Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Metabolomics ; 20(6): 122, 2024 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-39487363

RESUMO

INTRODUCTION AND OBJECTIVES: Since the use of a bio stimulant should provide a response to a problem that depends on the production system implemented (crops, plant model, soil, climate, the farmer's practices…), the agricultural sector is facing concomitant challenges of choosing the best bio stimulant that suits their needs. Thus, understanding bio stimulant-plant interactions, at molecular level, using metabolomics approaches is a prerequisite, for the development of a bio stimulant, leading to an effective exploration and application of formulations in agriculture. AGRO-K®, is commercialized as a plant-based bio stimulant that improve vigor and enhance resistance to lodging in cereal crops. A recent previous untargeted metabolomics study has demonstrated the ability of this bio stimulant to improve wheat resistance to lodging, in real open-field conditions. However, the reproducibility of the impact of this bio stimulant in other filed crops is not yet investigated. METHODS: Therefore, the present study aimed to assess the changes in primary and secondary metabolites in the roots, stems, and leaves of fiber flax (Linum usitatissimum L), treated with the bio stimulant, using NMR and LC-MS-based untargeted metabolomics approach. RESULTS AND CONCLUSIONS: In addition to the previous result conducted in wheat, the present analysis seemed to show that this bio stimulant led to a similar pathway enhancement in flax. The pathways which seem to be reproducibly impacted are hydroxycinnamic acid amides (HCAAs), phenylpropanoids and flavonoids. Impacting these pathways enhance root growth and elongation and cell wall lignification, which can aid in preventing crop lodging. These results confirm that HCAAs, flavonoids, and phenylpropanoids could serve as signatory biomarkers of the impact of AGRO-K® on improving lodging resistance across various plant species.


Assuntos
Linho , Metabolômica , Linho/metabolismo , Metabolômica/métodos , Reprodutibilidade dos Testes , Metaboloma/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Espectroscopia de Ressonância Magnética/métodos
3.
Int J Mol Sci ; 25(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39063071

RESUMO

Bio-stimulants, such as selenium nanoparticles and melatonin, regulate melon growth. However, the effects of individual and combined applications of selenium nanoparticles and melatonin on the growth of melon seedlings have not been reported. Here, two melon cultivars were sprayed with selenium nanoparticles, melatonin, and a combined treatment, and physiological and biochemical properties were analyzed. The independent applications of selenium nanoparticles, melatonin, and their combination had no significant effects on the plant heights and stem diameters of Jiashi and Huangmengcui melons. Compared with the controls, both selenium nanoparticle and melatonin treatments increased soluble sugars (6-63%) and sucrose (11-88%) levels, as well as the activity of sucrose phosphate synthase (171-237%) in melon leaves. The phenylalanine ammonia lyase (29-95%), trans cinnamate 4-hydroxylase (32-100%), and 4-coumaric acid CoA ligase (26-113%), as well as mRNA levels, also increased in the phenylpropanoid metabolism pathway. Combining the selenium nanoparticles and melatonin was more effective than either of the single treatments. In addition, the levels of superoxide dismutase (43-130%), catalase (14-43%), ascorbate peroxidase (44-79%), peroxidase (25-149%), and mRNA in melon leaves treated with combined selenium nanoparticles and melatonin were higher than in controls. The results contribute to our understanding of selenium nanoparticles and melatonin as bio-stimulants that improve the melon seedlings' growth by regulating carbohydrate, polyamine, and antioxidant capacities.


Assuntos
Cucurbitaceae , Melatonina , Nanopartículas , Poliaminas , Plântula , Selênio , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/metabolismo , Selênio/farmacologia , Melatonina/farmacologia , Cucurbitaceae/crescimento & desenvolvimento , Cucurbitaceae/efeitos dos fármacos , Cucurbitaceae/metabolismo , Nanopartículas/química , Poliaminas/metabolismo , Metabolismo dos Carboidratos/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Antioxidantes/metabolismo , Proteínas de Plantas/metabolismo
4.
Sci Rep ; 14(1): 15883, 2024 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987579

RESUMO

Salinity stress poses a significant treat to crop yields and product quality worldwide. Application of a humic acid bio stimulant and grafting onto tolerant rootstocks can both be considered sustainable agronomic practices that can effectively ameliorate the negative effects of salinity stress. This study aimed to assess the above mentioned ameliorative effects of both practices on cucumber plants subjected to saline environments. To attain this goal a factorial experiment was carried out in the form of a completely randomized design with three replications. The three factors considered were (a) three different salinity levels (0, 5, and 10 dS m-1 of NaCl), (b) foliar application of humic acid at three levels (0, 100, and 200 mg L-1), and (c) both grafted and ungrafted plants. Vegetative traits including plant height, fresh and dry weight and number of leaf exhibited a significant decrease under increasing salinity stress. However, the application of humic acid at both levels mitigated these effects compared to control plants. The reduction in relative water content (RWC) of the leaf caused by salinity, was compensated by the application of humic acid and grafting. Thus, the highest RWC (86.65%) was observed in grafting plants with 0 dS m-1 of NaCl and 20 mg L-1 of humic acid. Electrolyte leakage (EL) increased under salinity stress, but the application of humic acid and grafting improved this trait and the lowest amount of EL (26.95%) was in grafting plants with 0 dS m-1 of NaCl and 20 mg L-1 of humic acid. The highest amount of catalase (0.53 mmol H2O2 g-1 fw min-1) and peroxidase (12.290 mmol H2O2 g-1 fw min-1) enzymes were observed in the treatment of 10 dS m-1 of NaCl and 200 mg L-1 humic acid. The highest amount of total phenol (1.99 mg g-1 FW), total flavonoid (0.486 mg g-1 FW), total soluble carbohydrate (30.80 mg g-1 FW), soluble protein (34.56 mg g-1 FW), proline (3.86 µg g-1 FW) was in grafting plants with 0 dS m-1 of NaCl and 200 mg L-1 of humic acid. Phenolic acids and phenylalanine ammonia lyase (PAL) and polyphenol oxidase (PPO) enzymes increased with increasing salinity and humic acid levels. Contrary to humic acid, salt stress increased the sodium (Na+) and chlorine (Cl-) and decreased the amount of potassium (K+) and calcium (Ca2+) in the root and leaf of ungrafted cucumber. However, the application 200 mg L-1 humic acid appeared to mitigate these effects, thereby suggesting a potential role in moderating physiological processes and improving growth of cucumber plants subjected to salinity stress. According to the obtained results, spraying of humic acid (200 mg L-1) and the use of salt resistant rootstocks are recommended to increase tolerance to salt stress in cucumber. These results, for the first time, clearly demonstrated that fig leaf gourd a new highly salt-tolerant rootstock, enhances salt tolerance and improves yield and quality of grafted cucumber plants by reducing sodium transport to the shoot and increasing the amount of compatible osmolytes.


Assuntos
Cucumis sativus , Substâncias Húmicas , Estresse Salino , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/efeitos dos fármacos , Cucumis sativus/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Salinidade , Agricultura/métodos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo
5.
Metabolomics ; 20(3): 58, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773056

RESUMO

INTRODUCTION: Bio stimulants are substances and/or microorganisms that are used to improve plant growth and crop yields by modulating physiological processes and metabolism of plants. While research has primarily focused on the broad effects of bio stimulants in crops, understanding their cellular and molecular influences in plants, using metabolomic analysis, could elucidate their effectiveness and offer possibilities for fine-tuning their application. One such bio stimulant containing galacturonic acid as elicitor is used in agriculture to improve wheat vigor and strengthen resistance to lodging. OBJECTIVE: However, whether a metabolic response is evolved by plants treated with this bio stimulant and the manner in which the latter might regulate plant metabolism have not been studied. METHOD: Therefore, the present study used 1H-NMR and LC-MS to assess changes in primary and secondary metabolites in the roots, stems, and leaves of wheat (Triticum aestivum) treated with the bio stimulant. Orthogonal partial least squares discriminant analysis effectively distinguished between treated and control samples, confirming a metabolic response to treatment in the roots, stems, and leaves of wheat. RESULTS: Fold-change analysis indicated that treatment with the bio stimulation solution appeared to increase the levels of hydroxycinnamic acid amides, lignin, and flavonoid metabolism in different plant parts, potentially promoting root growth, implantation, and developmental cell wall maturation and lignification. CONCLUSION: These results demonstrate how non-targeted metabolomic approaches can be utilized to investigate and monitor the effects of new agroecological solutions based on systemic responses.


Assuntos
Metabolômica , Triticum , Espectrometria de Massa com Cromatografia Líquida , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Triticum/metabolismo , Triticum/efeitos dos fármacos
6.
Plant Physiol Biochem ; 207: 108396, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38310727

RESUMO

Drought stress poses a substantial threat to global plant productivity amid increasing population and rising agricultural demand. To overcome this problem, the utilization of organic plant growth ingredients aligns with the emphasis on eco-friendly farming practices. Therefore, the present study aimed to assess the influence of 30 botanical extracts on seed germination, seedling vigor, and subsequent maize plant growth under normal and water deficit conditions. Specifically, eight extracts showed significant enhancement in agronomical parameters (ranging from ∼2 % to ∼ 183 %) and photosynthetic pigments (ranging from ∼21 % to âˆ¼ 195 %) of seedlings under drought conditions. Extended tests on maize in a greenhouse setting confirmed that the application of six extracts viz Moringa oleifera leaf (MLE), bark (MBE), Terminalia arjuna leaf (ALE), bark (ABE), Aegel marmelos leaf (BLE), and Phyllanthus niruri leaf (AmLE) improved plant growth and drought tolerance, as evident in improved physio-biochemical parameters. GC-MS analysis of the selected extracts unveiled a total of 51 bioactive compounds, including sugars, sugar alcohols, organic acids, and amino acids, and might be playing pivotal roles in plant acclimatization to drought stress. In conclusion, MLE, MBE, BLE, and ABE extracts exhibit significant potential for enhancing seedling establishment and growth in maize under both normal and water deficit conditions.


Assuntos
Antioxidantes , Zea mays , Antioxidantes/metabolismo , Zea mays/metabolismo , Secas , Plântula/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Água/metabolismo , Estresse Fisiológico
7.
Plant Physiol Biochem ; 203: 107993, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37678090

RESUMO

As progressively increasing food safety concerns, diversified plant diseases and abiotic stresses, environmental-friendly bio-pesticides and bio-stimulants combinations may are likely to serve as a vital means of safeguarding green and sustainable food production. Accordingly, in this study, pot and field trials were performed to examine the application potential of the combination of physcion and chitosan-Oligosaccharide (COS) in wheat production. Wheat seeds were coated with physcion and COS and the effects exerted by them on morphology, physiology and yield of the wheat were investigated. As indicated by the results, the combination of physcion and COS not only did not inhibit the growth of wheat seedlings, but also synergistically increased root vigor and photosynthetic pigment content. Simultaneously, the lignin content in the roots and leaves was increased significantly. Moreover, the result confirmed that the combination of both substances reduced the MDA content, which was correlated with the up-regulation of the transcript expression level of antioxidant enzyme genes and the resulting increased enzyme activity. Furthermore, this combination synergistically increased the net photosynthetic rate (Pn) of the flag leaves and ultimately contributed to the increase in yield. Notably, the above-mentioned desirable cooperative effect was not limited by cultivars and cultivation methods. The conclusion of this study suggested that the combination of physcion and COS synergistically improved the photosynthetic rate and resilience in wheat, such that high wheat yields can be more significantly maintained, and future food security can be more effectively ensured.

8.
Plants (Basel) ; 11(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36501413

RESUMO

Spinach (Spinacia oleracea L.) is a highly nutritious, desirable green leafy vegetable, which is less tolerant to drought. This study was conducted to establish the impact of a natural bio-stimulant consisting of a mixture of fish protein hydrolysates and kelp extract (trade name, Xcell Boost) on the physiological and biochemical responses as well as vegetative growth of spinach (Spinacia oleracea L.) under different water levels (100% (full irrigation), 50% (mild drought stress) and 30% (severe drought stress) water holding capacity). Bio-stimulant application at any strength (single, BX1 or double, BX2) had no effect on the photochemical reactions. The application of bio-stimulant at double strength concentration (BX2) increased the chlorophyll and carotenoid contents, as well as the activities of antioxidative enzymes, ascorbate peroxidase (APX) and guaiacol peroxidase (GPX), under drought stress. Application at single strength (BX1) increased the normalised difference vegetation index (NDVI), stomatal conductance, accumulation of osmoprotectants (proline and total soluble sugars) and reduced electrolyte leakage under drought stress. Furthermore, bio-stimulant applications at either concentration induced remarkable increases in plant height, leaf area, stem dry weight, root length and root moisture. Under BX2, APX and stomatal conductance positively correlated with stem dry weight, while root length positively correlated with total chlorophyll content. These results show that Xcell Boost is a highly advantageous bio-stimulant for increasing the tolerance of spinach to drought stress, which can most likely benefit other crops grown in semi-arid and arid areas.

9.
Mar Drugs ; 20(9)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36135758

RESUMO

The biodiversity of microalgal species is enormous, and their versatile metabolism produces a wide diversity of compounds that can be used in food, healthcare, and other applications. Microalgae are also a potential source of bio-stimulants that enhance nutrition efficiency, abiotic stress tolerance, and/or crop quality traits. In this study, the extracellular metabolites of Auxenochlorella protothecoides (EAp) were prepared using three different culture strategies, and their effects on plant growth were examined. Furthermore, the composition of EAp was analyzed by GC-MS. The elongation of lateral roots and the cold-tolerance of Arabidopsis thaliana and Nicotiana benthamiana were promoted by EAp. Moreover, EAp from high-cell-density fermentation stimulated the growth of the leafy vegetables Brassica rapa and Lactuca sativa at dilutions as high as 500- and 1000-fold. Three major groups of compounds were identified by GC-MS, including organic acids or organic acid esters, phenols, and saccharides. Some of these compounds have known plant-stimulating effects, while the rest requires further investigation in the future. Our study demonstrates that EAp is a potential bio-stimulant, while also providing an environmentally friendly and economical microalgae fermentation process.


Assuntos
Clorófitas , Microalgas , Clorófitas/metabolismo , Ésteres/metabolismo , Processos Heterotróficos , Microalgas/metabolismo , Fenóis/metabolismo
10.
Plants (Basel) ; 11(7)2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35406958

RESUMO

Powdery mildew caused by the fungus Erysiphe necator is a major grape disease worldwide. It attacks foliage and berries and reduces yield and wine quality. Fungicides are mainly used for combating the disease. Fungicide resistance and the global requisite to reduce pesticide deployment encourage the use of environment-friendly alternatives for disease management. Our field experiments showed that the foliar application of the potassium phosphate fertilizer Top-KP+ (1-50-33 NPK) reduced disease incidence on leaves and clusters by 15-65% and severity by 75-90%, compared to untreated vines. Top-KP+ mixed with Nanovatz (containing the micronutrients boron (B) and zinc (Zn)) or with TruPhos Platinum (a mixture containing N, P2O5, K2O, Zn, B, Mg, Fe, Mn, Cu, Mo, and CO) further reduced disease incidence by 30-90% and disease severity by 85-95%. These fertilizers were as effective as the fungicide tebuconazole. Tank mixtures of fertilizers and tebuconazole further enhanced control efficacy in the vineyards. The modes of action of fertilizers in disease control were elucidated via tests with grape seedlings, microscopy, and berry metabolomics. Fertilizers applied preventively to the foliage of grape seedlings inhibited powdery mildew development. Application onto existing mildew colonies plasmolyzed mycelia and conidia and arrested the development of the disease. Berries treated with fertilizers or with a fungicide showed a significant increase in anti-fungal and antioxidant metabolites. Twenty-two metabolites, including non-protein amino acids and carbohydrates, known for their anti-fungal and bioactive effects, were significantly upregulated in grapes treated with fertilizers as compared to grapes treated with a fungicide, suggesting possible indirect activity against the pathogen. Esters and organic acids that contribute to wine quality were also upregulated. We conclude that integrating macro and micronutrients in spray programs in commercial vineyards shall control powdery mildew, reduce fungicide deployment, delay the buildup of fungicide resistance, and may improve wine quality.

11.
Biology (Basel) ; 11(1)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35053136

RESUMO

P. aeruginosa strain FG106 was isolated from the rhizosphere of tomato plants and identified through morphological analysis, 16S rRNA gene sequencing, and whole-genome sequencing. In vitro and in vivo experiments demonstrated that this strain could control several pathogens on tomato, potato, taro, and strawberry. Volatile and non-volatile metabolites produced by the strain are known to adversely affect the tested pathogens. FG106 showed clear antagonism against Alternaria alternata, Botrytis cinerea, Clavibacter michiganensis subsp. michiganensis, Phytophthora colocasiae, P. infestans, Rhizoctonia solani, and Xanthomonas euvesicatoria pv. perforans. FG106 produced proteases and lipases while also inducing high phosphate solubilization, producing siderophores, ammonia, indole acetic acid (IAA), and hydrogen cyanide (HCN) and forming biofilms that promote plant growth and facilitate biocontrol. Genome mining approaches showed that this strain harbors genes related to biocontrol and growth promotion. These results suggest that this bacterial strain provides good protection against pathogens of several agriculturally important plants via direct and indirect modes of action and could thus be a valuable bio-control agent.

12.
Front Plant Sci ; 12: 713984, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484277

RESUMO

Plant-associated beneficial strains inhabiting plants grown under harsh ecosystems can help them cope with abiotic stress factors by positively influencing plant physiology, development, and environmental adaptation. Previously, we isolated a potential plant growth promoting strain (AXSa06) identified as Pseudomonas oryzihabitans, possessing 1-aminocyclopropane-1-carboxylate deaminase activity, producing indole-3-acetic acid and siderophores, as well as solubilizing inorganic phosphorus. In this study, we aimed to further evaluate the effects of AXSa06 seed inoculation on the growth of tomato seedlings under excess salt (200 mM NaCl) by deciphering their transcriptomic and metabolomic profiles. Differences in transcript levels and metabolites following AXSa06 inoculation seem likely to have contributed to the observed difference in salt adaptation of inoculated plants. In particular, inoculations exerted a positive effect on plant growth and photosynthetic parameters, imposing plants to a primed state, at which they were able to respond more robustly to salt stress probably by efficiently activating antioxidant metabolism, by dampening stress signals, by detoxifying Na+, as well as by effectively assimilating carbon and nitrogen. The primed state of AXSa06-inoculated plants is supported by the increased leaf lipid peroxidation, ascorbate content, as well as the enhanced activities of antioxidant enzymes, prior to stress treatment. The identified signatory molecules of AXSa06-mediated salt tolerance included the amino acids aspartate, threonine, serine, and glutamate, as well as key genes related to ethylene or abscisic acid homeostasis and perception, and ion antiporters. Our findings represent a promising sustainable solution to improve agricultural production under the forthcoming climate change conditions.

13.
World J Microbiol Biotechnol ; 35(11): 177, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31696403

RESUMO

Plant biostimulants are defined as materials containing microorganisms or substances whose function when applied to plants or the rhizosphere is to stimulate natural mechanisms to enhance plant growth, nutrient use efficiency, tolerance to abiotic stressors and crop quality, independent of their nutrient content. In agriculture, seaweeds (Macroalgae) have been used in the production of plant biostimulants while microalgae still remain unexploited. Microalgae are single cell microscopic organisms (prokaryotic or eukaryotic) that grow in a range of aquatic habitats, including, wastewaters, pounds, lakes, rivers, oceans, and even humid soils. These photosynthetic microorganisms are widely described as renewable sources of biofuels, bioingredients and biologically active compounds, such as polyunsaturated fatty acids (PUFAs), carotenoids, phycobiliproteins, sterols, vitamins and polysaccharides, which attract considerable interest in both scientific and industrial communities. Microalgae polysaccharides have so far proved to have several important biological activities, making them biomaterials and bioactive products of increasing importance for a wide range of applications. The present review describes microalgae polysaccharides, their biological activities and their possible application in agriculture as a potential sustainable alternative for enhanced crop performance, nutrient uptake and resilience to environmental stress. This review does not only present a comprehensive and systematic study of Microalgae polysaccharides as plant biostimulants but considers the fundamental and innovative principles underlying this technology.


Assuntos
Produtos Agrícolas/efeitos dos fármacos , Microalgas/metabolismo , Desenvolvimento Vegetal/efeitos dos fármacos , Polissacarídeos/metabolismo , Produtos Biológicos/metabolismo , Biotecnologia/métodos , Produtos Agrícolas/metabolismo , Estresse Fisiológico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA