Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Newborn (Clarksville) ; 3(1): 19-37, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39474586

RESUMO

Milk fat globules (MFGs) are a remarkable example of nature's ingenuity. Human milk (HM) carries contains 3-5% fat, 0.8-0.9% protein, 6.9-7.2% carbohydrate calculated as lactose, and 0.2% mineral constituents. Most of these nutrients are carried in these MFGs, which are composed of an energy-rich triacylglycerol (TAG) core surrounded by a triple membrane structure. The membrane contains polar lipids, specialized proteins, glycoproteins, and cholesterol. Each of these bioactive components serves important nutritional, immunological, neurological, and digestive functions. These MFGs are designed to release energy rapidly in the upper gastrointestinal tract and then persist for some time in the gut lumen so that the protective bioactive molecules are conveyed to the colon. These properties may shape the microbial colonization and innate immune properties of the developing gastrointestinal tract. Milk fat globules in milk from humans and ruminants may resemble in structure but there are considerable differences in size, profile, composition, and specific constituents. There are possibilities to not only enhance the nutritional composition in a goal-oriented fashion to correct specific deficiencies in the infant but also to use these fat globules as a nutraceutical in infants who require specific treatments. To mention a few, there might be possibilities in enhancing neurodevelopment, in defense against gastrointestinal and respiratory tract infections, improving insulin sensitivity, treating chronic inflammation, and altering plasma lipids. This review provides an overview of the composition, structure, and biological activities of the various components of the MFGs. We have assimilated research findings from our own laboratory with an extensive review of the literature utilizing key terms in multiple databases including PubMed, EMBASE, and Science Direct. To avoid bias in the identification of studies, keywords were short-listed a priori from anecdotal experience and PubMed's Medical Subject Heading (MeSH) thesaurus.

2.
Bioresour Technol ; 414: 131556, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39357610

RESUMO

Polyethylene terephthalate (PET) biodegradation is hindered by the intermediates bis (2-hydroxyethyl) terephthalate (BHET) and mono (2-hydroxyethyl) terephthalate (MHET). BMHETase, a thermophilic hydrolase identified from the UniParc database, exhibits degradation activity towards both BHET and MHET. BMHETase showed higher activity on BHET than LCCICCG and FASTPETase at temperatures ranging from 50 to 70℃. To enhance its activity in degrading MHET, BMHETase was engineered to mimic Ideonella sakaiensis MHETase. The resulting 6-point mutant's activities on MHET and BHET were 8 and 2 times those of the WT, with both optimal temperatures increased by 5℃. This enhancement may be attributed to the BMHETase6M's intensified binding ability with MHET and enlarged binding pocket. When combined with LCCICCG, BMHETase6M achieved complete degradation of MHET in PET films to terephthalic acid, indicating broad application potential. These findings suggest that BMHETase6M holds promise as a candidate for enhancing PET biodegradation efficiency and plastic waste management.

3.
ISME Commun ; 4(1): ycae092, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39071849

RESUMO

Recently, an activity-based labelling protocol for the in vivo detection of ammonia- and alkane-oxidizing bacteria became available. This functional tagging technique enabled targeted studies of these environmentally widespread functional groups, but it failed to capture ammonia-oxidizing archaea (AOA). Since their first discovery, AOA have emerged as key players within the biogeochemical nitrogen cycle, but our knowledge regarding their distribution and abundance in natural and engineered ecosystems is mainly derived from PCR-based and metagenomic studies. Furthermore, the archaeal ammonia monooxygenase is distinctly different from its bacterial counterparts and remains poorly understood. Here, we report on the development of an activity-based labelling protocol for the fluorescent detection of all ammonia- and alkane-oxidizing prokaryotes, including AOA. In this protocol, 1,5-hexadiyne is used as inhibitor of ammonia and alkane oxidation and as bifunctional enzyme probe for the fluorescent labelling of cells via the Cu(I)-catalyzed alkyne-azide cycloaddition reaction. Besides efficient activity-based labelling of ammonia- and alkane-oxidizing microorganisms, this method can also be employed in combination with deconvolution microscopy for determining the subcellular localization of their ammonia- and alkane-oxidizing enzyme systems. Labelling of these enzymes in diverse ammonia- and alkane-oxidizing microorganisms allowed their visualization on the cytoplasmic membranes, the intracytoplasmic membrane stacks of ammonia- and methane-oxidizing bacteria, and, fascinatingly, on vesicle-like structures in one AOA species. The development of this novel activity-based labelling method for ammonia- and alkane-oxidizers will be a valuable addition to the expanding molecular toolbox available for research of nitrifying and alkane-oxidizing microorganisms.

4.
Appl Environ Microbiol ; 90(7): e0088824, 2024 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-38940565

RESUMO

Although functional studies on carbohydrate-binding module (CBM) have been carried out extensively, the role of tandem CBMs in the enzyme containing multiple catalytic domains (CDs) is unclear. Here, we identified a multidomain enzyme (Lc25986) with a novel modular structure from lignocellulolytic bacterial consortium. It consists of a mannanase domain, two CBM65 domains (LcCBM65-1/LcCBM65-2), and an esterase domain. To investigate CBM function and domain interactions, full-length Lc25986 and its variants were constructed and used for enzymatic activity, binding, and bioinformatic analyses. The results showed that LcCBM65-1 and LcCBM65-2 both bind mannan and xyloglucan but not cellulose or ß-1,3-1,4-glucan, which differs from the ligand specificity of reported CBM65s. Compared to LcCBM65-2, LcCBM65-1 showed a stronger ligand affinity and a preference for acetylation sites. Both CBM65s stimulated the enzymatic activities of their respective neighboring CDs against acetylated mannan, but did not contribute to the activities of the distal CDs. The time course of mannan hydrolysis indicated that the full-length Lc25986 was more effective in the complete degradation of mixed acetyl/non-acetyl substrates than the mixture of single-CD mutants. When acting on complex substrates, LcCBM65-1 not only improved the enzymatic activity of the mannanase domain, but also directed the esterase domain to the acetylated polysaccharides. LcCBM65-2 adopted a low affinity to reduce interference with the catalysis of the mannanase domain. These results demonstrate the importance of CBMs for the synergism between the two CDs of a multidomain enzyme and suggest that they contribute to the adequate degradation of complex substrates such as plant cell walls. IMPORTANCE: Lignocellulolytic enzymes, particularly those of bacterial origin, often harbor multiple carbohydrate-binding modules (CBMs). However, the function of CBM multivalency remains poorly understood. This is especially true for enzymes that contain more than one catalytic domain (CD), as the interactions between CDs, CBMs, and CDs and CBMs can be complex. Our research demonstrates that homogeneous CBMs can have distinct functions in a multimodular enzyme. The tandem CBMs coordinate the CDs in catalytic conflict through their differences in binding affinity, ligand preference, and arrangement within the full-length enzyme. Additionally, although the synergism between mannanase and esterase is widely acknowledged, our study highlights the benefits of integrating the two enzymes into a single entity for the degradation of complex substrates. In summary, these findings enhance our understanding of the intra-synergism of a multimodular enzyme and emphasize the significance of multiple CBMs in this context.


Assuntos
Proteínas de Bactérias , Domínio Catalítico , Glucanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Glucanos/metabolismo , Xilanos/metabolismo , Mananas/metabolismo , Lignina/metabolismo , Bactérias/enzimologia , Bactérias/genética , Hidrólise , Especificidade por Substrato
5.
J Agric Food Chem ; 72(20): 11724-11732, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38718268

RESUMO

Protein post-translational modifications (PTMs) play an essential role in meat quality development. However, the effect of specific PTM sites on meat proteins has not been investigated yet. The characteristics of pyruvate kinase M (PKM) were found to exhibit a close correlation with final meat quality, and thus, serine 99 (S99) and lysine 137 (K137) in PKM were mutated to study their effect on PKM function. The structural and functional properties of five lamb PKM variants, including wild-type PKM (wtPKM), PKM_S99D (S99 phosphorylation), PKM_S99A (PKM S99 dephosphorylation), PKM_K137Q (PKM K137 acetylation), and PKM_K137R (PKM K137 deacetylation), were evaluated. The results showed that the secondary structure, tertiary structure, and polymer formation were affected among different PKM variants. In addition, the glycolytic activity of PKM_K137Q was decreased because of its weakened binding with phosphoenolpyruvate. In the PKM_K137R variant, the actin phosphorylation level exhibited a decrease, suggesting a low kinase activity of PKM_K137R. The results of molecular simulation showed a 42% reduction in the interface area between PKM_K137R and actin, in contrast to wtPKM and actin. These findings are significant for revealing the mechanism of how PTMs regulate PKM function and provide a theoretical foundation for the development of precise meat quality preservation technology.


Assuntos
Glicólise , Piruvato Quinase , Piruvato Quinase/metabolismo , Piruvato Quinase/genética , Piruvato Quinase/química , Fosforilação , Animais , Acetilação , Ovinos , Processamento de Proteína Pós-Traducional , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/química , Carne/análise
6.
Biotechnol Bioeng ; 121(7): 2067-2078, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38678481

RESUMO

Glycoside hydrolase (GH) 30 family xylanases are enzymes of biotechnological interest due to their capacity to degrade recalcitrant hemicelluloses, such as glucuronoxylan (GX). This study focuses on a subfamily 7 GH30, TtXyn30A from Thermothelomyces thermophilus, which acts on GX in an "endo" and "exo" mode, releasing methyl-glucuronic acid branched xylooligosaccharides (XOs) and xylobiose, respectively. The crystal structure of inactive TtXyn30A in complex with 23-(4-O-methyl-α-D-glucuronosyl)-xylotriose (UXX), along with biochemical analyses, corroborate the implication of E233, previously identified as alternative catalytic residue, in the hydrolysis of decorated xylan. At the -1 subsite, the xylose adopts a distorted conformation, indicative of the Michaelis complex of TtXyn30AEE with UXX trapped in the semi-functional active site. The most significant structural rearrangements upon substrate binding are observed at residues W127 and E233. The structures with neutral XOs, representing the "exo" function, clearly show the nonspecific binding at aglycon subsites, contrary to glycon sites, where the xylose molecules are accommodated via multiple interactions. Last, an unproductive ligand binding site is found at the interface between the catalytic and the secondary ß-domain which is present in all GH30 enzymes. These findings improve current understanding of the mechanism of bifunctional GH30s, with potential applications in the field of enzyme engineering.


Assuntos
Xilanos , Xilanos/metabolismo , Xilanos/química , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/genética , Sordariales/enzimologia , Sordariales/genética , Domínio Catalítico , Eurotiales/enzimologia , Especificidade por Substrato , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/metabolismo , Endo-1,4-beta-Xilanases/genética
7.
FEBS Lett ; 598(11): 1422-1437, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38649293

RESUMO

Among the epimerases specific to alginate, some of them in Azotobacter genera convert ß-d-mannuronic acid to α-l-guluronic acid but also have lyase activity to degrade alginate. The remarkable characteristics of these epimerases make it a promising enzyme for tailoring alginates to meet specific demands. Here, we determined the structure of the bifunctional mannuronan C-5 epimerase AlgE3 from Azotobacter chroococcum (AcAlgE3) in complex with several mannuronic acid oligomers as well as in apo form, which allowed us to elucidate the binding manner of each mannuronic acid oligomer, and the structural plasticity, which is dependent on calcium ions. Moreover, a comprehensive analysis of the lyase activity profiles of AcAlgE3 combined with structural characteristics explained the preference for different chain length oligomers.


Assuntos
Alginatos , Azotobacter , Carboidratos Epimerases , Azotobacter/enzimologia , Azotobacter/metabolismo , Alginatos/química , Alginatos/metabolismo , Carboidratos Epimerases/química , Carboidratos Epimerases/metabolismo , Carboidratos Epimerases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Ácidos Hexurônicos/química , Ácidos Hexurônicos/metabolismo , Especificidade por Substrato , Cálcio/metabolismo , Cálcio/química , Modelos Moleculares , Cristalografia por Raios X , Ligação Proteica , Domínio Catalítico
8.
J Math Biol ; 88(3): 36, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429564

RESUMO

Biochemical covalent modification networks exhibit a remarkable suite of steady state and dynamical properties such as multistationarity, oscillations, ultrasensitivity and absolute concentration robustness. This paper focuses on conditions required for a network of this type to have a species with absolute concentration robustness. We find that the robustness in a substrate is endowed by its interaction with a bifunctional enzyme, which is an enzyme that has different roles when isolated versus when bound as a substrate-enzyme complex. When isolated, the bifunctional enzyme promotes production of more molecules of the robust species while when bound, the same enzyme facilitates degradation of the robust species. These dual actions produce robustness in the large class of covalent modification networks. For each network of this type, we find the network conditions for the presence of robustness, the species that has robustness, and its robustness value. The unified approach of simultaneously analyzing a large class of networks for a single property, i.e. absolute concentration robustness, reveals the underlying mechanism of the action of bifunctional enzyme while simultaneously providing a precise mathematical description of bifunctionality.

9.
Microorganisms ; 12(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257939

RESUMO

Several microaerophilic parasites such as Giardia lamblia, Trichomonas vaginalis, and Plasmodium falciparum are major disease-causing organisms and are responsible for spreading infections worldwide. Despite significant progress made in understanding the metabolism and molecular biology of microaerophilic parasites, chemotherapeutic treatment to control it has seen limited progress. A current proposed strategy for drug discovery against parasitic diseases is the identification of essential key enzymes of metabolic pathways associated with the parasite's survival. In these organisms, glucose-6-phosphate dehydrogenase::6-phosphogluconolactonase (G6PD:: 6PGL), the first enzyme of the pentose phosphate pathway (PPP), is essential for its metabolism. Since G6PD:: 6PGL provides substrates for nucleotides synthesis and NADPH as a source of reducing equivalents, it could be considered an anti-parasite drug target. This review analyzes the anaerobic energy metabolism of G. lamblia, T. vaginalis, and P. falciparum, with a focus on glucose metabolism through the pentose phosphate pathway and the significance of the fused G6PD:: 6PGL enzyme as a therapeutic target in the search for new drugs.

10.
Int J Biol Macromol ; 261(Pt 1): 129512, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246466

RESUMO

Due to the severe health risks for human and animal caused by the intake of toxic deoxynivalenol (DON) derived from Fusarium species, elimination DON in food and feed has been initiated as a critical issue. Enzymatic cascade catalysis by dehydrogenase and aldo-keto reductase represents a fascinating strategy for DON detoxification. Here, one quinone-dpendent alcohol dehydrogenase DADH oxidized DON into less-toxic 3-keto-DON and NADPH-dependent aldo-keto reductase AKR13B3 reduced 3-keto-DON into relatively non-toxic 3-epi-DON were identified from Devosia strain A6-243, indicating that degradation of DON on C3 are two-step sequential cascade processes. To establish the bifunctions, fusion enzyme linking DADH and AKR13B3 was successfully assembled to promote one-step DON degradations with accelerated specific activity and efficiency, resulting 93.29 % of DON removal rate in wheat sample. Three-dimensional simulation analysis revealed that the bifunctional enzyme forms an artificial intramolecular channel to minimize the distance of intermediate from DADH to AKR13B3 for two-step enzymatic reactions, and thereby accelerates this enzymatic process. As the first report of directing single step DON detoxification by an interesting bifunctional artificial enzyme, this work revealed a facile and eco-friendly approach to detoxify DON with application potential and gave valuable insights into execute other mycotoxin detoxification for ensuring food safety.


Assuntos
Acetamidas , Tricotecenos , Animais , Humanos , Aldo-Ceto Redutases/genética , Tricotecenos/metabolismo
11.
Int J Biol Macromol ; 257(Pt 2): 128679, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072346

RESUMO

The glycoside hydrolase family 39 (GH39) proteins are renowned for their extremophilic and multifunctional enzymatic properties, yet the molecular mechanisms underpinning these unique characteristics continue to be an active subject of research. In this study, we introduce WsuXyn, a GH39 protein with a molecular weight of 58 kDa, originating from the thermophilic Geobacillus sp. WSUCF1. Previously reported for its exceptional thermostable ß-xylosidase activity, WsuXyn has recently demonstrated a significant endoxylanase activity (3752 U·mg-1) against beechwood xylan, indicating towards its bifunctional nature. Physicochemical characterization revealed that WsuXyn exhibits optimal endoxylanase activity at 70 °C and pH 7.0. Thermal stability assessments revealed that the enzyme is resilient to elevated temperatures, with a half-life of 168 h. Key kinetic parameters highlight the exceptional catalytic efficiency and strong affinity of the protein for xylan substrate. Moreover, WsuXyn-mediated hydrolysis of beechwood xylan has achieved 77 % xylan conversion, with xylose as the primary product. Structural analysis, amalgamated with docking simulations, has revealed strong binding forces between xylotetraose and the protein, with key amino acid residues, including Glu278, Tyr230, Glu160, Gly202, Cys201, Glu324, and Tyr283, playing pivotal roles in these interactions. Therefore, WsuXyn holds a strong promise for biodegradation and value-added product generation through lignocellulosic biomass conversion.


Assuntos
Geobacillus , Xilosidases , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Xilosidases/química , Xilanos/metabolismo , Especificidade por Substrato
12.
Molecules ; 28(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38005185

RESUMO

Glycosidases are essential for the industrial production of functional oligosaccharides and many biotech applications. A novel ß-galactosidase/α-L-arabinopyranosidase (PpBGal42A) of the glycoside hydrolase family 42 (GH42) from Paenibacillus polymyxa KF-1 was identified and functionally characterized. Using pNPG as a substrate, the recombinant PpBGal42A (77.16 kD) was shown to have an optimal temperature and pH of 30 °C and 6.0. Using pNPαArap as a substrate, the optimal temperature and pH were 40 °C and 7.0. PpBGal42A has good temperature and pH stability. Furthermore, Na+, K+, Li+, and Ca2+ (5 mmol/L) enhanced the enzymatic activity, whereas Mn2+, Cu2+, Zn2+, and Hg2+ significantly reduced the enzymatic activity. PpBGal42A hydrolyzed pNP-ß-D-galactoside and pNP-α-L-arabinopyranoside. PpBGal42A liberated galactose from ß-1,3/4/6-galactobiose and galactan. PpBGal42A hydrolyzed arabinopyranose at C20 of ginsenoside Rb2, but could not cleave arabinofuranose at C20 of ginsenoside Rc. Meanwhile, the molecular docking results revealed that PpBGal42A efficiently recognized and catalyzed lactose. PpBGal42A hydrolyzes lactose to galactose and glucose. PpBGal42A exhibits significant degradative activity towards citrus pectin when combined with pectinase. Our findings suggest that PpBGal42A is a novel bifunctional enzyme that is active as a ß-galactosidase and α-L-arabinopyranosidase. This study expands on the diversity of bifunctional enzymes and provides a potentially effective tool for the food industry.


Assuntos
Paenibacillus polymyxa , Paenibacillus , Paenibacillus polymyxa/metabolismo , Lactose , Simulação de Acoplamento Molecular , Galactose , Glicosídeo Hidrolases/metabolismo , Clonagem Molecular , beta-Galactosidase/metabolismo , Concentração de Íons de Hidrogênio , Especificidade por Substrato , Paenibacillus/genética , Paenibacillus/metabolismo
13.
Antioxidants (Basel) ; 12(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37507921

RESUMO

Catalase-peroxidases (KatGs) are unique bifunctional oxidoreductases that contain heme in their active centers allowing both the peroxidatic and catalatic reaction modes. These originally bacterial enzymes are broadly distributed among various fungi allowing them to cope with reactive oxygen species present in the environment or inside the cells. We used various biophysical, biochemical, and bioinformatics methods to investigate differences between catalase-peroxidases originating in thermophilic and mesophilic fungi from different habitats. Our results indicate that the architecture of the active center with a specific post-translational modification is highly similar in mesophilic and thermophilic KatG and also the peroxidatic acitivity with ABTS, guaiacol, and L-DOPA. However, only the thermophilic variant CthedisKatG reveals increased manganese peroxidase activity at elevated temperatures. The catalatic activity releasing molecular oxygen is comparable between CthedisKatG and mesophilic MagKatG1 over a broad temperature range. Two constructed point mutations in the active center were performed selectively blocking the formation of described post-translational modification in the active center. They exhibited a total loss of catalatic activity and changes in the peroxidatic activity. Our results indicate the capacity of bifunctional heme enzymes in the variable reactivity for potential biotech applications.

14.
Structure ; 31(8): 935-947.e4, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37329879

RESUMO

PaaY is a thioesterase that enables toxic metabolites to be degraded through the bacterial phenylacetic acid (PA) pathway. The Acinetobacter baumannii gene FQU82_01591 encodes PaaY, which we demonstrate to possess γ-carbonic anhydrase activity in addition to thioesterase activity. The crystal structure of AbPaaY in complex with bicarbonate reveals a homotrimer with a canonical γ-carbonic anhydrase active site. Thioesterase activity assays demonstrate a preference for lauroyl-CoA as a substrate. The AbPaaY trimer structure shows a unique domain-swapped C-termini, which increases the stability of the enzyme in vitro and decreases its susceptibility to proteolysis in vivo. The domain-swapped C-termini impact thioesterase substrate specificity and enzyme efficacy without affecting carbonic anhydrase activity. AbPaaY knockout reduced the growth of Acinetobacter in media containing PA, decreased biofilm formation, and impaired hydrogen peroxide resistance. Collectively, AbPaaY is a bifunctional enzyme that plays a key role in the metabolism, growth, and stress response mechanisms of A. baumannii.


Assuntos
Acinetobacter baumannii , Anidrases Carbônicas , Acinetobacter baumannii/genética , Anidrases Carbônicas/genética , Biofilmes , Antibacterianos/química
15.
Anim Nutr ; 13: 137-149, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37123618

RESUMO

To efficiently use lignocellulosic materials in ruminants, it is crucial to explore effective enzymes, especially bifunctional enzymes. In this study, a novel stable bifunctional cellulase-xylanase protein from buffalo rumen metagenome was expressed and characterized, CelXyn2. The enzyme displayed optimal activity at pH 6.0 and 45 °C. The residual endoglucanase and xylanase activities were 90.6% and 86.4% after a 60-min pre-incubation at 55 °C. Hydrolysis of rice straw, wheat straw, sheepgrass and sugar beet pulp by CelXyn2 showed its ability to degrade both cellulose and hemicellulose polymers. Treatment with CelXyn2 improved the hydrolysis of agricultural residues with an evident increase in production of total gas, lactate and volatile fatty acids. The results of 16S rRNA and real-time PCR showed that the effect on in vitro ruminal microbial community depended on fermentation substrates. This study demonstrated that CelXyn2 could strengthen lignocellulose hydrolysis and in vitro ruminal fermentation. These characteristics of CelXyn2 distinguish it as a promising candidate for agricultural application.

16.
J Biol Chem ; 299(4): 104603, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36907437

RESUMO

Phytosphingosine (PHS) is a sphingolipid component present mainly in epithelial tissues, including the epidermis and those lining the digestive tract. DEGS2 is a bifunctional enzyme that produces ceramides (CERs) containing PHS (PHS-CERs) via hydroxylation and sphingosine-CERs via desaturation, using dihydrosphingosine-CERs as substrates. Until now, the role of DEGS2 in permeability barrier functioning, its contribution to PHS-CER production, and the mechanism that differentiates between these two activities have been unknown. Here, we analyzed the barrier functioning of the epidermis, esophagus, and anterior stomach of Degs2 KO mice and found that there were no differences between Degs2 KO and WT mice, indicating normal permeability barriers in the KO mice. In the epidermis, esophagus, and anterior stomach of Degs2 KO mice, PHS-CER levels were greatly reduced relative to WT mice, but PHS-CERs were still present. We obtained similar results for DEGS2 KO human keratinocytes. These results indicate that although DEGS2 plays a major role in PHS-CER production, another synthesis pathway exists as well. Next, we examined the fatty acid (FA) composition of PHS-CERs in various mouse tissues and found that PHS-CER species containing very-long-chain FAs (≥C21) were more abundant than those containing long-chain FAs (C11-C20). A cell-based assay system revealed that the desaturase and hydroxylase activities of DEGS2 toward substrates with different FA chain lengths differed and that its hydroxylase activity was higher toward substrates containing very-long-chain FAs. Collectively, our findings contribute to the elucidation of the molecular mechanism of PHS-CER production.


Assuntos
Ceramidas , Ácidos Graxos Dessaturases , Ácidos Graxos , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Ceramidas/metabolismo , Epiderme/metabolismo , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Queratinócitos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigenases de Função Mista/genética
17.
J Fungi (Basel) ; 9(2)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36836267

RESUMO

The biomass-degrading thermophilic ascomycete fungus Thielavia terrestris Co3Bag1 produces TtCel7A, a native bifunctional cellulase/xylanase GH7 family. The purified TtCel7A, with an estimated molecular weight of 71 kDa, was biochemically characterized. TtCel7A displayed an optimal pH of 5.5 for both activities and an optimal temperature of 60 and 50 °C for cellulolytic and xylanolytic activities, respectively. The half-lives determined for cellulase activity were 140, 106, and 41 min at 50, 60, and 70 °C, respectively, whereas the half-lives observed for xylanase activity were 24, 10, and 1.4 h at 50, 60, and 70 °C, respectively. The KM and Vmax values were 3.12 mg/mL and 50 U/mg for cellulase activity and 0.17 mg/mL and 42.75 U/mg for xylanase activity. Circular dichroism analysis suggests changes in the secondary structure of TtCel7A in the presence of CMC as the substrate, whereas no modifications were observed with beechwood xylan. TtCel7A displayed the excellent capability to hydrolyze CMC, beechwood xylan, and complex substrates such as oat bran, wheat bran, and sugarcane bagasse, with glucose and cellobiose being the main products released; also, slightly less endo cellulase and xylanase activities were observed. Thus, suggesting TtCel7A has an exo- and endomode of action. Based on the characteristics of the enzyme, it might be considered a good candidate for industrial applications.

18.
Plant Cell Environ ; 46(5): 1596-1609, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36757089

RESUMO

Theanine is an important secondary metabolite endowing tea with umami taste and health effects. It is essential to explore the metabolic pathway and regulatory mechanism of theanine to improve tea quality. Here, we demonstrated that the expression patterns of CsGGT2 (γ-glutamyl-transpeptidase), participated in theanine synthesis in vitro in our previous research, are significantly different in the aboveground and underground tissues of tea plants and regulated by light. Light up-regulated the expression of CsHY5, directly binding to the promoter of CsGGT2 and acting as an activator of CsGGT2, with a negative correlation with theanine accumulation. The enzyme activity assays and transient expression in Nicotiana benthamiana showed that CsGGT2, acting as bifunctional protein, synthesize and degrade theanine in vitro and in planta. The results of enzyme kinetics, Surface plasmon resonance (SPR) assays and targeted gene-silencing assays showed that CsGGT2 had a higher substrate affinity of theanine than that of ethylamine, and performed a higher theanine degradation catalytic efficiency. Therefore, light mediates the degradation of theanine in different tissues by regulating the expression of the theanine hydrolase CsGGT2 in tea plants, and these results provide new insights into the degradation of theanine mediated by light in tea plants.


Assuntos
Camellia sinensis , Regulação da Expressão Gênica de Plantas , Luz , gama-Glutamiltransferase , Camellia sinensis/enzimologia , Camellia sinensis/genética , gama-Glutamiltransferase/genética , gama-Glutamiltransferase/metabolismo , Hidrolases/genética , Hidrolases/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Proteólise/efeitos da radiação
19.
Process Biochem ; 125: 141-153, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36643388

RESUMO

Leptospirosis is a bacterial disease that affects humans and animals and is caused by Leptospira. The recommended treatment for leptospirosis is antibiotic therapy, which should be given early in the course of the disease. Despite the use of these antibiotics, their role during the course of the disease is still not completely clear because of the lack of effective clinical trials, particularly for severe cases of the disease. Here, we present the characterization of L. interrogans Lsa45 protein by gel filtration, protein crystallography, SAXS, fluorescence and enzymatic assays. The oligomeric studies revealed that Lsa45 is monomeric in solution. The crystal structure of Lsa45 revealed the presence of two subdomains: a large α/ß subdomain and a small α-helical subdomain. The large subdomain contains the amino acids Ser122, Lys125, and Tyr217, which correspond to the catalytic triad that is essential for ß-lactamase or serine hydrolase activity in similar enzymes. Additionally, we also confirmed the bifunctional promiscuity of Lsa45, in hydrolyzing both the 4-nitrophenyl acetate (p-NPA) and nitrocefin ß-lactam antibiotic. Therefore, this study provides novel insights into the structure and function of enzymes from L. interrogans, which furthers our understanding of this bacterium and the development of new therapies for the prevention and treatment of leptospirosis.

20.
Enzyme Microb Technol ; 162: 110141, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36265247

RESUMO

A metagenomic library of mangrove soil samples consisting of approximately 11,000 clones was constructed, and a rare bifunctional cellobiohydrolase/ß-xylosidase Cbh2124 was identified by functional screening. Cbh2124 displayed the highest homology (56.43%) with a protein of the glycoside hydrolase 10 (GH10) family from Proteobacteria. Phylogenetic analysis confirmed that Cbh2124 belongs to the GH10 family. The recombinant enzyme showed a strong cellobiohydrolase activity and a relatively high ß-xylosidase activity, and its catalytic efficiency to the cellobiose substrate was as high as 1.27 × 105 s-1·mM-1, the highest efficiency among reported cellobiohydrolases. Of particular interest, some enzymatic properties of the ß-xylosidase activity of Cbh2124 were significantly different from those of the cellobiohydrolase activity. The optimal pH and temperature of the cellobiohydrolase activity of Cbh2124 was 6.4 and 36 °C, and the activity was essentially lost after treatment at 45 °C for 1 h. The optimal pH and temperature of the ß-xylosidase activity of Cbh2124 was 8.0 and 60 °C, and the residual activity was still over 90% after treatment at 80 °C for 6 h. The molecular docking results of the ß-xylosidase activity of Cbh2124 revealed the additional presence of catalytic amino acids Ser175 and Lys420, thus increasing the number of hydrogen bonds involved in the catalytic process, which possibly let to the improved thermostability compared with that of the cellobiohydrolase activity.


Assuntos
Celulose 1,4-beta-Celobiosidase , Xilosidases , Celulose 1,4-beta-Celobiosidase/genética , Celulose 1,4-beta-Celobiosidase/metabolismo , Solo , Filogenia , Simulação de Acoplamento Molecular , Estabilidade Enzimática , Especificidade por Substrato , Concentração de Íons de Hidrogênio , Xilosidases/metabolismo , Clonagem Molecular , Glicosídeo Hidrolases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA