RESUMO
Autotrophic bioflocs (ABF) exhibits lower energy consumption, more environment-friendly and cost-effective than heterotrophic bioflocs depending on organic carbon supplements. Whereas ABF has not been widely applied to aquaculture production. Here, ABF successfully performed to control ammonia and nitrite under harmless levels even when carbon-to-nitrogen ratio reduced to 2.0, during 12-week shrimp farming in commercial scale. ABF was mainly dominated by bacteria of Proteobacteria, Bacteroidota, Chloroflexi and eukaryotes of Bacillariophyta, Rotifera, Ciliophora. A notable shift occurred in ABF with the significant decreases of Proteobacteria and Rotifera replaced by Bacteroidota, Chloroflexi, and Bacillariophyta after four weeks. Nitrogen metabolism was synergistically executed by bacteria and microalgae, especially the positive interaction between Nitrospira and Halamphora for ABF nitrification establishment. Metagenomics confirmed the complete functional genes of key bacteria related to the cycling of carbon, nitrogen, and phosphorus by ABF. This study may promote the development application of ABF in low-carbon shrimp aquaculture.
RESUMO
BACKGROUND: The biofloc system (BFS) provides a sustainable aquaculture system through its efficient in situ water quality maintenance by the microbial biomass, besides continuous availability of these protein-rich microbes as feed to enhance growth and immunity of the reared organism. This study explores the gill architecture, growth performance, digestive enzyme activity, intestinal microbial composition, and histology of three freshwater fish species, Puntius gonionotus, Pangasianodon hypophthalmus, and Heteropneustus fossilis reared in biofloc based polyculture system. RESULTS: The three species in T2 showed significantly higher WG and SGR, followed by T1 and T3. The wet mount of gill architecture showed smaller inter-filament gaps in gill arches of silver barb followed by stinging catfish and stripped catfish, but showed no correlation with the weight gain. However, silver barb being an omnivore and filter-feeder, accumulated a more diverse microbial community, both in T1 and BFS (T2 and T3), while the bottom feeder H. fossilis exhibited unique gut bacterial adaptability. The presence of floc in T2 and T3 enhanced bacterial abundance in water and fish gut, but their microbial diversities significantly reduced compared to T1 receiving only feed. Next-generation sequencing revealed that the Pseudomonas dominated in gut of P. gonionotus and P. hypophthalmus in T1, Enterobacterales and Fusobacterium prevailed in those of T2 and T3, respectively. In contrast, gut of H. fossilis had the highest proportion of Clostridium in T1, while Rhizobiaceae dominated in T3. Similarly in floc samples, Enterococcus dominated in T1 while Micrococcales and Rhizobiaceae dominated in T2 and T3, respectively. A positive correlation of enterobacteria, with the digestive enzyme activities and growth patterns was observed in all treatments. CONCLUSION: The present study revealed feeding behaviour to play crucial role in distinguishing the gut microbial composition patterns in fishes reared in Biofloc System. Further it revealed the requirement of supplementary feed along with floc in these three species for higher growth in the biofloc system.
Assuntos
Aquicultura , Peixes-Gato , Água Doce , Microbioma Gastrointestinal , Animais , Aquicultura/métodos , Peixes-Gato/microbiologia , Peixes-Gato/crescimento & desenvolvimento , Água Doce/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Brânquias/microbiologia , Cyprinidae/microbiologia , Cyprinidae/crescimento & desenvolvimento , MicrobiotaRESUMO
A 35-day study investigated the impact of carbon sources and carbon/nitrogen (C/N) ratios on the microbial community of biofloc. For this purpose, we utilized a combination of phospho-lipid fatty acids (PLFAs) profiles and DNA-based sequencing methods to investigate changes in the microbial community composition and structure. The experiment involved three carbon sources including Dextrin (DEX), corn starch (CS) and wheat bran (WB) at two C/N ratios (19 and 30). The results indicated that WB and CS were found to decrease nitrogen metabolite concentration while increasing total suspended solids and bacterial density compared to DEX. The treatments exhibited variations in microbial communities and the use of polymerase chain reaction/ denaturing gradient gel electrophoresis analysis revealed distinct dominant bacterial species linked to carbon sources and C/N ratios. Furthermore, the highest levels of bacteria and protozoa PLFAs biomarkers were observed in the C/N30 ratio and WB treatment while the ratio for poly-ß-hydroxybutyrate/PLFAs and fungi biomarkers displayed a decrease. Also, by incorporating the results of PLFAs profile and conducting a principal component analysis, the treatments were categorized into distinct groups based on both the carbon source and C/N ratios. Overall, both methods yield consistent results. PLFAs offered additional insights into the microbial composition beyond bacterial structure while DNA-based analysis provided finer taxonomic resolution.
RESUMO
Bioflocs are microbial aggregates that play a pivotal role in shaping animal health, gut microbiota, and water quality in biofloc technology (BFT)-based aquaculture systems. Despite the worldwide application of BFT in aquaculture industries, our comprehension of the community composition and functional potential of the floc-associated microbiota (FAB community; ≥3 µm size fractions) remains rudimentary. Here, we utilized genome-centric metagenomic approach to investigate the FAB community in shrimp aquaculture systems, resulting in the reconstruction of 520 metagenome-assembled genomes (MAGs) spanning both bacterial and archaeal domains. Taxonomic analysis identified Pseudomonadota and Bacteroidota as core community members, with approximately 93% of recovered MAGs unclassified at the species level, indicating a large uncharacterized phylogenetic diversity hidden in the FAB community. Functional annotation of these MAGs unveiled their complex carbohydrate-degrading potential and involvement in carbon, nitrogen, and sulfur metabolisms. Specifically, genomic evidence supported ammonium assimilation, autotrophic nitrification, denitrification, dissimilatory nitrate reduction to ammonia, thiosulfate oxidation, and sulfide oxidation pathways, suggesting the FAB community's versatility for both aerobic and anaerobic metabolisms. Conversely, genes associated with heterotrophic nitrification, anaerobic ammonium oxidation, assimilatory nitrate reduction, and sulfate reduction were undetected. Members of Rhodobacteraceae emerged as the most abundant and metabolically versatile taxa in this intriguing community. Our MAGs compendium is expected to expand the available genome collection from such underexplored aquaculture environments. By elucidating the microbial community structure and metabolic capabilities, this study provides valuable insights into the key biogeochemical processes occurring in biofloc aquacultures and the major microbial contributors driving these processes. IMPORTANCE: Biofloc technology has emerged as a sustainable aquaculture approach, utilizing microbial aggregates (bioflocs) to improve water quality and animal health. However, the specific microbial taxa within this intriguing community responsible for these benefits are largely unknown. Compounding this challenge, many bacterial taxa resist laboratory cultivation, hindering taxonomic and genomic analyses. To address these gaps, we employed metagenomic binning approach to recover over 500 microbial genomes from floc-associated microbiota of biofloc aquaculture systems operating in South Korea and China. Through taxonomic and genomic analyses, we deciphered the functional gene content of diverse microbial taxa, shedding light on their potential roles in key biogeochemical processes like nitrogen and sulfur metabolisms. Notably, our findings underscore the taxa-specific contributions of microbes in aquaculture environments, particularly in complex carbon degradation and the removal of toxic substances like ammonia, nitrate, and sulfide.
Assuntos
Aquicultura , Metagenômica , Microbiota , Metagenômica/métodos , Animais , Microbiota/genética , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Archaea/genética , Archaea/metabolismo , Archaea/classificação , Metagenoma , Filogenia , Penaeidae/microbiologia , Penaeidae/genéticaRESUMO
Bioflocs can efficiently achieve simultaneous nitrate and phosphate removal through a single-stage aerobic process, provided they are continuously supplemented with an organic carbon source. This study investigated the effects of different carbon sources on this process. Results revealed that phosphate removal rate in the glucose group was 0.61 ± 0.02 mg/L/h, significantly higher than those in the acetate (0.28 ± 0.01 mg/L/h) and propionate (0.29 ± 0.03 mg/L/h) groups (p < 0.05). However, the three groups observed no significant differences in nitrate removal rates (p > 0.05). The superior performance of the glucose group in simultaneous nitrogen and phosphorus removal is likely due to the higher biomass synthesis. In contrast, nitrate removal in the acetate and propionate groups was primarily driven by denitrification, resulting in lower sludge production and reduced phosphate uptake. For practical application of bioflocs in simultaneous nitrogen and phosphorus removal, glucose is recommended as the optimal carbon source.
Assuntos
Carbono , Nitrogênio , Fósforo , Aerobiose , Esgotos , Reatores Biológicos , Fosfatos , Nitratos , Glucose/metabolismo , Purificação da Água/métodosRESUMO
Freshwater scarcity poses challenges to aquaculture worldwide, including countries like Egypt. In this study, we investigate the feasibility of integrating underground saline water (USW) with varying salinities into a Biofloc (BFT) system for desert mariculture of Florida red tilapia (FRT) and its impacts on water quality, fish performance and health. Four BFT treatments (C/N ratio = 15) were examined in triplicate using four salinity levels 0 ppt, 12 ppt, 24 ppt and 36 ppt, expressed as S0, S12, S24 and S36, respectively. For 75 days, a total of 12 fiberglass tanks (each 250 L-1 water) were used to store FRT fry (average weight of 1.73 ± 0.01 g/fish). The fish were fed an experimental diet (protein/fat = 30/5) and an additional carbon source of rice bran. The results revealed that group S12 showed better growth indicators, higher survival rate, lower FCR, and lower ammonia levels, while group S0 exhibited lower growth indicators (final weight, weight gain, and specific growth rate) than all groups. The serum kidney, liver, and antioxidant indices performed better in the S12 group. At 12 ppt, the immune-related parameter (IgM) increased by 22.5%, while the stress parameter (cortisol) decreased by 40.8% compared to the S0 group. The liver and intestinal histopathological results revealed that the S12 and S24 groups performed better. Pathogenic bacterial load counts favored the S24 group, which had the lowest number among the groups studied. The recommended salinity for FRT cultivation in USW and BFT is 19.94-20 ppt, determined by polynomial regression of FW and FCR.
Assuntos
Aquicultura , Doenças dos Peixes , Salinidade , Qualidade da Água , Animais , Aquicultura/métodos , Doenças dos Peixes/microbiologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/prevenção & controle , Água Subterrânea/química , Água Subterrânea/microbiologia , Tilápia/imunologia , Ciclídeos/imunologia , Ciclídeos/crescimento & desenvolvimento , Ração Animal/análiseRESUMO
In shrimp aquaculture, disease mitigation may be accomplished by reducing the virulence of the pathogen or by boosting the shrimp's immunity. Biofloc technology is an innovative system that improves the health and resistance of shrimp to microbial infections while providing a viable option for maintaining the quality of culture water through efficient nutrient recycling. This review aimed at demonstrating the efficacy of the biofloc system in boosting the immune responses and protective processes of shrimp against Vibrio parahaemolyticus infection, which is known to cause Acute Hepatopancreatic Necrosis Disease (AHPND). Numerous studies have revealed that the biofloc system promotes the immunological capability of shrimp by raising multiple immune -related genes e.g. prophenoloxidase, serine proteinase gene, ras-related nuclear gene and penaeidinexpression and cellular and humoral responses such as hyperaemia, prophenoloxidase activity, superoxide dismutase activity, phagocytic activity; the protection and survival of shrimp when faced with a challenge from the V. parahaemolyticus strain have been enhanced. Furthermore, the use of the biofloc system improves water quality parameters and potentially bolstering their immune and overall health to effectively resist diseases; hence, promotes the growth of shrimp. The present review suggests that biofloc can serve as an effective therapy for both preventing and supporting the management of probable AHPND infection in shrimp culture. This approach exhibits potential for the progress of sustainable shrimp farming, higher productivity, and improved shrimp health.
Assuntos
Aquicultura , Penaeidae , Vibrio parahaemolyticus , Vibrio parahaemolyticus/fisiologia , Animais , Penaeidae/imunologia , Penaeidae/microbiologia , Imunidade Inata , Resistência à Doença/imunologiaRESUMO
To investigate the activities of intestinal digestive enzymes, liver antioxidant enzymes, immunological enzymes, and glucometabolic enzymes in largemouth bass (Micropterus salmoides) under the biofloc model, an experiment was conducted in 300-liter glass tanks. The experiment comprised a control group, which was fed a basal diet, and a biofloc group, where glucose was added to maintain a C/N ratio of 15. Each group had three parallel setups, with a stocking density of 20 fish per tank. The experiment ran for 60 days, employing a zero-water exchange aquaculture model. The results showed that at the end of the culture period, there were no significant differences between the initial weight, final weight, WGR, SGR, and SR of the biofloc group and the control group of largemouth bass (p > 0.05), whereas the lower FCR and the higher PER in the biofloc group were significant (p < 0.05); intestinal α-amylase, trypsin, and lipase activities of largemouth bass in the biofloc group were significantly increased by 37.20%, 64.11%, and 51.69%, respectively, compared with the control group (p < 0.05); liver superoxide dismutase and catalase activities, and total antioxidant capacity of largemouth bass in the biofloc group were significantly increased by 49.26%, 46.87%, and 98.94% (p < 0.05), while the malondialdehyde content was significantly reduced by 19.91% (p < 0.05); liver lysozyme, alkaline phosphatase, and acid phosphatase activities of largemouth bass in the biofloc group were significantly increased by 62.66%, 41.22%, and 29.66%, respectively (p < 0.05); liver glucokinase, pyruvate kinase, glucose-6-phosphate kinase, pyruvate kinase, glucose-6-phosphatase, and glycogen synthase activities were significantly increased by 46.29%, 99.33%, 32.54%, and 26.89%, respectively (p < 0.05). The study showed that the biofloc model of culturing largemouth bass can not only enhance digestive enzyme activities, antioxidant capacity, and immune response but can also promote the process of glucose metabolism and reduce feeding costs. This study provides data support for healthy culturing of largemouth bass in future production, provides a theoretical reference for optimizing the biofloc technology culture model, and is crucial for promoting the healthy and green development of aquaculture.
RESUMO
As a widely available, low-cost agricultural byproduct, bagasse is a potential solid carbon source and provides microbial attachment as a biofilm carrier. In this study, the effects of bagasse as a carbon source on biofloc formation, water quality, microbial community structure, and nitrogen conversion in a shrimp culture system were explored, and the performance of bagasse bioflocs was assessed. No bagasse was added to the control group (CK), and three bagasse addition groups were set up, with the floc content of the water maintained at 5 mL/L (BF5 group), 10 mL/L (BF10 group), and 15 mL/L (BF15 group). The results showed that bagasse bioflocs formed in the fourth week when bagasse was placed in the culture water, and the surface of bagasse was covered with thick biofilm at that time. The DOC content of the BF15 group was significantly greater than that of the CK group, from 30.31 to 105.06% (P < 0.05), and the DOC increased with increasing bagasse biofloc content. The BF group rapidly converted TAN to NO2--N and then to NO3--N because the accumulation of nitrite nitrogen in the BF15 group occurred 1 week earlier than in the other groups; at the 8th week, the nitrite nitrogen conversion rate of each BF group was close to 100%, which was significantly greater than that of the CK group (P < 0.05). The relative abundances of genes encoding microbial glutamate dehydrogenase and glutamate synthase increased in the bagasse biofloc groups (P < 0.05). The relative abundances of genes from Rhodobacterales and Hyphomicrobiales in each group were greater, but bagasse bioflocs increased the proportion of Hyphomicrobiale. In summary, adding bagasse to the shrimp culture system can form a biofloc system, resulting in the formation of a rich bacterial biofilm on its surface. Bagasse addition not only affects the composition of microbial communities but also accelerates the nitrification process in water. As a result, ammonia and nitrite are converted into nitrate, which is essential for maintaining the stability of the ecosystem balance in aquaculture water.
Assuntos
Carbono , Celulose , Qualidade da Água , Animais , Celulose/metabolismo , Biofilmes , Microbiota , Nitrogênio , AquiculturaRESUMO
Given the scarcity of water and land resources, coupled with the competitive nature of aquaculture, the long-term viability of this industry will depend on strategies for vertical development. This involves enhancing production environments, increasing productivity, and advancing aquaculture technologies. The use of biofloc technology offers a potential solution to mitigate the adverse environmental impacts and the heavy reliance on fishmeal in the aquaculture sector. This method is designed to effectively assimilate inorganic nitrogen found in aquaculture wastewater, thereby enhancing water quality. Additionally, this process produces microbial protein, which can serve as a viable supplemental feed for aquatic animals. Furthermore, this technique has the potential to reduce the feed conversion ratio, thereby lowering overall production costs. This article provides an overview of the evolving field of biofloc system technology within aquaculture. In this study, we will examine the historical development and various types of biofloc systems, as well as the factors that influence their effectiveness. Finally, we will explore the economic potential of implementing biofloc systems in aquaculture.
RESUMO
In the modern era of Aquaculture, biofloc technology (BFT) systems have attained crucial attention. This technology is used to reduce water renewal with the removal of nitrogen and to provide additional feed. In BFT, microorganisms play a crucial role due to their complex metabolic properties. Pathogens can be controlled through multiple mechanisms using probiotics, which can promote host development and enhance the quality of the culture environment. During culturing in a biofloc technology system, the supplementation of microalgae and its accompanying bacteria plays a beneficial role in reducing nitrogenous compounds. This enhances water quality and creates favorable environmental conditions for specific bacterial groups, while simultaneously reducing the dependency on carbon sources with higher content. The fluctuations in the bacterial communities of the intestine are closely associated with the severity of diseases related to shrimp and are used to evaluate the health status of shrimp. Overall, we will review the microbes associated with shrimp culture in BFT and their effects on shrimp growth. We will also examine the microbial impacts on the growth performance of L. vannamei in BFT, as well as the close relationship between probiotics and the intestinal microbes of L. vannamei.
RESUMO
Though different types of commercial probiotics are supplemented in biofloc technology (BFT), very little information is available on their effects on the farmed fish. Therefore, this study focused on evaluating the effects of three most commonly used commercial probiotics on the growth performance, intestinal histomorphology, and intestinal microbiota of Nile tilapia (Oreochromis niloticus) reared in BFT. Tilapia fry, with an average weight of 3.02 ± 0.50 g, were stocked at a density of 60 fry/0.2 m3, and cultured for 90 days. Three commercial probiotics were administered, with three replications for each: a single-genus multi-species probiotic (Bacillus spp.) (T1), a multi-genus multi-species probiotic (Bacillus sp., Lactobacillus sp., Nitrosomonas sp., Nitrobacter sp.) (T2), and a multi-species probiotic (Bacillus spp.) combined with enzymes including amylase, protease, cellulase, and xylanase (T3). The results showed significant variations in growth and feed utilization, with T3 outperforming other treatments in terms of weight gain, liver weight, and intestine weight. Adding Bacillus spp. with enzymes (T3) to water significantly increased the histomorphological parameters (villi length, villi depth, crypt depth, muscle thickness, intestinal thickness) as well as microbes (total viable count and total lactic acid bacteria) of intestine of fish compared to T1 and T2, leading to improved digestion and absorption responses. It is concluded that the supplementation of commercial probiotics has potential benefits on farmed fish species in BFT.
RESUMO
This study aimed to evaluate the effect of the biofloc technology (BFT) system and the replacement of fish meal with Spirulina biomass on productive performance, intestinal histomorphometry, plasma biochemistry, and oxidative stress of Nile tilapia juveniles (Oreochromis niloticus) fed suboptimal levels of protein. Two factors were evaluated: production systems (clear water × BFT) and replacement of fish meal with Spirulina (0, 33, 66 e 100%). The design was in a 2 × 4 randomized factorial scheme with four replications, and the fish were evaluated for 48 days. Four isoproteic (28% crude protein) diets were formulated with gross energy values close to 4300 kcal kg-1. Nile tilapia juveniles (0.23 ± 0.01 g) were distributed in 16 circular tanks (70 L) at seven fish/tank. The diets were formulated with protein levels approximately 20% below that required for the species and life stage. No interaction was observed between the factors evaluated (production systems × Spirulina inclusion). Rearing the fish in the BFT system avoided the adverse effects of diets with suboptimal protein levels on performance, intestinal histomorphometry, and protein metabolism. Lower values lower lipid peroxidation and higher antioxidant capacity were observed in fish reared in the BFT system, showing evidence of improvements in antioxidant responses and lower levels of physiological oxidative stress. Spirulina completely replaced fish meal in the diets of Nile tilapia juveniles without adverse effects on intestinal morphometry, protein metabolism, and antioxidant response. Replacing 66% of fish meal with Spirulina improved the productive performance, regardless of the rearing system.
Assuntos
Ração Animal , Ciclídeos , Dieta , Intestinos , Spirulina , Animais , Ciclídeos/metabolismo , Ciclídeos/crescimento & desenvolvimento , Ração Animal/análise , Intestinos/efeitos dos fármacos , Dieta/veterinária , Proteínas Alimentares/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Animal , Aquicultura/métodosRESUMO
Biofloc technology (BFT) is an eco-friendly aquaculture model that utilizes zero-exchange water. In this study, we investigated the integration of duckweed into BFT in an effort to enhance nitrogen, phosphorus, and carbon utilization and to improve animal welfare for cultivating Megalobrama amblycephala. The experiment spanned 75 days, comparing a group of M. amblycephala supplemented with duckweed (DM) to a control group (CG) with no supplementation, where duckweed consumption relied solely on the feeding behavior of the fish. The concentrations of nitrate, total nitrogen, and phosphorus accumulation were lower in the DM than in the CG from day 45 onwards, with differences of 16.19, 26.90, and 1.45 mg/L, respectively, at the end of the experiment. The DM showed simultaneous increases of 5.77, 11.20, and 5.07 % in the absolute utilization of nitrogen, phosphorus, and carbon, respectively. The abundance of TM7a (10.27 %), linked to nitrate absorption, became the dominant genus in the water of the DM. Additionally, the abundance of Cetobacterium, associated with carbohydrate digestion, was significantly higher in gut of the DM (23.83 %) than in the gut of CG (1.24 %, P < 0.05). Supplementing the diet of M. amblycephala with duckweed improved digestion and antioxidant enzyme activity. Transcriptome data showed that duckweed supplementation resulted in an increase in the expression of genes related to protein digestion and absorption and carbohydrate metabolism in M. amblycephala, and analysis of the significantly enriched pathways further supported improved antioxidant capacity. Based on the above results, we concluded that as M. amblycephala consumes more duckweed, the differences in nitrogen and phosphorus levels between the DM and CG would continue to increase, along with a simultaneous increase in fixed carbon. Thus, this study achieved the goal of recycling BFT resources and improving animal welfare by integrating duckweed.
Assuntos
Aquicultura , Araceae , Nitrogênio , Fósforo , Animais , Nitrogênio/metabolismo , Fósforo/análise , Aquicultura/métodos , Bem-Estar do Animal , Ração Animal/análiseRESUMO
Biofloc (BF) stands out as a promising system for sustainable shrimp farming. Optimizing various culture conditions, such as stocking density, carbohydrate source, and feeding management, is crucial for the widespread adoption of the BF system. This study compares the growth performance of white-leg shrimp (Litopenaeus vannamei) in culture ponds at low density (LD) with 50 organisms/m2 and high density (HD) with 200 organisms/m2. Post-larvae of white-leg shrimp were stocked for 16 weeks in both LD and HD groups. The LD group exhibited a superior survival rate, growth rate, and feed consumption compared to the HD group. The BF from the LD system recorded a significantly higher protein content (16.63 ± 0.21%) than the HD group (15.21 ± 0.34%). Heterotrophic bacterial counts in water did not significantly differ with stocking density. However, Vibrio count in water samples was higher in the HD group (3.59 ± 0.35 log CFU/mL) compared to the LD group (2.45 ± 0.43 log CFU/mL). The whole shrimp body analysis revealed significantly higher protein and lipid content in the LD group. In contrast, the total aerobic bacterial count in shrimp from the HD group was high, with the identification of Salmonella enterica ssp. arizonae. Additionally, Vibrio counts in shrimp samples were significantly higher in the HD group (4.63 ± 0.32 log CFU/g) compared to the LD group (3.57 ± 0.22 log CFU/g). The expression levels of immune-associated genes, including prophenoloxidase, transglutaminase, penaiedin 3, superoxide dismutase, lysozyme, serine proteinase, and the growth-related gene ras-related protein (rap-2a), were significantly enhanced in the LD group. Conversely, stress-related gene expression increased significantly in the HD group. Hepatopancreases amylase, lipase, and protease were higher in the LD group, while trypsin activity did not differ significantly. Antioxidant enzyme activity (catalase, glutathione, glutathione peroxidase, and superoxide dismutase) significantly increased in the LD group. The histological structure of hepatopancreas, musculature, and female gonads remained similar in both densities. However, negative effects were observed in the gills' histology of the HD group. These results suggest that increasing stocking density is associated with significantly negative biological, microbial, and physiological effects on white-leg shrimp under the BF system.
Assuntos
Aquicultura , Penaeidae , Animais , Aquicultura/métodos , Penaeidae/microbiologia , Penaeidae/crescimento & desenvolvimento , Penaeidae/metabolismo , Penaeidae/fisiologia , Penaeidae/imunologia , VibrioRESUMO
In this study, we developed a rapid and effective method for enriching the culture of nitrifying bioflocs (NBF) from aquacultural brackish water. The self-designed mixotrophic mediums with a single or mixed addition of sodium acetate, sodium citrate, and sucrose were used to investigate the enrichment process and nitrification efficiency of NBF in small-scale reactors. The results showed that NBF with an MLVSSs from 1170.4 mg L-1 to 2588.0 mg L-1 were successfully enriched in a period of less than 16 days. The citrate group performed the fastest enrichment time of 10 days, while the sucrose group had the highest biomass of 2588.0 ± 384.7 mg L-1. In situ testing showed that the highest nitrification efficiency was achieved in the citrate group, with an ammonia oxidation rate of 1.45 ± 0.34 mg N L-1 h-1, a net nitrification rate of 2.02 ± 0.20 mg N L-1 h-1, and a specific nitrification rate of 0.72 ± 0.14 mg N g-1 h-1. Metagenomic sequencing revealed that Nitrosomonas (0.0~1.0%) and Nitrobacter (10.1~26.5%) were dominant genera for AOB and NOB, respectively, both of which had the highest relative abundances in the citrate group. Linear regression analysis further demonstrated significantly positive linear relations between nitrification efficiencies and nitrifying bacterial genera and gene abundance in NBF. The results of this study provide an efficient enrichment culture method of NBF for the operation of biofloc technology aquaculture systems, which will further promote its wide application in modern intensive aquaculture.
RESUMO
<b>Background and Objective:</b> Vaname shrimp (<i>Litopenaeus vannamei</i>) is one of the main economic commodities in aquaculture in the world. Biofloc is a cultivation technology that effectively improves the growth and health status of vaname shrimp. This research aimed to analyze the use of bagasse as a carbon source in the biofloc system for white shrimp cultivation. <b>Materials and Methods:</b> The shrimp used were 18 g/individual shrimp obtained from the Bone Marine and Fisheries Polytechnic Pond. Sugarcane bagasse processed from sugar factory waste was dried in an oven at 60°C and ground using a flouring machine. The research treatments included biofloc application where sugarcane bagasse played a role as a carbon source (L), biofloc application where wheat flour's role was as a carbon source (T) and control or no biofloc application (K). <b>Results:</b> This research showed that sugarcane bagasse could be used as a carbon source for white shrimp biofloc cultivation where the growth value tended to be the same as wheat flour. Total hemolytic count (THC) and shrimp survival in sugarcane bagasse biofloc were as good as wheat flour biofloc. Sugarcane bagasse biofloc had the same ability as wheat flour biofloc in reducing ammonia levels in the rearing media. Sugarcane bagasse biofloc had the same ability as wheat flour biofloc in reducing ammonia levels in the rearing media. The application of bagasse had no effect on temperature, pH, dissolved oxygen and salinity of the rearing media because this treatment was in the optimal range for the growth of vaname shrimp. <b>Conclusion:</b> Sugarcane bagasse has the potential to be a carbon source in biofloc systems because it could improve growth, health status, survival and water quality.
Assuntos
Penaeidae , Saccharum , Animais , Celulose , Carbono , Amônia , Farinha , Triticum , AquiculturaRESUMO
The abundance of microplastics (MPs) in the gastrointestinal tract (GT), gills (GI), and exoskeleton (EX) of Litopenaeus vannamei shrimp cultured in a commercial indoor super-intensive controlled (ISCO) system was investigated. Shrimp of 25 days (postlarvae; PL25), and one, three, five, and seven culture months were analyzed. The postlarvae PL25 MP abundance per individual and gram of PL (wet weight) was 0.2 ± 0.0 MPs and 3.5 ± 0.5 MPs/g. For L. vannamei juveniles at one, three, five, and seven culture months, the MP abundance per juvenile shrimp was 10.0 ± 0.3, 27.2 ± 1.6, 32.3 ± 3.1, and 40.3 ± 3.6 MPs/individual, respectively (expressed in MPs/g of tissue were 1.6 ± 0.1, 2.0 ± 0.2, 2.0 ± 0.3 and 1.5 ± 0.2, respectively). Fibers were the most common MP type in all shrimp age classes (42.1-68.7 %), and the predominant color was transparent (46.1-65.0 %). The MP size in all shrimp stages ranged between 15 and 4686 µm. In general, the predominant polymers identified were PE (37.4 %), NY (21.1 %), and PET (18.5 %). The MP variability through the culture cycle showed that as the age of shrimp increased, and the culture advanced the MP abundance and size also augmented. Conversely, there is a higher MP abundance in L. vannamei cultured in ISCO systems compared to shrimp cultured in traditional semi-intensive and intensive ponds and those from wild environments. The latter is probably due to the extensive use of plasticized materials (geomembrane and greenhouse installations) and their degradation, which cause a greater MP exposure to shrimp. The estimated oral MP intake by ISCO shrimp consumption was 647 MPs/capita/year, which can be 178 % more than from wild shrimp.
Assuntos
Microplásticos , Penaeidae , Animais , Plásticos , Aquicultura , Alimentos MarinhosRESUMO
This study aimed to evaluate and unveil the positive impact of biofloc culture on Vibrio parahaemolyticus infection of Pacific white shrimp by reducing quorum sensing (QS) and virulence gene expression and enhancing shrimp's immunity. The shrimp with an average body weight of 0.50 ± 0.09 g were reared in containers with a volume of 2.5 L, 21 units, and a density of 20 shrimp L-1. The shrimp were cultured for 5 days, with each treatment including biofloc system maintenance with a C/N ratio of 10 and a control treatment without biofloc, followed by a challenge test through immersion using V. parahaemolyticus at densities of 103, 105, and 107 CFU mL-1 initially. The results of the in vitro experiment showed that biofloc suspension can inhibit and disperse biofilm formation, as well as reduce the exo-enzyme activity (amylase, protease, and chitinase) of V. parahaemolyticus. Furthermore, the biofloc treatment significantly reduced the expression of the QS regulatory gene OpaR, the PirB toxin gene, and the virulence factor genes T6SS1 and T6SS2 in both in vitro and in vivo. The biofloc system also increased the expression of shrimp immunity-related genes (LGBP, proPO, SP, and PE) and the survival rate of white shrimp challenged with V. parahaemolyticus.
Assuntos
Penaeidae , Percepção de Quorum , Vibrio parahaemolyticus , Animais , Vibrio parahaemolyticus/fisiologia , Vibrio parahaemolyticus/patogenicidade , Penaeidae/microbiologia , Penaeidae/imunologia , Virulência , Fatores de Virulência/genética , Aquicultura/métodos , BiofilmesRESUMO
Despite the lack of research, development, and innovation funds, especially in South Atlantic countries, the Atlantic is suited to supporting a sustainable marine bioeconomy. Novel low-carbon mariculture systems can provide food security, new drugs, and climate mitigation. We suggest how to develop this sustainable marine bioeconomy across the entire Atlantic.