Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.221
Filtrar
1.
J Environ Sci (China) ; 148: 665-682, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095198

RESUMO

Emission characteristics of biogenic volatile organic compounds (BVOCs) from dominant tree species in the subtropical pristine forests of China are extremely limited. Here we conducted in situ field measurements of BVOCs emissions from representative mature evergreen trees by using dynamic branch enclosures at four altitude gradients (600-1690 m a.s.l.) in the Nanling Mountains of southern China. Composition characteristics as well as seasonal and altitudinal variations were analyzed. Standardized emission rates and canopy-scale emission factors were then calculated. Results showed that BVOCs emission intensities in the wet season were generally higher than those in the dry season. Monoterpenes were the dominant BVOCs emitted from most broad-leaved trees, accounting for over 70% of the total. Schima superba, Yushania basihirsuta and Altingia chinensis had relatively high emission intensities and secondary pollutant formation potentials. The localized emission factors of isoprene were comparable to the defaults in the Model of Emissions of Gases and Aerosols from Nature (MEGAN), while emission factors of monoterpenes and sesquiterpenes were 2 to 58 times of those in the model. Our results can be used to update the current BVOCs emission inventory in MEGAN, thereby reducing the uncertainties of BVOCs emission estimations in forested regions of southern China.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Florestas , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , China , Poluentes Atmosféricos/análise , Árvores , Estações do Ano
2.
Talanta ; 282: 126946, 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39357405

RESUMO

Sensing biogenic amine (BAs) content is very important for assessing food freshness. To address the limitations such as small color difference values (ΔE) and complex preparation of probes for visualizing the freshness of seafood, a pH-responsive ratiometric fluorescent probe (EnEB) was prepared by Eu(NO3)3, trimeric acid (BTC), and hydrochloric acid norepinephrine (Enr). EnEB emitted blue (446 nm) and red fluorescence (616 nm) originating from Enr and Eu3+, respectively, and exhibiting a fluorescence wavelength difference up to 170 nm. The ratiometric fluorescent signals of EnEB showed a linear correlation with pH in the range of 5.5-8.0. Thus, EnEB can rapidly and precisely detect BAs, such as histamine, tyramine, and spermine, with detection limits and response times of 1.14 µmol/L (3 s), 1.04 µmol/L (8 s), and 0.41 µmol/L (2 s), respectively. Furthermore, an EnEB aerogel was prepared by loading EnEB in a matrix formed by polyvinyl alcohol (PVA) and agarose (AG). EnEB aerogel exhibited excellent acid-base gas-sensing properties. The fluorescence color of EnEB aerogel can change significantly with the deterioration of seafood. When seafood changed from fresh to decayed, the ΔE value of EnEB aerogel was as high as 80.9. Importantly, the results of seafood freshness by naked eye using EnEB aerogel was consistent well with the TVB-N content and the freshness standard stipulated by national food standard, indicating EnEB aerogel can accurately visually and real-time monitor seafood freshness. Furthermore, the strategy for sensing food freshness based on EnEB aerogel also offered multiple color variations to indicate fine freshness levels of seafood. This work provided a convenient, efficient, and accurate approach to assessing the freshness of seafood. Additionally, EnEB also has promising applications in security and anti-counterfeiting.

3.
J Environ Manage ; 369: 122363, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232323

RESUMO

Green roof systems have been developed to improve the environmental, economic, and social aspects of sustainability. Selecting the appropriate version of the green roof composition plays an important role in the life cycle assessment of a green roof. In this study, 10 compositions of an intensive green roof for moderate zone and 4 green roof compositions for different climatic conditions were designed and comprehensively assessed in terms of their environmental and economic impacts within the "Cradle-to-Cradle" system boundary. The assessment was carried out over a 50-year period for a moderate climate zone. The results showed that asphalt strips and concrete slab produced the highest total emissions. It was found that most greenhouse gases emissions were released in the operational energy consumption phase and in the production phase. The energy consumption phase (48.78%) for automatic irrigation and maintenance caused the highest Global Warming Potential (GWP) value (758.39 kg CO2e) in the worst variant, which also caused the highest life cycle cost (878.47€). On the contrary, in the best variant, planting more vegetation and lower maintenance and irrigation requirements led to a reduction in GWP (445.0 kg CO2e), but in terms of cost (506.6€) this composition didn't represent the best variant. The Global Warming Potential Biogenic (GWP-bio) compared to the Global Warming Potential Total (GWP-total) represents a proportion ranging from 0.8% to 78% depending on the proposed vegetation. Overall higher biogenic carbon values (up to 1525 kg CO2e) were observed for the proposed tall vegetation of Magnolia, Red Mulberry, Hawthorne, Cherry, and Crab-apple Tree. Based on the results of the multicriteria analysis, which included core environmental & economic parameters, biogenic carbon emission levels, the outcome of this paper proposed optimal green roof composition. Optimal intensive green roof composition was subjected to a sensitivity analysis to determine the impact of changing climatic conditions on CO2 emissions and life cycle costs. The results of the sensitivity analysis show that the optimal variant of the green roof can be implemented in the cold and subtropical zone with regard to CO2 emissions, but not with regard to life cycle costs.


Assuntos
Aquecimento Global , Conservação dos Recursos Naturais , Gases de Efeito Estufa/análise , Materiais de Construção , Hidrocarbonetos
4.
Environ Sci Technol ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39327447

RESUMO

Aerosol particles originating from the Qinghai-Tibet Plateau (QTP) readily reach the free troposphere, potentially affecting global radiation and climate. Although new particle formation (NPF) is frequently observed at such high altitudes, its precursors and their underlying chemistry remain poorly understood. This study presents direct observational evidence of anthropogenic influences on biogenic NPF on the southeastern QTP, near the Himalayas. The mean particle nucleation rate (J1.7) is 2.6 cm-3 s-1, exceeding the kinetic limit of sulfuric acid (SA) nucleation (mean SA: 2.4 × 105 cm-3). NPF is predominantly driven by highly oxygenated organic molecules (HOMs), possibly facilitated by low SA levels. We identified 1538 ultralow-volatility HOMs driving particle nucleation and 764 extremely low-volatility HOMs powering initial particle growth, with mean total concentrations of 1.5 × 106 and 3.7 × 106 cm-3, respectively. These HOMs are formed by atmospheric oxidation of biogenic precursors, unexpectedly including sesquiterpenes and diterpenes alongside the commonly recognized monoterpenes. Counterintuitively, over half of HOMs are organic nitrates, mainly produced by interacting with anthropogenic NOx via RO2+NO terminations or NO3-initiated oxidations. These findings advance our understanding of NPF mechanisms in this climate-sensitive region and underscore the importance of heavy terpene and NOx-influenced chemistry in assessing anthropogenic-biogenic interactions with climate feedbacks.

5.
Am J Bot ; : e16408, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39305022

RESUMO

PREMISE: Plants generate a wide array of signals such as olfactory cues to attract and manipulate the response of pollinators. The present study addresses the temporal patterns of scent emission as an additional dimension to the scent composition. The expectation is that divergent floral function is reflected in divergent qualitative and temporal emission patterns. METHODS: We used GC-ion mobility spectrometry with an integrated pre-concentration for automated acquisition of the temporal trends in floral volatile emissions for N. viridiflorus, N. papyraceus, and N. cantabricus subsp. foliosus. RESULTS: We found a considerable increase in scent emissions and changes in scent composition for N. viridiflorus at night. This increase was particularly pronounced for aromatic substances such as benzyl acetate and p-cresol. We found no diurnal patterns in N. papyraceus, despite a similar qualitative composition of floral volatiles. Narcissus cantabricus subsp. foliosus showed no diurnal patterns either and differed considerably in floral scent composition. CONCLUSIONS: Scent composition, circadian emission patterns, and floral morphology indicate divergent, but partially overlapping pollinator communities. However, the limited pollinator data from the field only permits a tentative correlation between emission patterns and flower visitors. Narcissus papyraceus and N. cantabricus show no clear diurnal patterns and thus no adjustment to the activity patterns of their diurnal pollinators. In N. viridiflorus, timing of scent emission indicates an adaptation to nocturnal flower visitors, contradicting Macroglossum as the only reported pollinator. We propose that the legitimate pollinators of N. viridiflorus are nocturnal and are still unidentified.

6.
Luminescence ; 39(9): e4891, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39229976

RESUMO

Lepidagathis cristata (L. cristata) plant produces reducing and capping agents; this study utilized microwave-assisted biogenic synthesis to manufacture silver nanoparticles (AgNPs) using this plant. The structure, morphology, and crystallinity phases of prepared nanoparticles (NPs) were characterized by ultraviolet-visible spectroscopy (UV-viz), powder X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). Biologically synthesized AgNPs were treated against pathogenic bacteria species including Escherichia coli (E. coli), Bacillus subtilis (B. subtilis), and Staphylococcus aureus (S. aureus) and its highest zone of inhibition 10 ± 1.45 mm, 10 ± 0.74 mm, and 6 ± 0.43 mm, respectively, at the concentration of 100 µg/mL. The cytotoxic activity of AgNPs against MCF-7 breast cancer cells revealed significant growth inhibition by inhibiting cell viability, inhibitory concentration of 50% (IC50) of NPs observed at 55.76 µg/mL concentration. Finally, our findings concluded that the L. cristata-mediated biosynthesized AgNPs proved its potential antibacterial and neoplastic properties against MCF cells by endorsing the inhibition of cell proliferation especially with low concentration.


Assuntos
Antibacterianos , Ensaios de Seleção de Medicamentos Antitumorais , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Extratos Vegetais , Prata , Prata/química , Prata/farmacologia , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Humanos , Células MCF-7 , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Bacillus subtilis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/síntese química , Água/química , Relação Dose-Resposta a Droga , Feminino
7.
Environ Technol ; : 1-12, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39221764

RESUMO

Secondary iron minerals play significant roles in the immobilization of As under acidic conditions, such as acid mine drainage. However, previous research works have not clarified the effect of pH on As(III) removal through coprecipitation with secondary minerals. Therefore, in this study, we aimed to investigate the discrepancy in As(III) coprecipitation with biogenic synthesized schwertmannite (Sch) and jarosite (Jar) at different pH values. For this, concentrations of Fe2+, TFe, SO42-, and As(III) in shake flasks were monitored during an overall incubation period of 83 h at initial pH of 1.5, 2.0, and 2.5. In addition, the physicochemical properties of collected minerals after incubation were identified using scanning electron microscopy, X-ray diffraction, pore size distribution, and Brunauer - Emmett - Teller surface area analyses. Our results showed that almost no mineral synthesis and no As(III) removal were detected in coprecipitated schwertmannite (Co-Sch) system and coprecipitated jarosite (Co-Jar) system at an initial pH of 1.5. The TFe precipitation efficiencies and As(III) removal efficiencies increased considerably and morphologies of Co-Sch and Co-Jar improved significantly when the initial pH value increased from 2.0-2.5. The maximum TFe precipitation efficiency and As(III) removal efficiency reached 30.8% and 89.6%, respectively, for the Co-Sch system, and were 47.5% and 37.4%, respectively, for the Co-Jar system. The overall results show that pH significantly affects the formation of Co-Sch and Co-Jar and the behaviour of As(III) coprecipitation.

8.
J Agric Food Chem ; 72(37): 20622-20632, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39225480

RESUMO

The control of excess biogenic amines (BAs) is crucial for the sustainable development of fermented foods. This study aimed to screen endogenous functional strains in Doubanjiang with the capacity to degrade BAs and to elucidate their application potential. Pediococcus acidilactici L-9 (PA), which was confirmed as a safe strain by phenotypic and genotypic analyses, exhibited an efficient degradation ability on BAs, particularly regarding tyramine. Notably, the degradation of tyramine was maintained at 24.03-50.60% at different temperatures (20-40 °C), pH values (4.0-9.0), and NaCl concentrations (3-18%, w/v). Additionally, genomic data revealed the presence of the laccase-coding gene, which was demonstrated to play a pivotal role in BA degradation by heterologous expression. Further, molecular docking results indicated that the degradation of BA by laccase is closely linked to the electron transfer pathway formed by the substrate and key amino acid residues. Finally, the degradation of tyramine by PA remained within the range of 8.19-64.19% under the simulated system with 6-12% salinity. This study provided valuable insights into the safety of PA and its potential degradation capacity on BAs, particularly in mitigating tyramine accumulation, which could improve the quality of Doubanjiang and other fermented foods.


Assuntos
Aminas Biogênicas , Simulação de Acoplamento Molecular , Pediococcus acidilactici , Tiramina , Aminas Biogênicas/metabolismo , Pediococcus acidilactici/metabolismo , Pediococcus acidilactici/genética , Pediococcus acidilactici/química , Tiramina/metabolismo , Tiramina/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Concentração de Íons de Hidrogênio , Lacase/genética , Lacase/metabolismo , Lacase/química , China , Alimentos Fermentados/microbiologia , Alimentos Fermentados/análise
9.
J Microbiol Biotechnol ; 34(10): 1-21, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39263788

RESUMO

Fungi play a significant role in the deterioration of various types of monuments. Therefore, the protection of ancient monuments from fungal attacks is an important goal that must attract the attention of researchers worldwide. A total of 69 fungal isolates were recovered from 22 deteriorated objects compromising paper, textiles, wood, and stone in the National Museum of Egyptian Civilization (NMEC) storeroom, Cairo, Egypt. The isolates were identified as 12 different species categorized into three different genera, namely, Aspergillus (9 species), Penicillium (2 species) and Trichoderma (1 species). Among them, Aspergillus fumigatus was the most prevalent species. Three essential oils were assessed for antifungal activity and compared with the antifungal effects of five synthetic microcides to identify a natural inhibitory treatment. Thyme oil and sodium azide were found to be the most active growth inhibitors, with minimum inhibitory concentrations (MICs) of 625 and 100 ppm, with inhibition zone diameters of 19.0 ± 0.70 - 23.76 ± 1.15 and 13.30 ± 0.35 - 19.66 ± 0.54 mm, respectively. An in vitro simulation of the biodeterioration process was conducted using spores of the A. fumigatus strain NMEC-PSTW.1 on model cubes made of paper, textile, wood, and stone materials. The changes in the characteristics of the artificially deteriorated materials were analyzed using environmental scanning electron microscopy/energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. The results revealed changes in the morphology, physical properties, and chemical composition induced by A. fumigatus NMEC-PSTW.1. Overall, thyme oil is recommended as a natural inhibitor to protect carbonate and cellulosic monuments in NMEC against fungal attack.

10.
Int J Mol Sci ; 25(17)2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39273447

RESUMO

Nanotechnology has gained popularity in recent years due to its wide-ranging applications within the scientific community. The three main methods for synthesizing nanoparticles are physical, chemical, and biological. However, the adverse effects associated with physical and chemical methods have led to a growing interest in biological methods. Interestingly, green synthesis using plants has gained prominence in developing new treatments for bacterial infections. Zinc oxide nanoparticles (ZnO NPs) produced using environmentally friendly methods are more biocompatible and have potential applications as antibacterial agents in the biomedical field. As a result, this review discusses the green synthesis of ZnO NPs, factors influencing optimal synthesis, characterization techniques, and the antibacterial activity of some plant-mediated ZnO NPs. It also provides a comprehensive and analytical exploration of ZnO NP biosynthesis, the role of phytochemical compounds as reducing and stabilizing agents, the mechanism of action of their antibacterial properties and further highlights the challenges and prospects in this innovative research area.


Assuntos
Antibacterianos , Química Verde , Nanopartículas Metálicas , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Nanopartículas Metálicas/química , Química Verde/métodos , Humanos , Bactérias/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA