Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Heliyon ; 10(13): e33872, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39055850

RESUMO

Biofilm-associated wound infections in diabetic and immunocompromised patients are an increasing threat due to rising antibiotic resistance. Various wound models have been used to screen for efficient antiinfection treatments. However, results from in vitro models do not always match in vivo results, and this represents a bottleneck for development of new infection treatments. In this study, a static 2-D microtiter plate-based biofilm model was tested for growing clinically relevant Staphylococcus aureus wound isolates in various operating conditions, seeking to identify an optimal setup that would yield physiologically relevant results. Specifically, the tested variables included wound-mimicking growth media, precoating of surface with different proteins, multiwell plates with various surface properties, and the effect of bacterial pre-attachment step. Our results indicated that protein precoating is a key factor for supporting biofilm growth. The same wound isolate responded with significant differences in biofilm formation to different wound-mimicking media. Biofilm dispersal, as a proxy for effectiveness of antibiofilm treatments, was also investigated in response to proteinase K. The dispersal effect of proteinase K showed that the biofilm dispersal is contingent upon the specific wound isolate, with isolates CCUG 35571 and ATCC 6538 showing considerable dispersal responses. In conclusion, this study observed a higher biofilm formation in isolates when a protein precoating of collagen type I was applied but being dependent on the growth media selected. That is why we recommend to use simulated wound fluid or a wound-mimicking growth media to perform similar studies. Furthermore, proteinase K is suggested as an important factor that could affect biofilm dispersal within such models, since biofilm dispersal was induced in isolates CCUG 35571 and ATCC 6538 in simulated wound fluid on precoated collagen type I plates.

2.
Int J Mol Sci ; 25(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38791239

RESUMO

Bacillus velezensis FZB42 is a plant growth-promoting rhizobacterium (PGPR) and a model microorganism for biofilm studies. Biofilms are required for the colonization and promotion of plant growth in the rhizosphere. However, little is known about how the final stage of the biofilm life cycle is regulated, when cells regain their motility and escape the mature biofilm to spread and colonize new niches. In this study, the non-annotated gene ccdC was found to be involved in the process of biofilm dispersion. We found that the ccdC-deficient strain maintained a wrinkled state at the late stage of biofilm formation in the liquid-gas interface culture, and the bottom solution showed a clear state, indicating that no bacterial cells actively escaped, which was further evidenced by the formation of a cellular ring (biofilm pellicle) located on top of the preformed biofilm. It can be concluded that dispersal, a biofilm property that relies on motility proficiency, is also positively affected by the unannotated gene ccdC. Furthermore, we found that the level of cyclic diguanylate (c-di-GMP) in the ccdC-deficient strain was significantly greater than that in the wild-type strain, suggesting that B. velezensis exhibits a similar mechanism by regulating the level of c-di-GMP, the master regulator of biofilm formation, dispersal, and cell motility, which controls the fitness of biofilms in Pseudomonas aeruginosain. In this study, we investigated the mechanism regulating biofilm dispersion in PGPR.


Assuntos
Bacillus , Proteínas de Bactérias , Biofilmes , Biofilmes/crescimento & desenvolvimento , Bacillus/fisiologia , Bacillus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , Regulação Bacteriana da Expressão Gênica , Rizosfera
3.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38256125

RESUMO

Biofilm dispersal contributes to bacterial spread and disease transmission. However, its exact mechanism, especially that in the pathogen Mycobacterium tuberculosis, is unclear. In this study, the cellulase activity of the M. tuberculosis Rv0062 protein was characterized, and its effect on mycobacterial biofilm dispersal was analyzed by observation of the structure and components of Rv0062-treated biofilm in vitro. Meanwhile, the metabolite factors that induced cellulase-related biofilm dispersal were also explored with metabolome analysis and further validations. The results showed that Rv0062 protein had a cellulase activity with a similar optimum pH (6.0) and lower optimum temperature (30 °C) compared to the cellulases from other bacteria. It promoted mycobacterial biofilm dispersal by hydrolyzing cellulose, the main component of extracellular polymeric substrates of mycobacterial biofilm. A metabolome analysis revealed that 107 metabolites were significantly altered at different stages of M. smegmatis biofilm development. Among them, a decrease in gamma-aminobutyric acid (GABA) promoted cellulase-related biofilm dispersal, and this effect was realized with the down-regulation of the bacterial signal molecule c-di-GMP. All these findings suggested that cellulase promotes mycobacterial biofilm dispersal and that this process is closely associated with biofilm metabolite alterations.


Assuntos
Celulase , Mycobacterium tuberculosis , Biofilmes , Celulose , Ácido gama-Aminobutírico
4.
Math Biosci ; 367: 109126, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38070765

RESUMO

Microorganisms regulate the expression of energetically expensive phenotypes via a collective decision-making mechanism known as quorum sensing (QS). This study investigates the intricate dynamics of biofilm growth and QS-controlled biofilm dispersal in heterogeneous porous media, employing a pore-scale reactive transport modeling approach. Model simulations carried out under various fluid flow conditions and biofilm growth scenarios reveal that QS processes are influenced not only by the biomass density of biofilm colonies but also by a complex interplay between pore architecture, flow velocity, and the rates of biofilm growth and dispersal. This study demonstrates that pore architecture controls the initiation of QS processes and advection gives rise to oscillatory growth of biofilms. Such oscillation is suppressed if biofilm dynamics are in favor of sustaining a sufficiently high signal concentration, such as fast growth or slow dispersal rates. By establishing a mathematical framework, this study contributes to the fundamental understanding of QS-controlled biofilm dynamics in complex environments.


Assuntos
Biofilmes , Percepção de Quorum , Percepção de Quorum/fisiologia , Porosidade , Biomassa
5.
Front Microbiol ; 14: 1236471, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854331

RESUMO

Growing concerns exist regarding human ingestion of contaminated seafood that contains Vibrio biofilms on microplastics (MPs). One of the mechanisms enhancing biofilm related infections in humans is due to biofilm dispersion, a process that triggers release of bacteria from biofilms into the surrounding environment, such as the gastrointestinal tract of human hosts. Dispersal of cells from biofilms can occur in response to environmental conditions such as sudden changes in temperature, pH and nutrient conditions, as the bacteria leave the biofilm to find a more stable environment to colonize. This study evaluated how brief exposures to nutrient starvation, elevated temperature, different pH levels and simulated human media affect Vibrio parahaemolyticus and Vibrio vulnificus biofilm dispersal and processes on and from low-density polyethylene (LDPE), polypropylene (PP), and polystyrene (PS) MPs. Both species were able to adequately disperse from all types of plastics under most exposure conditions. V. parahaemolyticus was able to tolerate and survive the low pH that resembles the gastric environment compared to V. vulnificus. pH had a significantly (p ≤ 0.05) positive effect on overall V. parahaemolyticus biofilm biomass in microplates and cell colonization from PP and PS. pH also had a positive effect on V. vulnificus cell colonization from LDPE and PP. However, most biofilm biomass, biofilm cell and dispersal cell densities of both species greatly varied after exposure to elevated temperature, pH, and nutrient starvation. It was also found that certain exposures to simulated human media affected both V. parahaemolyticus and V. vulnificus biofilm biomass and biofilm cell densities on LDPE, PP and PS compared to exposure to traditional media of similar pH. Cyclic-di-GMP was higher in biofilm cells compared to dispersal cells, but exposure to more stressful conditions significantly increased signal concentrations in both biofilm and dispersal states. Taken together, this study suggests that human pathogenic strains of V. parahaemolyticus and V. vulnificus can rapidly disperse with high cell densities from different plastic types in vitro. However, the biofilm dispersal process is highly variable, species specific and dependent on plastic type, especially under different human body related environmental exposures.

6.
Biomed Pharmacother ; 168: 115703, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37857249

RESUMO

Antimicrobial resistance is a worldwide problem that urges novel alternatives to treat infections. In attempts to find novel molecules, we assess the antimicrobial potential of seven essential oils (EO) of different plants (Pinus sylvestris, Citrus limon, Origanum vulgare, Cymbopogon martini, Cinnamomum cassia, Melaleuca alternifolia and Eucalyptus globulus) against two multidrug-resistant bacteria species, i.e. Neisseria gonorrhoeae and Streptococcus suis. EOs of P. sylvestris and C. limon revealed higher bactericidal activity (MIC ≤ 0.5 mg/mL) and capacity to rapidly disperse biofilms of several N. gonorrhoeae clinical isolates than other EOs. Examination of biofilms exposed to both EO by electron microscopy revealed a reduction of bacterial aggregates, high production of extracellular vesicles, and alteration of cell integrity. This activity was dose-dependent and was enhanced in DNase I-treated biofilms. Antibiotic susceptibility studies confirmed that both EOs affected the outer membrane permeability, and analysis of EO- susceptibility of an LPS-deficient mutant suggested that both EO target the LPS bilayer. Further analysis revealed that α- and ß-pinene and d-limonene, components of both EO, contribute to such activity. EO of C. martini, C. cassia, and O. vulgare exhibited promising antimicrobial activity (MIC ≤ 0.5 mg/mL) against S. suis, but only EO of O. vulgare exhibited a high biofilm dispersal activity, which was also confirmed by electron microscopy studies. To conclude, the EO of P. sylvestris, C. limon and O. vulgare studied in this work exhibit bactericidal and anti-biofilm activities against gonococcus and streptococcus, respectively.


Assuntos
Anti-Infecciosos , Citrus , Óleos Voláteis , Origanum , Pinus sylvestris , Streptococcus suis , Óleos Voláteis/farmacologia , Neisseria gonorrhoeae , Lipopolissacarídeos , Antibacterianos/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana
7.
ACS Infect Dis ; 9(9): 1730-1741, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37566512

RESUMO

Compared to planktonic bacteria, biofilms are notoriously difficult to eradicate due to their inherent protection against the immune response and antimicrobial agents. Inducing biofilm dispersal to improve susceptibility to antibiotics is an attractive therapeutic avenue for eradicating biofilms. Nitric oxide (NO), an endogenous antibacterial agent, has previously been shown to induce biofilm dispersal, but with limited understanding of the effects of NO-release properties. Herein, the antibiofilm effects of five promising NO-releasing biopolymer candidates were studied by assessing dispersal, changes in biofilm viscoelasticity, and increased sensitization to tobramycin after treatment with NO. A threshold level of NO was needed to achieve biofilm dispersal, with longer-releasing systems requiring lower concentrations. The most positively charged NO-release systems (from the presence of primary amines) led to the greatest reduction in viscoelasticity of Pseudomonas aeruginosa biofilms. Co-treatment of tobramycin with the NO-releasing biopolymer greatly decreased the dose of tobramycin required to eradicate tobramycin-susceptible and -resistant biofilms in both cellular and tissue models.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/farmacologia , Óxido Nítrico/farmacologia , Tobramicina/farmacologia , Anti-Infecciosos/farmacologia , Biofilmes
8.
FEBS J ; 290(4): 1049-1059, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36083143

RESUMO

Bacterial biofilms consist of bacterial cells embedded within a self-produced extracellular polymeric substance (EPS) composed of exopolysaccharides, extra cellular DNA, proteins and lipids. The enzyme Dispersin B (DspB) is a CAZy type 20 ß-hexosaminidase enzyme that catalyses the hydrolysis of poly-N-acetylglucosamine (PNAG), a major biofilm polysaccharide produced by a wide variety of biofilm-forming bacteria. Native PNAG is partially de-N-acetylated, and the degree of deacetylation varies between species and dependent on the environment. We have previously shown that DspB is able to perform both endo- and exo-glycosidic bond cleavage of PNAG depending on the de-N-acetylation patterns present in the PNAG substrate. Here, we used a combination of synthetic PNAG substrate analogues, site-directed mutagenesis and in vitro biofilm dispersal assay to investigate the molecular basis for the endo-glycosidic cleavage activity of DspB and the importance of this activity for dispersal of PNAG-dependent Staphylococcus epidermidis biofilms. We found that D242 contributes to the endoglycosidase activity of DspB through electrostatic interactions with cationic substrates in the -2 binding site. A DspBD242N mutant was highly deficient in endoglycosidase activity while maintaining exoglycosidase activity. When used to disperse S. epidermidis biofilms, this DspBD242N mutant resulted in an increase in residual biofilm biomass after treatment when compared to wild-type DspB. These results suggest that the de-N-acetylation of PNAG in S. epidermidis biofilms is not uniformly distributed and that the endoglycosidase activity of DspB is required for efficient biofilm dispersal.


Assuntos
Acetilglucosamina , Glicosídeo Hidrolases , Glicosídeo Hidrolases/química , Proteínas de Bactérias/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Eletricidade Estática , Staphylococcus epidermidis/metabolismo , Biofilmes
9.
Front Microbiol ; 13: 950039, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935227

RESUMO

Antifoulants are the most vital substances in antifouling coatings to prevent marine organisms from colonizing the undersea substrate surfaces. In addition to antibacterial performance, inhibition of biofilm formation is an important criterion for antifouling coatings. In this study, we synthesized pH-responsive matrine@chitosan-D-proline (Mat@CS-Pro) nanocapsules of about 280 nm with antibacterial properties and biofilm dispersibility. The prepared Mat@CS-Pro nanocapsules exhibited high-level antibacterial properties, reaching about 93, 88, and 96% for E. coli, S. aureus, and P. aeruginosa, respectively. Such nanocapsules can cause irreversible damage to bacteria and cause them to lose their intact cell structures. Moreover, Mat@CS-Pro nanocapsules also possessed outstanding dispersal biofilm performances, in which the biofilm thickness of E. coli, S. aureus, and P. aeruginosa was decreased by 33, 74, and 42%, respectively, after 3 days of incubation. Besides, the Mat@CS-Pro nanocapsules had remarkable pH-responsive properties. As the environmental pH became acidic, the nanocapsules swelled to about 475 nm and the released concentration could reach 28.5 ppm after immersion for 10 h but maintained a low releasing rate in pH 8 conditions.

10.
Arch Microbiol ; 204(5): 243, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35381886

RESUMO

Biofilm formation is a major issue in healthcare settings as 75% of nosocomial infection arises due to biofilm residing bacteria. Exopolysaccharides (EPS), a key component of the biofilm matrix, contribute to the persistence of cells in a complex milieu and defends greatly from exogenous stress and demolition. It has been shown to be vital for biofilm scaffold and pathogenic features. The present study was aimed to investigate the effectiveness of four domain-containing α-amylase from Streptomyces griseus (SGAmy) in disrupting the EPS of multidrug-resistant bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. In vitro analysis of preformed biofilm unveiled the antibiofilm efficacy of SGAmy against MRSA (85%, p < 0.05) and P. aeruginosa (82%, p < 0.05). The total carbohydrate content in the EPS matrix of MRSA and P. aeruginosa was significantly reduced to 71.75% (p < 0.01) and 74.09% (p < 0.01), respectively. The findings inferred from in vitro analysis were further corroborated through in vivo studies using an experimental model organism, Danio rerio. Remarkably, the survival rate was extended to 88.8% (p < 0.05) and 74.2% (p < 0.05) in MRSA and P. aeruginosa infected fishes, respectively. An examination of gills, kidneys, and intestines of D. rerio organs depicted the reduced level of microbial colonization in SGAmy-treated cohorts and these findings were congruent with bacterial enumeration results.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Streptomyces griseus , Animais , Antibacterianos/farmacologia , Bactérias , Biofilmes , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Peixe-Zebra , alfa-Amilases
11.
Bioorg Chem ; 119: 105532, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34883361

RESUMO

Microbial polysaccharides composed of N-acetylglucosamine (GlcNAc), such as chitin, peptidoglycan and poly-ß-(1 â†’ 6)-GlcNAc (dPNAG), play a critical role in maintaining cell integrity or in facilitating biofilm formation in numerous fungal and bacterial pathogens. Glycosyl hydrolase enzymes that catalyze the degradation of these ß-GlcNAc containing polysaccharides play important roles in normal microbial cell physiology and can also be exploited as biocatalysts with applications as anti-fungal, anti-bacterial, or biofilm dispersal agents. Assays to rapidly detect and characterize the activity of such glycosyl hydrolase enzymes can facilitate their development as biocatalyst, however, currently available probes such as 4-methylumbelliferyl-ß-GlcNAc (4MU-GlcNAc) are not universally accepted as substrates, and their fluorescent signal is sensitive to changes in pH. Here, we present the development of a new multifunctional fluorescent substrate analog for the detection and characterization of hexosaminidase enzyme activity containing a 7-amino-4-methyl coumarin (AMC) carbamate aglycone. This probe is widely tolerated as a substrate for exo-acting ß-hexosaminidase, family 19 endo-chitinase, and the dPNAG hydrolase enzyme Dispersin B (DspB) and enables detection of hexosaminidase enzyme activity via either single wavelength fluorescent measurements or ratiometric fluorescent detection. We demonstrate the utility of this probe to screen for recombinant DspB activity in Escherichia coli cell lysates, and for the development of a high-throughput assay to screen for DspB inhibitors.


Assuntos
Cumarínicos/química , Corantes Fluorescentes/química , Hexosaminidases/análise , Cumarínicos/síntese química , Relação Dose-Resposta a Droga , Escherichia coli/enzimologia , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/metabolismo , Corantes Fluorescentes/síntese química , Hexosaminidases/metabolismo , Ensaios de Triagem em Larga Escala , Estrutura Molecular , Relação Estrutura-Atividade
12.
Mol Oral Microbiol ; 37(1): 1-8, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34727414

RESUMO

Dental caries is one of the most prevalent and costly biofilm-dependent oral infectious diseases affecting most of the world's population. Streptococcus mutans, a major extracellular polymeric substance (EPS) producing bacteria in dental plaque, plays a vital role in human dental caries. EPS acts as the framework of dental plaque and promotes bacterial adhesion, cohesion, and environmental stress resistance and hinders the diffusion of nutrients and metabolic products. Since EPS is critical for biofilm lifestyle and virulence of cariogenic bacteria, EPS disruption could be a potential strategy to prevent caries. This review sought to summarize potential strategies to inhibit S. mutans biofilms through EPS disruption. The signal network intervention has a positive effect on S. mutans biofilm disruption, which could be achieved by using cyclic dimeric G/AMP inhibitors, quorum sensing inhibitors, and diffusible signal factors. Besides the enzyme degradation of exopolysaccharides, extracellular DNA, and proteins, other novel strategies, such as nanoparticles and phage therapy, could also promote EPS matrix disruption.


Assuntos
Cárie Dentária , Placa Dentária , Biofilmes , Cárie Dentária/microbiologia , Cárie Dentária/prevenção & controle , Placa Dentária/microbiologia , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Humanos , Streptococcus mutans/genética
13.
Molecules ; 26(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34885675

RESUMO

The aim of the research was to design an advanced analytical tool for the precise characterization of microbial aggregates from biofilms formed on food-processing surfaces. The approach combined imaging flow cytometry with a machine learning-based interpretation protocol. Biofilm samples were collected from three diagnostic points of the food-processing lines at two independent time points. The samples were investigated for the complexity of microbial aggregates and cellular metabolic activity. Thus, aggregates and singlets of biofilm-associated microbes were simultaneously examined for the percentages of active, mid-active, and nonactive (dead) cells to evaluate the physiology of the microbial cells forming the biofilm structures. The tested diagnostic points demonstrated significant differences in the complexity of microbial aggregates. The significant percentages of the bacterial aggregates were associated with the dominance of active microbial cells, e.g., 75.3% revealed for a mushroom crate. This confirmed the protective role of cellular aggregates for the survival of active microbial cells. Moreover, the approach enabled discriminating small and large aggregates of microbial cells. The developed tool provided more detailed characteristics of bacterial aggregates within a biofilm structure combined with high-throughput screening potential. The designed methodology showed the prospect of facilitating the detection of invasive biofilm forms in the food industry environment.


Assuntos
Bactérias/química , Biofilmes/crescimento & desenvolvimento , Microbiologia de Alimentos , Bactérias/genética , Citometria de Fluxo , Manipulação de Alimentos , Ensaios de Triagem em Larga Escala
14.
Anaerobe ; 72: 102450, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34619359

RESUMO

OBJECTIVES: Acne vulgaris is a common inflammatory disorder of the pilosebaceous unit and Propionibacterium acnes biofilm-forming ability is believed to be a contributing factor to the disease development. In vivo models mimicking hair follicle environment are lacking. The aim of this study was to develop an in vivo Propionibacterium spp. biofilm model in Drosophila melanogaster (fruit fly). METHODS: We created a sterile line of D. melanogaster able to sustain Propionibacterium spp. biofilms in the gut. In order to mimic the lipid-rich, anaerobic environment of the hair follicle, fruit flies were maintained on lipid-rich diet. Propionibacterium spp. biofilms were visualized by immunofluorescence and scanning electron microscopy. We further tested if the biofilm-dispersal activity of DNase I can be demonstrated in the developed model. RESULTS: We have demonstrated the feasibility of our in vivo model for development and study of P. acnes, P. granulosum and P. avidum biofilms. The model is suitable to evaluate dispersal as well as other agents against P. acnes biofilm. CONCLUSIONS: We report a novel in vivo model for studying Propionibacterium spp. biofilms. The model can be suitable for both mechanistic as well as interventional studies.


Assuntos
Biofilmes , Drosophila melanogaster/microbiologia , Interações entre Hospedeiro e Microrganismos , Propionibacterium/fisiologia , Animais , Biofilmes/crescimento & desenvolvimento , Imunofluorescência , Propionibacterium/ultraestrutura
15.
Mater Sci Eng C Mater Biol Appl ; 128: 112297, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34474848

RESUMO

INTRODUCTION: Peri-implantitis is a bacterially induced inflammatory disease which affects the hard and soft tissues around a dental implant. Microbial biofilm formation is an important causative factor in peri-implantitis. The aim of this study is to develop an effective multifunctional surface coating for antimicrobial property and to counteract oral biofilm-associated infections via a single polydopamine copper coating (PDAM@Cu) on titanium implant surface to regulate endogenous nitric oxide (NO) generation. METHODS: PDAM@Cu coatings were made with different concentrations of CuCl2 on titanium surfaces with a simple dip coating technique. Coatings were characterised to evaluate Cu concentrations as well as NO release rates from the coatings. Further, salivary biofilms were made on the coatings using Brain Heart Infusion (BHI) media in an anaerobic chamber. Biofilms were prepared with three different mixtures, one of which was saliva only, the second had an addition of sheep's blood, and the third was prepared with NO donors S-nitrosoglutathione (GSNO) and L-glutathione (GSH) in the mixture of saliva and blood to evaluate the effects of endogenously produced NO on biofilms. The effectiveness of coated surfaces on biofilms were assessed using four different methods, namely, crystal violet assay, scanning electron microscopy imaging, 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide (XTT) metabolic assay, and live/dead staining. RESULTS: NO release rates could be controlled with different Cu concentration in PDAM@Cu coatings. NO generated from the PDAM@Cu coatings effectively induced dispersal of biofilms shown by the reduction in biofilm biomass as well as reduced biofilm attachment in samples prepared with blood and NO donors. Cu ions released from the PDAM@Cu coatings resulted in killing of the dispersed bacteria, which was evidenced by the live/dead cell staining and reduced metabolic activity noted from the XTT assay. In contrast, samples prepared with saliva showed no significant reduction in biofilms, indicating the important effect of endogenously generated NO on biofilm dispersal. CONCLUSION: In conclusion, PDAM@Cu coatings with NO generating surfaces have a dual anti-biofilm function, with a synergistic effect on biofilm dispersal from regulated NO generation and bactericidal effects from Cu ions from the coatings.


Assuntos
Cobre , Óxido Nítrico , Animais , Biofilmes , Materiais Revestidos Biocompatíveis/farmacologia , Cobre/farmacologia , Indóis , Polímeros , Ovinos , Propriedades de Superfície , Titânio/farmacologia
16.
Pharmaceutics ; 13(8)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34452132

RESUMO

A major challenge in the biomedical field is the creation of materials and coating strategies that effectively limit the onset of biofilm-associated infections on medical devices. Biosurfactants are well known and appreciated for their antimicrobial/anti-adhesive/anti-biofilm properties, low toxicity, and biocompatibility. In this study, the rhamnolipid produced by Pseudomonas aeruginosa 89 (R89BS) was characterized by HPLC-MS/MS and its ability to modify cell surface hydrophobicity and membrane permeability as well as its antimicrobial, anti-adhesive, and anti-biofilm activity against Staphylococcus aureus were compared to two commonly used surfactants of synthetic origin: Tween® 80 and TritonTM X-100. The R89BS crude extract showed a grade of purity of 91.4% and was composed by 70.6% of mono-rhamnolipids and 20.8% of di-rhamnolipids. The biological activities of R89BS towards S. aureus were higher than those of the two synthetic surfactants. In particular, the anti-adhesive and anti-biofilm properties of R89BS and of its purified mono- and di-congeners were similar. R89BS inhibition of S. aureus adhesion and biofilm formation was ~97% and 85%, respectively, and resulted in an increased inhibition of about 33% after 6 h and of about 39% after 72 h when compared to their chemical counterparts. These results suggest a possible applicability of R89BS as a protective coating agent to limit implant colonization.

17.
Biofouling ; 37(6): 666-679, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34320877

RESUMO

Paeonol, the active ingredient of Paeonia lactiflora root bark, is widely used in traditional Chinese medicine. Few studies have reported the antibacterial activity of paeonol against bacterial pathogens. In this study, the antibacterial and anti-biofilm performance of paeonol against Klebsiella pneumoniae and Enterobacter cloacae was investigated as well as its mechanisms of action. Paeonol effectively inhibited the growth of K. pneumoniae and E. cloacae with a minimum inhibitory concentration of 64 µg ml-1 and it was shown to disrupt the integrity of bacterial cell membranes, and alter cell morphology. Moreover, paeonol exhibited a potent inhibitory effect against adhesion and biofilm formation by K. pneumoniae and E. cloacae. In particular, paeonol efficiently compromised cells within biofilms, and dispersed mature biofilms. Therefore, the present study suggests that paeonol is a promising alternative antibacterial and anti-biofilm agent for combating infections caused by planktonic and biofilm cells of K. pneumoniae and E. cloacae.


Assuntos
Enterobacter cloacae , Klebsiella pneumoniae , Acetofenonas , Antibacterianos/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana
18.
Water Res ; 198: 117163, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33951583

RESUMO

Pure culture studies have shown that biofilm dispersal can be triggered if the nutrient supply is discontinued by stopping the flow. Stimulating biofilm dispersal in this manner would provide a sustainable manner to control unwanted biofilm growth in industrial settings, for instance on synthetic membranes used to purify water. The response of multispecies biofilms to nutrient limitation has not been thoroughly studied. To assess biomass dispersal during nutrient limitation it is common practise to flush the biofilm after a stop-period. Hence, flow-stop-induced biomass removal could occur as a response to nutrient limitation followed by mechanical removal due to biofilm flushing (e.g. biofilm detachment). Here, we investigated the feasibility to reduce membrane biofouling by stopping the flow and flushing the membrane. Using a membrane fouling simulator, biomass removal from synthetic membranes after different stop-periods was determined, as well as biomass removal at different cross flow velocities. Biomass removal from membrane surfaces depended on the nutrient limiting period and on the flow velocity during the biofilm flush. When flushed at a low flow velocity (0.1 m.s-1), the duration of the stop-period had a large effect on the biomass removal rate, but when the flow velocity was increased to 0.2 m.s-1, the length of the stop period became less considerable. The flow velocity during membrane flushing has an effect on the bacterial community that colonized the membranes afterwards. Repetition of the stop-period and biofilm flushing after three repetitive biofouling cycles led to a stable bacterial community. The increase in bacterial community stability coincided with a decrease in cleaning effectivity to restore membrane performance. This shows that membrane cleaning comes at the costs of a more stable bacterial community that is increasingly difficult to remove.


Assuntos
Incrustação Biológica , Purificação da Água , Biofilmes , Biomassa , Membranas Artificiais
19.
Expert Rev Anti Infect Ther ; 19(11): 1443-1456, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33857401

RESUMO

Introduction: As a result of progress in medical care, a huge number of medical devices are used in the treatment of human diseases. In turn, biofilm-related infection has become a growing threat due to the tolerance of biofilms to antimicrobials, a problem magnified by the development of antimicrobial resistance worldwide. As a result, successful treatment of biofilm-disease using only antimicrobials is problematic.Areas covered: We summarize some alternative approaches to classic antimicrobials for the treatment of biofilm disease. This review is not intended to be exhaustive but to give a clinical picture of alternatives to antimicrobial agents to manage biofilm disease. We highlight those strategies that may be closer to application in clinical practice.Expert opinion: There are a number of outstanding challenges in the development of novel antibiofilm therapies. Screening for effective antibiofilm compounds requires models relevant to all clinical scenarios. Although in vitro research of anti-biofilm strategies has progressed significantly over the past decade, there is a lack of in vivo research. In addition, the complexity of biofilm biology makes it difficult to develop a compound that is likely to provide the single 'magic bullet'. The multifaceted nature of biofilms imposes the need for multi-targeted or combinatorial therapies.


Assuntos
Anti-Infecciosos , Biofilmes , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Humanos
20.
Artigo em Inglês | MEDLINE | ID: mdl-33495218

RESUMO

A decade of research has shown that the molecule c-di-GMP functions as a central second messenger in many bacteria. A high level of c-di-GMP is associated with biofilm formation, whereas a low level of c-di-GMP is associated with a planktonic single-cell bacterial lifestyle. c-di-GMP is formed by diguanylate cyclases and is degraded by specific phosphodiesterases. We previously presented evidence that the ectopic expression of the Escherichia coli phosphodiesterase YhjH in Pseudomonas aeruginosa results in biofilm dispersal. More recently, however, evidence has been presented that the induction of native c-di-GMP phosphodiesterases does not lead to a dispersal of P. aeruginosa biofilms. The latter result may discourage attempts to use c-di-GMP signaling as a target for the development of antibiofilm drugs. However, here, we demonstrate that the induction of the P. aeruginosa c-di-GMP phosphodiesterases PA2133 and BifA indeed results in the dispersal of P. aeruginosa biofilms in both a microtiter tray biofilm assay and a flow cell biofilm system.


Assuntos
Proteínas de Escherichia coli , Pseudomonas aeruginosa , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA