Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Clin Pediatr Dent ; 14(1): 30-39, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34326580

RESUMO

BACKGROUND: Knowledge of the cytotoxicity and bioactivity of endodontic materials may assist in understanding their ability to promote dental pulp stem cell activity and pulp healing in primary teeth. MATERIALS AND METHODS: This systematic review was carried out by searching the electronic databases such as PubMed, Google Scholar, and Cochrane reviews for the articles published between January 2000 and December 2018 using the appropriate MeSH keywords. An independent investigator evaluated the abstracts and titles for possible inclusion, as per the stipulated inclusion and exclusion criteria. The topics considered for extracting data from each study were: cell lineage, cytotoxicity assay used, and type of material tested. RESULTS: Seven eligible studies were selected for assessing the quality of evidence on the bioactivity of bioactive endodontic cements (BECs) (1 human cell line, 2 animal cell lines, and 4 in vitro, animal, and human studies) and 13 studies were selected for reviewing the quality of evidence on cytotoxicity (7 human cell lines, 4 animal cell lines, and 2 animal model studies). Very limited studies had been conducted on the bioactivity of materials other than mineral trioxide aggregate (MTA). With regards to cytotoxicity, the studies were diverse and most of the studies were based on MTT assay. Mineral trioxide aggregate is the most frequently used as well as studied root-end filling cement, and the literature evidence corroborated its reduced cytotoxicity and enhanced bioavailability. CONCLUSION: There was a lack of sufficient evidence to arrive at a consensus on the ideal material with minimal cytotoxicity and optimal bioactivity. More focused human/cell line-based studies are needed on the available root filling materials. CLINICAL SIGNIFICANCE: The present systematic review provides an update on the available literature evidence on the cytotoxicity and bioactivity of various BECs including MTAs and their influence on the different cells with respect to their composition and strength. HOW TO CITE THIS ARTICLE: Maru V, Dixit U, Patil RSB, et al. Cytotoxicity and Bioactivity of Mineral Trioxide Aggregate and Bioactive Endodontic Type Cements: A Systematic Review. Int J Clin Pediatr Dent 2021;14(1):30-39.

2.
J Vet Dent ; 38(1): 34-45, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34192968

RESUMO

Vital pulp therapy (VPT) and direct pulp capping (DPC) are procedures regularly performed in dogs for the management of acute tooth fractures and as part of management for traumatic malocclusions. The purpose of this review is to apply an evidence-based medicine approach to systematically review and evaluate the scientific literature evaluating the efficacy of mineral trioxide aggregate (MTA) to other commercially available materials used for VPT in the permanent teeth of dogs. The 9 studies meeting inclusion criteria were reviewed and each studies evidence was classified using a grading system modified from the Oxford Centre for Evidence-Based Medicine. For the studies meeting inclusion criteria, MTA consistently performed as well or better than other commercially available products in terms of calcific barrier formation and biocompatibility. This review found a lack of consistency between the studies making a direct comparison of the results unreliable. Future studies would benefit from the implementation of a standard scoring system for histology, equivalent and longer study duration times and the correlation of histological and radiographic data.


Assuntos
Agentes de Capeamento da Polpa Dentária e Pulpectomia , Compostos de Alumínio/uso terapêutico , Animais , Compostos de Cálcio/uso terapêutico , Capeamento da Polpa Dentária/veterinária , Cães , Combinação de Medicamentos , Óxidos , Silicatos
3.
Int Endod J ; 52(8): 1196-1209, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30828816

RESUMO

AIM: To analyse in vitro changes in ion release and biological properties of Endocem-MTA (Maruchi, Wonju, Korea) and NeoMTA-Plus (Avalon Biomed Inc, Bradenton, FL, USA) exposed to acidic or neutral environment on human dental periodontal ligament stem cells (hPDLSCs). METHODOLOGY: Cell viability and wound healing assays were performed using eluates of each material. Cell death and changes in phenotype induced by the set endodontic sealer eluates were evaluated through flow cytometry. To evaluate cell attachment to the different materials, hPDLSCs were directly seeded onto the material surfaces and analysed by scanning electron microscopy. The chemical composition of the materials was determined by energy-dispersive X-ray (EDX), and ion release was evaluated by inductively coupled plasma-mass spectrometry. Statistical analysis was performed with analysis of variance and a Bonferroni or Tukey post-test (α < 0.05). RESULTS: The MTT assay revealed non-cytotoxic effects of NeoMTA-Plus and Endocem-MTA at pH 5.2 and 7.4. However, there were minor differences compared with the control, especially at pH 5.2, where both materials were associated with significantly greater cell viability (P < 0.05). In both environments, the materials stimulated hPDLSCs to migrate. hPDLSCs were attached to the bioactive cements, with multiple prolongations proliferated on the surface of the samples. Moreover, there were no changes to cell phenotype or apoptosis/necrosis rates, indicating that the acidic environment did not induce cell death. Prismatic crystalline structures were seen on the surface of the cements exposed to butyric acid and EDX analysis identified a marked peak of Ca2+ from NeoMTA-Plus and Endocem-MTA in acidic and physiological environments. CONCLUSIONS: An acidic environment favoured the release of Ca2+ ions from both bioactive cements, and the cytotoxicity of these bioactive cements was low in both environments studied.


Assuntos
Compostos de Cálcio , Materiais Restauradores do Canal Radicular , Compostos de Alumínio , Combinação de Medicamentos , Humanos , Íons , Teste de Materiais , Óxidos , Pemetrexede , República da Coreia , Silicatos
4.
J Biomed Mater Res B Appl Biomater ; 107(6): 2109-2120, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30637928

RESUMO

The aim of this study was to characterize the hydration performance and the bioactive response of the new bioactive endodontic cement MTA HP repair (HP), comparing its physicochemical parameters with those of ProRoot MTA White (Pro) and NeoMTA Plus (Neo). Un-hydrated precursor materials were characterized by X-ray fluorescence, laser diffraction, N2 physisorption and field emission gun scanning electron microscopy (FEG-SEM). Setting time was assessed according to ASTM specification C 266. Hydrated materials were analyzed by X-ray diffraction, Fourier transform infrared spectroscopy (FT-IR) and (FEG-SEM). Bioactivity evaluation in vitro was carried out, by soaking processed cement disk in simulated body fluid (SBF) during 168 h. The cements surface was studied by FT-IR, FEG-SEM, and energy dispersive X-ray. Release to the SBF media of ionic degradation products was monitored using inductively coupled plasma atomic emission spectroscopy. HP showed shorter initial setting time compared to Pro and Neo and produce a quick and effective bioactive response in vitro in terms of phosphate phase surface coating formation. This higher bioactive response for HP is correlated with increasing calcium aluminate content, increasing surface area of un-hydrated powder precursor and the increasing release capacity of Si ionic products of the final hydrated product. The higher bioactive response of MTA HP repair highlights this material, as very interesting to further investigate its performance to improve the outcome of vital pulp therapy procedures. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2109-2120, 2019.


Assuntos
Cimentos Dentários/química , Pemetrexede/química , Materiais Restauradores do Canal Radicular/química , Humanos , Espectrometria por Raios X , Espectrofotometria Atômica , Propriedades de Superfície , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA