nine FEs: eight FEs consisted of native bees with three containing 65% of all native bee taxa. The introduced honey bee (Apis mellifera) occupied a unique FE, likely due to its different evolutionary history. Both landscape types supported six FEs each with three overlapping: two native bee FEs and the honey bee FE. CONCLUSIONS: Bee hairiness was the only functional trait to exhibit demonstrable phylogenetic signal. Despite differences in species richness, and functional and phylogenetic diversity between orchard landscape types, both maintained equal bee FE numbers. While no native bee taxon was analogous to the honey bee FE, four native bee FEs shared the same hairiness level as honey bees. Health threats to honey bee populations in Australia will likely disrupt pollination services to apple, and other pollination-dependent food crops, given the low level of functional redundancy within the investigated pollinator assemblages.


Assuntos
Filogenia , Polinização , Animais , Abelhas/fisiologia , Abelhas/classificação , Malus/genética , Produtos Agrícolas/genética , Biodiversidade , New South Wales , Frutas
3.
NanoImpact ; 35: 100522, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019436

RESUMO

Anthropogenic activities have negatively impacted the ecosystem dramatically over the last few decades. The environment is becoming more contaminated with heavy metals, pesticides, and microplastics (MPs) as a result of the swift rise in industrialization and urbanisation. These contaminants are present everywhere in the ecosystem, affecting every living creature, from aquatic to terrestrial to aerial. Recently, the widespread of microplastics in the environment has raised serious concerns about the contamination of honey bees by these tiny particles of plastic. Honeybees are the major pollinators which contributes in the pollination of about 70% food that we consume. This review summarizes current research findings on the presence, uptake, and possible effects of microplastics on honey bees. Findings revealed the presence of microplastics in various honey bee matrices, such as honey, pollen, beeswax, and bee bodies, highlighting the potential routes of exposure for these vital pollinators. Additionally, evidence suggests that microplastics can accumulate in honey bee tissues (brain, midgut, Malpighian tubules, trachea, and haemolymph) potentially leading to adverse effects on honey bee health, behaviour, and colony dynamics. Additionally, MPs has a synergistic impact on immune system as well. Change in cuticle profile, reduction in body weight, and changes in eating frequency can regulate overall success rate of their survival. However, significant knowledge gaps remain regarding the long-term consequences for honey bee populations and ecosystem health, which cannot unveil the ultimate degree of future threats. Future research efforts should focus on investigating the interactions between microplastics and other stressors, such as pesticides and pathogens, and assessing the broader ecological implications of honey bee contamination with microplastics. Addressing these knowledge gaps is essential for developing effective mitigation strategies to minimize the impact of microplastics on honey bee populations and safeguarding their vital role in ecosystem functioning and food security.

4.
Chemosphere ; 363: 142881, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39032733

RESUMO

This work explores the efficiency of honey bees (Apis mellifera) as biosamplers of metal pollution. To understand this, we selected two cities with different urbanization (a medium-sized city and a megacity), and we collected urban dust and honey bees captured during flight. We sampled two villages and a university campus as control areas. The metal content in dust was analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Atomic Force Microscopy (AFM) and Scanning electron microscopy (SEM) were used to investigate the shape and size distribution of the particles, and to characterize the semiquantitative chemical composition of particles adhered to honey bee's wings. Principal Component Analysis (PCA) shows a distinctive urban dust geochemical signature for each city, with component 1 defining V-Cr-Ni-Tl-Pt-Pb-Sb as characteristic of Mexico City and Ce-As-Zr for dust from Hermosillo. Particle count using SEM indicates that 69% and 63.4% of the resuspended dust from Hermosillo and Mexico City, respectively, corresponds to PM2.5. Instead, the particle count measured on the honey bee wings from Hermosillo and Mexico City is mainly PM2.5, 91.4% and 88.9%, respectively. The wings from honey bees collected in the villages and the university campus show much lower particle amounts. AFM-histograms confirmed that the particles identified in Mexico City have even smaller sizes (between 60 and 480 nm) than those in Hermosillo (between 400 and 1400 nm). Particles enriched in As, Zr, and Ce mixed with geogenic elements such as Si, Ca, Mg, K, and Na dominate honey bee' wings collected in Hermosillo. In contrast, those particles collected from Mexico City contain V, Cr, Ni, Tl, Pt, Pb, and Sb. Such results agree with the urban dust data. This work shows that honey bees are suitable biosamplers for the characterization of fine dust fractions by microscopy techniques and reflect the urban pollution of the sites.

5.
Insects ; 15(7)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39057275

RESUMO

This study determined the influence of foraging distance, environmental factors, and native vegetation on honeybee (Apis mellifera) foraging in arid shrublands and grasslands in Northern Mexico. Apiary distance from inflorescence sites did not have a significant influence on the intensity of foraging. Apiary location and landscape were decisive factors in the response of honeybees to environmental factors. Air temperature, minimum temperature, wind velocity, and relative humidity explained foraging by 87, 80, 68, and 41% (R2), respectively, in shrubland sites in open landscapes but had no significant influence on foraging in the grassland sites in a valley surrounded by hills (1820-2020 amsl). Nights with a minimum temperature of <20 °C increased foraging activity during the day. Minimum temperature, which has the least correlative influence among climate elements, can be used to determine climate change's impact on bees. The quantity of available inflorescence explained the foraging intensity by 78% in shrublands and 84% in grasslands. Moreover, when honeybees depended mainly on native vegetation in grasslands, the quantity of inflorescence explained the intensity of foraging by 95%. High intensity of honeybee foraging was observed in allthorn (Koeberlinia spinosa) and wait-a-minute bush (Mimosa aculeaticarpa) in shrublands and honey mesquite (Neltuma glandulosa) and wait-a-minute bush (Mimosa aculeaticarpa) in grasslands. The findings and baseline data contributed by this study may be used to identify suitable environments for increasing apiary productivity and other agricultural and ecological benefits.

6.
Ecol Evol ; 14(7): e11725, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38978999

RESUMO

The extent to which weeds in arable land are useful to pollinators depends in part on the temporal pattern of flowering and insect flight activity. We compiled citizen science data on 54 bees and hoverflies typical of agricultural areas in southern Sweden, as well as 24 flowering weed species classified as pollinator-friendly in the sense that they provide nectar and/or pollen to pollinators. The flight periods of the bees and hoverflies varied greatly, but there were also some consistent differences between the four groups studied. The first group to fly were the early flying solitary bees (7 species), followed by the social bees (18 species). In contrast, other solitary bees (11 species) and hoverflies (22 species) flew later in the summer. Solitary bees had the shortest flight periods, while social bees and hoverflies had longer flight periods. Flowering of weed species also varied greatly between species, with weeds classified as winter annuals (e.g., germinating in autumn) starting early together with germination generalists (species that can germinate in both autumn and spring). Summer annuals (spring germinators) and perennials started flowering about a month later. Germination generalists had a much longer flowering period than the others. Weekly pollinator records were in most cases significantly explained by weed records. Apart from early flying solitary bees, all models showed strong positive relationships. The overall best explanatory variable was the total number of weeds, with a weight assigned to each species based on its potential as a nectar/pollen source. This suggests that agricultural weeds in Sweden provide a continuous potential supply of nectar and pollen throughout the flight season of most pollinators.

7.
Trends Ecol Evol ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39019730

RESUMO

The cognitive ecology of pollination is most often studied using simple rewards, yet flowers often contain multiple types of chemically complex rewards, each varying along multiple dimensions of quality. In this review we highlight ways in which reward complexity can impact pollinator cognition, demonstrating the need to consider ecologically realistic rewards to fully understand plant-pollinator interactions. We show that pollinators' reward preferences can be modulated by reward chemistry and the collection of multiple reward types. We also discuss how reward complexity can mediate pollinator learning through a variety of mechanisms, both with and without reward preference being altered. Finally, we show how an understanding of decision-making strategies is necessary to predict how pollinators' evaluation of reward options depends on the other options available.

8.
Neotrop Entomol ; 53(4): 715-725, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955944

RESUMO

Several crops depend on both managed and wild bees to produce fruits and/or seeds, and the efficiency of numerous wild bees is higher than that of some managed species. Therefore, knowing and understanding the required resources for wild bees could enabled the establishment of management practices to increase their populations. Here, we provide information about the nesting biology of Megachile (Chrysosarus) jenseni, a Faboideae-specialist bee species. Based on observations from two populations occurring in contrasting agroecosystems, this bivoltine species showed common behavioral features shared with other species of subgenus Chrysosarus, such as the use of petal pieces and mud as nesting materials and the utilization of pre-existing cavities. Both studied populations showed a bivoltine life cycle with a rapid early-summer generation and a second generation, with most individuals overwintering. Main causes of mortality were unknown diseases (or other factors), causing the death of preimaginal stages. Moreover, this species was attacked by a cleptoparasite megachilid (Coelioxys remissa), a parasitic eulophid wasp (Melittobia sp.), and a bee fly (Anthrax oedipus). Finally, we discussed the potential use of this leaf-cutter bee species for alfalfa pollination.


Assuntos
Medicago sativa , Comportamento de Nidação , Polinização , Animais , Abelhas/fisiologia , Feminino , Vespas/fisiologia , Brasil , Estações do Ano
9.
Environ Sci Pollut Res Int ; 31(32): 44908-44919, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38955973

RESUMO

The honey bee Apis mellifera plays a significant role as a pollinator of native and cultivated plants, by increasing the productivity of several cultures, preserving the flora, and producing forest seeds. However, bee populations are declining worldwide, including A. mellifera, due to Colony Collapse Disorder, mainly resulting from the constant use of pesticides in the crops. Teflubenzuron is a physiological insecticide that belongs to the benzoylurea group, which inhibits chitin synthesis, the main component of the insect integument classified as safe for non-target insects, including bees. However, its effect on non-target organs of insects remains unknown. The midgut is the main organ of the digestive tract, which works in digestion and absorption and may be exposed to pesticides that contaminate food resources. The present work aimed to verify if the insecticide teflubenzuron is toxic and has histopathological effects on the midgut of A. mellifera adult workers. Workers exposed orally and chronically to the field-realistic concentration of teflubenzuron present 81.54% mortality. The epithelium of the midgut of these bees presents high vacuolization, spherocrystals, cell fragments released to the organ lumen, apocrine secretion, nuclear pyknosis, loss of cell-cell contact, and damage to regenerative cell nests and to the peritrophic matrix. These results indicate that the chitin synthesis-inhibiting insecticide teflubenzuron is toxic to A. mellifera after chronic oral exposure, at realistic field concentration, although it is classified as non-toxic to adult and non-target insects.


Assuntos
Benzamidas , Inseticidas , Animais , Abelhas/efeitos dos fármacos , Inseticidas/toxicidade , Benzamidas/toxicidade , Praguicidas/toxicidade
10.
Philos Trans R Soc Lond B Biol Sci ; 379(1909): 20230168, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39034700

RESUMO

Species-rich natural and semi-natural ecosystems are under threat owing to land use change. To conserve the biodiversity associated with these ecosystems, we must identify and target conservation efforts towards functionally important species and supporting habitats that create connections between remnant patches in the landscape. Here, we use a multi-layer network approach to identify species that connect a metanetwork of plant-bee interactions in remnant semi-natural grasslands which are biodiversity hotspots in European landscapes. We investigate how these landscape connecting species, and their interactions, persist in their proposed supporting habitat, road verges, across a landscape with high human impact. We identify 11 plant taxa and nine bee species that connect semi-natural grassland patches. We find the beta diversity of these connector species to be low across road verges, indicating a poor contribution of these habitats to the landscape-scale diversity in semi-natural grasslands. We also find a significant influence of the surrounding landscape on the beta diversity of connector species and their interactions with implications for landscape-scale management. Conservation actions targeted toward species with key functional roles as connectors of fragmented ecosystems can provide cost-effective management of the diversity and functioning of threatened ecosystems.This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Pradaria , Animais , Abelhas/fisiologia , Ecossistema , Plantas/classificação
11.
Appl Environ Microbiol ; : e0051524, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012136

RESUMO

Biofilm formation is a common adaptation enabling bacteria to thrive in various environments and withstand external pressures. In the context of host-microbe interactions, biofilms play vital roles in establishing microbiomes associated with animals and plants and are used by opportunistic microbes to facilitate survival within hosts. Investigating biofilm dynamics, composition, and responses to environmental stressors is crucial for understanding microbial community assembly and biofilm regulation in health and disease. In this study, we explore in vivo colonization and in vitro biofilm formation abilities of core members of the honey bee (Apis mellifera) gut microbiota. Additionally, we assess the impact of glyphosate, a widely used herbicide with antimicrobial properties, and a glyphosate-based herbicide formulation on growth and biofilm formation in bee gut symbionts as well as in other biofilm-forming bacteria associated with diverse animals and plants. Our results demonstrate that several strains of core bee gut bacterial species can colonize the bee gut, which probably depends on their ability to form biofilms. Furthermore, glyphosate exposure elicits variable effects on bacterial growth and biofilm formation. In some instances, the effects correlate with the bacteria's ability to encode a susceptible or tolerant version of the enzyme inhibited by glyphosate in the shikimate pathway. However, in other instances, no such correlation is observed. Testing the herbicide formulation further complicates comparisons, as results often diverge from glyphosate exposure alone, suggesting that co-formulants influence bacterial growth and biofilm formation. These findings highlight the nuanced impacts of environmental stressors on microbial biofilms, with both ecological and host health-related implications. IMPORTANCE: Biofilms are essential for microbial communities to establish and thrive in diverse environments. In the honey bee gut, the core microbiota member Snodgrassella alvi forms biofilms, potentially aiding the establishment of other members and promoting interactions with the host. In this study, we show that specific strains of other core members, including Bifidobacterium, Bombilactobacillus, Gilliamella, and Lactobacillus, also form biofilms in vitro. We then examine the impact of glyphosate, a widely used herbicide that can disrupt the bee microbiota, on bacterial growth and biofilm formation. Our findings demonstrate the diverse effects of glyphosate on biofilm formation, ranging from inhibition to enhancement, reflecting observations in other beneficial or pathogenic bacteria associated with animals and plants. Thus, glyphosate exposure may influence bacterial growth and biofilm formation, potentially shaping microbial establishment on host surfaces and impacting health outcomes.

12.
G3 (Bethesda) ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028118

RESUMO

The Hunt bumble bee, Bombus huntii, is a widely distributed pollinator in western North America. The species produces large colony sizes in captive rearing conditions, experiences low parasite and pathogen loads, and has been demonstrated to be an effective pollinator of tomatoes grown in controlled environment agriculture systems. These desirable traits have galvanized producer efforts to develop commercial B. huntii colonies for growers to deliver pollination services to crops. To better understand B. huntii biology and support population genetic studies and breeding decisions, we sequenced and assembled the B. huntii genome from a single haploid male. High-fidelity sequencing of the entire genome using PacBio, along with HiC sequencing, led to a comprehensive contig assembly of high continuity. This assembly was further organized into a chromosomal arrangement, successfully identifying 18 chromosomes spread across the 317.4 Mb assembly with a BUSCO score indicating 97.6% completeness. Synteny analysis demonstrates shared chromosome number (n = 18) with B. terrestris, a species belonging to a different subgenus, matching the expectation that presence of 18 haploid chromosomes is an ancestral trait at least between the subgenera Pyrobombus and Bombus sensu stricto. In conclusion, the assembly outcome, alongside the minimal tissue sampled destructively, showcase efficient techniques for producing a comprehensive, highly contiguous genome.

13.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38991988

RESUMO

AIM: In this study, we investigated culturable yeast community, present in grape must sampled from vineyards with apiaries on the borders, and in honey bees collected in these apiaries. METHODS AND RESULTS: To this aim, yeasts isolated from spontaneously fermented grapes randomly collected in two vineyards (P1 and P2) with apiaries on the borders (A1 and A2) were compared to those isolated from spontaneously fermented grapes collected from a vineyard without apiary (P4). At the same time, yeast community was analyzed on bees collected in each apiary placed in the vineyards, in comparison to yeasts isolated from an apiary (A3) located far from the vineyards. The analysis was performed for two consecutive years (2021 and 2022). The isolated yeasts were identified by restriction analysis of amplified ITS region, followed by sequencing of ITS fragment.Our research showed that the presence of apiaries seems to increase yeast counts of grape must, in particular of Saccharomyces cerevisiae; furthermore, the permanence of apiaries in the vineyards allowed the recovering of these yeasts also from bees. CONCLUSIONS: Our findings seem to corroborate the role of bees as vectors and reservoirs of oenologically relevant yeasts, such as a source of non-conventional yeasts with potential biotechnological applications.


Assuntos
Fazendas , Vitis , Leveduras , Animais , Abelhas/microbiologia , Vitis/microbiologia , Leveduras/isolamento & purificação , Leveduras/classificação , Leveduras/genética , Saccharomyces cerevisiae/isolamento & purificação , Vinho/microbiologia , Fermentação
14.
J Environ Manage ; 365: 121625, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38959772

RESUMO

This is the first study providing long-term data on the dynamics of bees and wasps and their parasitoids for the evidence-based management of reed beds. Ten years ago, we identified Lipara (Chloropidae) - induced galls on common reed (Phragmites australis, Poaceae) as a critically important resource for specialized bees and wasps (Hymenoptera: Aculeata). We found that they were surprisingly common in relatively newly formed anthropogenic habitats, which elicited questions about the dynamics of bees and wasps and their parasitoids in newly formed reed beds of anthropogenic origin. Therefore, in the winter and spring of 2022/23, we sampled reed galls from the same set of reed beds of anthropogenic and natural origin as those in 2012/13. At 10 sites, the number of sampled galls was similar in both time periods (80-122% of the value from 2012/13); 12 sites experienced a moderate decline (30-79% of the value from 2012/13), and the number of galls at six sampling sites was only 3-23% of their abundance in 2012/13. Spontaneous development was associated with increasing populations. After 10 years of spontaneous development, the populations of bees and wasps (including their parasitoids) bound to Lipara-induced reed galls increased in abundance and species richness or remained at their previous levels, which was dependent on the sampling site. The only identified threat consisted of reclamation efforts. The effects of habitat age were limited, and the assemblages in habitats of near-natural and anthropogenic origin largely overlapped. However, several species were consistently present at lower abundances in the anthropogenic habitats and vice versa. In conclusion, we provided evidence-based support for the establishment of oligotrophic reed beds of anthropogenic origin as management tools providing sustainable habitats for specialized reed gall-associated aculeate hymenopteran inquilines, including the threatened species.


Assuntos
Ecossistema , Vespas , Animais , Vespas/fisiologia , Himenópteros/fisiologia , Poaceae , Abelhas/parasitologia , Tumores de Planta/parasitologia
15.
Sci Total Environ ; 948: 174892, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39034005

RESUMO

The registration of novel pesticides that are subsequently banned because of their unexpected negative effects on non-target species can have a huge environmental impact. Therefore, the pre-emptive evaluation of the potential effects of new compounds is essential. To this aim both lethal and sublethal effects should be assessed in a realistic scenario including the other stressors that can interact with pesticides. However, laboratory studies addressing such interactive effects are rare, while standardized laboratory-based protocols focus on lethal effects and not on sub-lethal effects. We propose to assess both lethal and sublethal effects in a multifactorial context including the other stressors affecting the non-target species. We tested this approach by studying the impact on honey bees of the insecticide sulfoxaflor in combination with a common parasite, a sub-optimal temperature and food deprivation. We studied the survival and the transcriptome of honey bees, to assess both the lethal and the potential sublethal effects of the insecticide, respectively. With this method we show that a field realistic concentration of sulfoxaflor in food does not affect the survival of honey bees; however, the significant impact on some key genes indicates that sublethal effects are possible in a realistically complex scenario. Moreover, our results demonstrate the feasibility and reliability of a novel approach to hazard assessment considering the interactive effects of pesticides. We anticipate our approach to be a starting point for a paradigm shift in toxicology: from an unifactorial, mortality-centered assessment to a multifactorial, comprehensive approach. This is something of the utmost importance to preserve pollination, thus contributing to the sustainability of our food production system.

16.
Zookeys ; 1205: 267-298, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38984215

RESUMO

Iraq is a large country in the Middle East region that borders both Turkey and Iran, countries known to host two of the largest bee faunas globally, as expected for a group of insects that favour dry to Mediterranean climates. Despite this huge regional species richness, the bee fauna of Iraq is chronically understudied and poorly known, both in relative and absolute terms. This is true for the hyper-speciose bee genus Andrena, for which only 17 species have been previously published for Iraq. This work is the first modern contribution to the revision of the Andrena fauna of Iraq. Based on new specimen collections in Duhok Governorate (Iraqi Kurdistan) during 2023, a revised total of 59 Andrena species for Iraq (42 species recorded for the first time) is presented, including the description of two new species: Andrena (Aciandrena) duhokensis Wood, sp. nov. and Andrena (Notandrena) baiocchii Wood, sp. nov. The unknown males of A. (Micrandrena) elam Wood, 2022, A. (Micrandrena) obsidiana Wood, 2022, and A. (Notandrena) ayna Wood, 2023 are described. Andrenabakrajoensis Amin & Mawlood, 2019, syn. nov. is synonymised with A. (Holandrena) variabilis Smith, 1853. Additional records are presented from nearby Middle Eastern countries, particularly Lebanon. These results highlight the fundamentally understudied nature of the Iraqi Andrena fauna.

17.
Environ Sci Pollut Res Int ; 31(34): 46898-46909, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38981968

RESUMO

The rapid increase in global plastic production and usage has led to global environmental contamination, with microplastics (MPs) emerging as a significant concern. Pollinators provide a crucial ecological service, while bee populations have been declining in recent years, and MPs have been recognized as a new risk factor contributing to their losses. Despite the pervasive distribution and persistence of MPs, understanding their risks to honey bees remains a critical knowledge gap. This review summarizes recent studies that investigate the toxicity of MPs on honey bee health from different perspectives. The findings revealed diverse and material-/size-/dosage-dependent outcomes, emphasizing the need for comprehensive assessments in the follow-up studies. MPs have been detected in honey and in bees' organs (e.g., gut and brain), posing potential threats to bee fitness, including altered behavior, cognitive abilities, compromised immunity, and dysfunction of the gut microbiota. It should be noticed that despite several laboratory studies suggesting the aforementioned adverse effects of MPs, field/semi-field experiments are still warranted. The synergistic toxicity of MPs with other environmental contaminants (pesticides, antibiotics, fungicides, heavy metals, etc.) still requires further investigation. Our review highlights the critical need to understand the relationships between MPs, pollinators, and the ecosystem to mitigate potential risks and ensure the sustainability of vital services provided by honey bees.


Assuntos
Microplásticos , Polinização , Abelhas/efeitos dos fármacos , Animais , Microplásticos/toxicidade , Poluentes Ambientais/toxicidade
18.
Proc Biol Sci ; 291(2027): 20241036, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39082242

RESUMO

Many bees visit just one flower species during a foraging trip, i.e. they show flower constancy. Flower constancy is important for plant reproduction but it could lead to an unbalanced diet, especially in biodiversity-depleted landscapes. It is assumed that flower constancy does not reduce dietary diversity in social bees, such as honeybees or bumblebees, but this has not yet been tested. We used computer simulations to investigate the effects of flower constancy on colony diet in plant species-rich and species-poor landscapes. We also explored if communication about food sources, which is used by many social bees, further reduces forage diversity. Our simulations reveal an extensive loss of forage diversity owing to flower constancy in both species-rich and species-poor environments. Small flower-constant colonies often discovered only 30-50% of all available plant species, thereby increasing the risk of nutritional deficiencies. Communication often interacted with flower constancy to reduce forage diversity further. Finally, we found that food source clustering, but not habitat fragmentation impaired dietary diversity. These findings highlight the nutritional challenges flower-constant bees face in different landscapes and they can aid in the design of measures to increase forage diversity and improve bee nutrition in human-modified landscapes.


Assuntos
Comportamento Alimentar , Flores , Abelhas/fisiologia , Animais , Simulação por Computador , Biodiversidade , Dieta/veterinária , Ecossistema , Modelos Biológicos
19.
Sci Rep ; 14(1): 17458, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075087

RESUMO

Solar eclipse has remarkable effect on behavior of animals. South India experienced a 97% magnitude annular eclipse on December 26, 2019 during 08:04-11:04 h with the totality phase appeared during 09:25-09:30 h. We investigated whether the foraging activity of the bees was limited by the eclipse, what bees are affected most, and which part of the eclipse was critical for bee activities to understand how a group of insects that rely the Sun, the sunlight, and the sun rays for their navigation and vision behaves to the eclipse. We opted to watch the bees in their foraging ground, and selected the natural flower populations of Cleome rutidosperma, Hygrophila schulli, Mimosa pudica, and Urena sinuata-some of the bee-friendly plants-to record the visitor richness and visitation rate on the flowers on eclipse and non-eclipse days and during the hour of totality phase and partial phase of the eclipse. Fewer flower-visiting species were recorded on the eclipse day than on the non-eclipse days, but in the period of totality, very few bee species were active, and limited their activity to only one population of C. rutidosperma. Visits of honey bees and stingless bees were affected most, but not that badly of solitary bees and carpenter bees. Bees, particularly the social bees use Sun for navigation and deciphering information on forage sources to fellow workers. The eclipse, like for many other animals, might hamper bees' orientation, vision, and flight.


Assuntos
Flores , Luz Solar , Animais , Abelhas/fisiologia , Polinização , Índia , Comportamento Alimentar
20.
Ecotoxicology ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001973

RESUMO

The stingless bee Frieseomelitta varia Lepeletier 1836 (Hymenoptera: Apidae) is an essential pollinator in natural and agricultural ecosystems in the Neotropical region. However, these bees may be exposed to pesticides during foraging, which can affect both individuals and their colonies. One example comes from the use of pyraclostrobin (a fungicide) and thiamethoxam (an insecticide) for pest control in pepper crops, which F. varia visits. This study aimed to evaluate the isolated and combined sublethal effects of thiamethoxam (TMX) (0.000543 ng a.i./µL) and pyraclostrobin (PYR) (1.5 ng i.a./µL) on the morphology of the midgut and Malpighian tubules of F. varia workers. Results showed that both pesticides, regardless of the exposure time (through feeding during 48 h or 96 h), disturbed the morphology of the analyzed organs. Specifically, F. varia exposed orally to sublethal concentrations of thiamethoxam and pyraclostrobin, either alone or in combination, exhibited a higher rate of damage to the midgut (e.g., vacuolization, apocrine secretion, and cellular elimination) compared to the bees in the control groups, both after 48 h and 96 h of exposure. In Malpighian tubules, vacuolation is the only damage present. As the observed morphological alterations likely compromise the excretion and absorption functions, exposure to pyraclostrobin and thiamethoxam may lead to disturbances at both the individual and colony levels. These results highlight the urgent need for a future reassessment of the safety of fungicides and insecticides regarding their potential effects on bee populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA