Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 401
Filtrar
1.
Heliyon ; 10(14): e34934, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39149011

RESUMO

The fruit of Saba senegalensis is respectively known among local folks in Ghana, Senegal, and Burkina Faso as εsononantin, maad and weda. The plant has been used traditionally, ethnobotanically, and medicinally in most West African countries. The phytochemicals that have been discovered in various extracts of S. senegalensis parts include alkaloids, coumarins, anthracene glycosides, anthocyanosides, anthocyanins, coumarins, flavonoids, saponins, saponin glycosides, sterols, condensed tannins, tannins, triterpenes, and triterpenoids. Presently, isolation and characterisation of phytochemicals from various parts of S. senegalensis has not been fully explored since scientists have isolated only two steroidal alkaloids from the stem of the plant namely Irehine and Homoandrost-9-ene-17ß,17aß-diol-3ß-(methylamino)-17aα-methyl-12-one. The phytochemicals have shown biological properties such as anti-oxidant, anti-inflammatory, anthelmintic, anti-microbial, analgesic, larvicidal, ovicidal, myostimulant, hypotensive, anti-diabetic, anti-lipid peroxidation and anti-mycobacterial effects. Additionally, isolation and characterisation of medicinally beneficial phytochemicals from various parts of the plant, namely latex, leaf, stem, flower, root, fruit, and bark should be comprehensively investigated. Thus, this current review summarises the traditional uses, phytochemicals, and biological properties of various parts of the plant.

2.
J Oral Biol Craniofac Res ; 14(5): 547-569, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39108352

RESUMO

Our understanding of mesenchymal stem cells (MSCs) and their biological properties is steadily increasing, with more studies focusing on their therapeutic effects in the domains of immunology, tissue engineering and regenerative medicine. MSCs may be derived from tissues such as bone marrow, adipose, the umbilical cord, as well as from dental tissues (e.g., tooth germ, dental follicle, pulp tissue of exfoliated deciduous and permanent teeth, apical papilla, periodontal ligament, gingiva, and alveolar bone). Gingival mesenchymal stem cells (GMSCs) are non-hematopoietic adult stem cells isolated from the gingival lamina propria. When compared to MSCs purified from various dental and non-dental tissues, GMSCs are more abundant in source, relatively non-invasive to obtain, and genetically stable. In recent years, many studies have found that GMSCs possess the ability of self-renewal, multi-directional differentiation, and chemotaxis to inflammatory sites for immunity regulation. Their molecular and stem-cell properties make them highly suitable for both preclinical and clinical research. Extracellular vesicles (EVs) secreted by GMSCs are of key interest due to their ability to emulate the biological and therapeutic activity of GMSCs themselves. This paper will therefore review the current consensus on GMSCs, surveying their sources and isolation methods, their biological properties, and their therapeutic applications on inflammatory and immune-related diseases.

3.
Chem Biodivers ; : e202401295, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177069

RESUMO

Edible Astraeus mushrooms are known for their nutritional and culinary benefits and potential therapeutic properties. However, more investigation and discussion are still needed to understand their mechanisms of action regarding observed biological activities and thorough chemical analysis of bioactive compounds. This review provides a comprehensive summary and discussion of the bioactive properties and mode of action of Astraeus extracts and their isolated compounds. It covers their reported antioxidant, anti-inflammatory, antidiabetic, anticancer, anti-tuberculosis, antimalarial, antiviral and antileishmanial activities, as well as their potential benefits on metabolic and cardiovascular health and immune function. The review highlights the significance of the biological potential of isolated compounds, such as sugar alcohols, polysaccharides, steroids, and lanostane triterpenoids. Moreover, the review identifies under-researched areas, such as the chemical analysis of Astraeus species, which holds immense research potential. Ultimately, the review aims to inspire further research on the nutraceuticals or therapeutics of these mushrooms.

4.
Front Cell Dev Biol ; 12: 1441081, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39184916

RESUMO

As a key factor in tumorigenesis, progression, recurrence and metastasis, the biological properties, metabolic adaptations and immune escape mechanisms of CSCs are the focus of current oncological research. CSCs possess self-renewal, multidirectional differentiation and tumorigenicity, and their mechanisms of action can be elucidated by the clonal evolution, hierarchical model and the dynamic CSCs model, of which the dynamic model is widely recognized due to its better explanation of the function and origin of CSCs. The origin hypothesis of CSCs involves cell-cell fusion, horizontal gene transfer, genomic instability and microenvironmental regulation, which together shape the diversity of CSCs. In terms of classification, CSCs include primary CSCs (pri-CSCs), precancerous stem cells (pre-CSCs), migratory CSCs (mig-CSCs), and chemo-radiotherapy-resistant CSCs (cr-CSCs and rr-CSCs), with each type playing a specific role in tumor progression. Surface markers of CSCs, such as CD24, CD34, CD44, CD90, CD133, CD166, EpCAM, and LGR5, offer the possibility of identifying, isolating, and targeting CSCs, but the instability and heterogeneity of their expression increase the difficulty of treatment. CSCs have adapted to their survival needs through metabolic reprogramming, showing the ability to flexibly switch between glycolysis and oxidative phosphorylation (OXPHOS), as well as adjustments to amino acid and lipid metabolism. The Warburg effect typifies their metabolic profiles, and altered glutamine and fatty acid metabolism further contributes to the rapid proliferation and survival of CSCs. CSCs are able to maintain their stemness by regulating the metabolic networks to maintain their stemness characteristics, enhance antioxidant defences, and adapt to therapeutic stress. Immune escape is another strategy for CSCs to maintain their survival, and CSCs can effectively evade immune surveillance through mechanisms such as up-regulating PD-L1 expression and promoting the formation of an immunosuppressive microenvironment. Together, these properties reveal the multidimensional complexity of CSCs, underscoring the importance of a deeper understanding of the biology of CSCs for the development of more effective tumor therapeutic strategies. In the future, therapies targeting CSCs will focus on precise identification of surface markers, intervention of metabolic pathways, and overcoming immune escape, with the aim of improving the relevance and efficacy of cancer treatments, and ultimately improving patient prognosis.

5.
Dent Mater ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39191558

RESUMO

STATEMENT OF PROBLEM: New materials have emerged in the dental field to replace the cobalt-chrome (CoCr) alloy used for the metal frameworks in removable partial denture (RPD) such as Titanium (Ti) and PolyEtherEtherKetone (PEEK). However, few studies have demonstrated their mechanical and biological performance. PURPOSE: The purpose of this systematic review was to compare the performance of Ti and PEEK in RPD using CoCr metal framework as a reference. MATERIAL AND METHODS: This review follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Three data bases were analyzed, including PubMed/MEDLINE, Embase and Web of Science before March 2024. Only studies assessing the mechanical and/or biological properties of RPD in Ti, PEEK and CoCr were included. The quality of the studies was assessed by using the software Rayyan. The risks of bias were assessed with the methodological index for nonrandomized studies (MINORS). The mechanical (retention force, fatigue life, deformation strength, machinability, rigidity, porosity and surface roughness) and biological (plaque indices, ion release and biocompatibility) aspects were assessed. RESULTS: Among 138 articles identified, only 18 studies were included in this review. Majority had a low to moderate risk of bias. Retention forces and fatigue were significantly lower for Ti and PEEK than for CoCr, and the same was true for Ti rigidity. PEEK showed less deformation. Both materials were suitable for machining. In terms of biological properties, both materials showed adequate biocompatibility for clinical use. CONCLUSION: Ti and PEEK seems to be promising as alternative materials to CoCr frameworks for RPD, in terms of both their mechanical and biological performance. However, additional studies are needed to better understand their clinical and long-term limitations to enable the best-informed clinical choice for the patients and the professionals.

6.
Curr Top Med Chem ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39162270

RESUMO

Bicyclic quinazolinone constitutes an important class of organic framework enveloping numerous biological properties which enthused organic and medicinal chemists to explore green synthetic strategies for the construction of quinazolinone hybrids with significantly improved pharmacodynamics and pharmacokinetic profiles. In this perspective, the present review summarizes the most recent green synthetic strategies, biological properties, structure-activity relationship, and molecular docking studies of the 4-quinazolinone-based scaffold. This review provides deeper insight into the hit-to-lead synthesis of quinazolinone derivatives in the development of clinically important therapeutic candidates.

7.
Int J Biol Macromol ; 277(Pt 4): 134460, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39102915

RESUMO

Polymicrobial communities are seen to be a sign of health, but they can turn detrimental when an excess of pathogenic species leads to recurring vaginal infections. This microbiological imbalance may decrease women's fertility, increasing also the risk of infection by Human Papillomavirus (HPV) and/or other sexually transmitted infections (STIs). There is a worldwide need for smart/sustainable solutions to tackle these types of infections. Hereupon, we investigated, as a potential solution, the use of crayfish chitosan-based membrane as a mucoadhesive, antimicrobial, biocompatible and biodegradable material. Chitosan was chemically extracted with a process yield of ca. 63 % and a degree of deacetylation of ca. 65 %. Further chitosan was characterized by FTIR, DSC, XRD and zeta potential. Antimicrobial and antioxidant activities were tested by microbicide concentration and ABTS methods. The extracted chitosan was confirmed to be antioxidant and antimicrobial against Escherichia coli, Candida albicans, Staphylococcus aureus (methicillin resistant and susceptible strains). Vaginal films using chitosan extracted from crayfish shells were produced by solvent casting, and the biological profile was tested in simulated vaginal fluid as a proof of concept. The main data showed that the vaginal films prepared were active against several microorganisms responsible for vaginal infections, demonstrating their potential in the field.

8.
Stem Cell Rev Rep ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134887

RESUMO

Approximately half of the adult population is suffering from periodontal disease, and conventional periodontal treatment strategies can only slow the progression of the disease. As a kind of tissue engineering, periodontal regeneration brings hope for the treatment of periodontal disease. Low-intensity pulsed ultrasound (LIPUS) is a form of ultrasound with a frequency of 1-3 MHz and a much lower intensity (< 1W/cm2) than traditional ultrasound energy and output. LIPUS has been adopted for a variety of therapeutic purposes due to its bioeffects such as thermal, mechanical, and cavitation effects, which induce intracellular biochemical effects and lead to tissue repair and regeneration ultimately. In this systematic review, we summarize the basic research of LIPUS in the treatment of periodontal disease in periodontal disease animal models and the influence of LIPUS on the biological behavior (including promoting osteogenic differentiation of stem cells and inhibiting inflammatory response) and potential mechanism of periodontal ligament stem cells (PDLSCs), hoping to provide new ideas for the treatment of periodontal disease. We believe that LIPUS can be used as an auxiliary strategy in the treatment of periodontal disease and play an exciting and positive role in periodontal regeneration.

9.
J Mech Behav Biomed Mater ; 157: 106646, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38981181

RESUMO

Graphene oxide (GO) exhibits excellent mechanical strength and modulus. However, its effectiveness in mechanically reinforcing polymer materials is limited due to issues with interfacial bonding and dispersion arising from differences in the physicochemical properties between GO and polymers. Surface modification using coupling agents is an effective method to improve the bonding problem between polymer and GO, but there may be biocompatibility issues when used in the biomedical field. In this study, the biomolecule L-lysine, was applied to improve the interfacial bonding and dispersion of GO in polylactic acid (PLA) without compromising biocompatibility. The PLA/L-lysine-modified GO (PLA/L-GO) bone scaffold with triply periodic minimal surface (TPMS) structure was prepared using fused deposition modeling (FDM). The FTIR results revealed successful grafting of L-lysine onto GO through the reaction between their -COOH and -NH2 groups. The macroscopic and microscopic morphology characterization indicated that the PLA/L-GO scaffolds exhibited an characteristics of dynamic diameter changes, with good interlayer bonding. It was noteworthy that the L-lysine modification promoted the dispersion of GO and the interfacial bonding with the PLA matrix, as characterized by SEM. As a result, the PLA/0.1L-GO scaffold exhibited higher compressive strength (13.2 MPa) and elastic modulus (226.8 MPa) than PLA/0.1GO. Moreover, PLA/L-GO composite scaffold exhibited superior biomineralization capacity and cell response compared to PLA/GO. In summary, L-lysine not only improved the dispersion and interfacial bonding of GO with PLA, enhancing the mechanical properties, but also improved the biological properties. This study suggests that biomolecules like L-lysine may replace traditional modifiers as an innovative bio-modifier to improve the performance of polymer/inorganic composite biomaterials.


Assuntos
Grafite , Lisina , Teste de Materiais , Fenômenos Mecânicos , Poliésteres , Impressão Tridimensional , Alicerces Teciduais , Poliésteres/química , Alicerces Teciduais/química , Porosidade , Grafite/química , Lisina/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Animais
10.
Mol Divers ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833124

RESUMO

The emergence of diverse infections worldwide, which is a serious global threat to human existence, necessitates the urgent development of novel therapeutic candidates that can combat these diseases with efficacy. Molecular hybridization has been established as an efficient technique in designing bioactive molecules capable of fighting infections. Isatin, a core nucleus of an array of compounds with diverse biological properties can be modified at different positions leading to the creation of novel drug targets, is an active area of medicinal chemistry. This review containing published articles from 2005 to 2022 highlights isatin hybrids which have been synthesized and reported in the literature alongside a discussion on their biological properties. The enriched structure-activity relationship studies discussed provides insights for the rational design of novel isatin hybrids with tailored biological properties as effective therapeutic candidates inspired by nature.

11.
J Environ Manage ; 364: 121487, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38889650

RESUMO

This study explores agronomic management (AM) effects on soil parameters under diverse conditions. Investigating tillage practices (TP), nutrient management (NM), crop rotation (CR), organic matter (OM), irrigation management (IM), and mulching (MS), it aims to reveal impacts on soil productivity, nutrient availability, microbial activity, and overall health. Varied TP affect soil quality through compaction, porosity, and erosion risk. Proper NM is vital for nutrient cycling, preventing imbalances and acidification. CR disrupts pest cycles, reduces weed pressure, and boosts nutrient recycling. OM management enhances soil quality by influencing organic carbon, nutrient availability, pH, fertility, and water retention. Optimizing IM regulates soil water content without inducing waterlogging. MS contributes to OM content, nutrient retention, soil structure, and temperature-moisture regulation, benefiting soil biota, aggregation, soil health and agricultural productivity. The review emphasizes integrated nutrient, CR, and OM management's positive impact on fertility and microbial activity. Different TP and IM variations impact soil health and crop production. Judicious implementation of these practices is essential for sustainable agriculture. This synthesis identifies uncertainties and proposes research directions for optimizing productivity while ensuring environmental sustainability. Ongoing inquiry can guide a balanced approach between yields and resilient soil stewardship for future generations.


Assuntos
Agricultura , Solo , Solo/química , Agricultura/métodos , Produtos Agrícolas/crescimento & desenvolvimento
12.
Dent Mater ; 40(9): 1341-1352, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38880724

RESUMO

OBJECTIVES: To compare the performance of Cention-N® with direct restorative materials used at the daily practice (e.g., resin-based composites/RBC, glass ionomer cements/GIC, bioactive resins, silver amalgam) via a systematic review study. METHODS: The review followed the PRISMA-NMA recommendations, and the protocol of the review was published at osf.io/ybde8. The search was conducted in PubMed/MEDLINE, Scopus, Web of Science, Embase, Lilacs, and SciELO databases, as well as in the grey literature (Open Grey, Proquest, and Periódicos CAPES). Studies with an in vitro experimental design evaluating the characteristics and properties of Cention-N in comparison to other restorative materials were included. The risk of bias of included studies was assessed using the RoBDEMAT tool, and meta-analyses were conducted using Review Manager 5.4 and MetaInsight V3 tools. RESULTS: A total of 85 studies were included in the review, from which 79 were meta-analyzed. Several characteristics of direct restorative materials were analyzed, including physical (color change, degree of conversion, hardness, microleakage, polymerization rate, roughness, water solubility, water sorption), mechanical (bond strength to dentin, compressive strength, diametral tensile strength, flexural modulus, flexural strength, load-to-fracture, wear), and biological (alkalinizing effect, antibacterial activity, calcium and fluoride release) properties. SIGNIFICANCE: Cention-N presented similar physico-mechanical properties compared to RBCs, but a stronger behavior than GICs. Despite the Alkasite nature of Cention-N, GICs may still demonstrate the greatest fluoride releasing ability from all direct restorative materials. This review confirmed the adequate behavior of Cention-N when compared to several other more traditionally used materials, confirming its applicability for the permanent restoration of decayed or fractured teeth.


Assuntos
Materiais Dentários , Teste de Materiais , Metanálise em Rede , Materiais Dentários/química , Resinas Compostas/química , Cimentos de Ionômeros de Vidro/química , Restauração Dentária Permanente , Técnicas In Vitro , Humanos , Resistência à Flexão
13.
Radiologie (Heidelb) ; 64(8): 663-674, 2024 Aug.
Artigo em Alemão | MEDLINE | ID: mdl-38935287

RESUMO

Soft tissue tumors are a very heterogeneous group of tumors. Their classification is regularly updated by the World Health Organization (WHO), most recently in 2020. The current classification of soft tissue tumors emphasizes molecular biological tumor characteristics, which enable tumor-specific treatment. In addition to Ewing's sarcoma, which occurs as bone as well as extra-skeletal soft tissue tumors as a small round cell sarcoma, three other subtypes of undifferentiated, small and round cell sarcomas have been introduced. Some names of the new sarcomas can be derived from the gene mutations. The groups of adipocytic and (myo)fibroblastic tumors have been extended by three further entities. There were further additions to vascular soft tissue tumors, smooth muscle cell tumors, peripheral nerve sheath tumors and tumors of uncertain differentiation. A distinction is made between benign, intermediate locally aggressive, intermediate rarely metastatic and malignant soft tissue tumors.


Assuntos
Neoplasias de Tecidos Moles , Humanos , Neoplasias de Tecidos Moles/classificação , Neoplasias de Tecidos Moles/patologia , Neoplasias de Tecidos Moles/genética , Sarcoma/classificação , Sarcoma/patologia , Sarcoma/genética , Organização Mundial da Saúde
14.
Micromachines (Basel) ; 15(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38930676

RESUMO

Circulating tumor cells (CTCs), derived from the primary tumor and carrying genetic information, contribute significantly to the process of tumor metastasis. The analysis and detection of CTCs can be used to assess the prognosis and treatment response in patients with tumors, as well as to help study the metastatic mechanisms of tumors and the development of new drugs. Since CTCs are very rare in the blood, it is a challenging problem to enrich CTCs efficiently. In this paper, we provide a comprehensive overview of microfluidics-based enrichment devices for CTCs in recent years. We explore in detail the methods of enrichment based on the physical or biological properties of CTCs; among them, physical properties cover factors such as size, density, and dielectric properties, while biological properties are mainly related to tumor-specific markers on the surface of CTCs. In addition, we provide an in-depth description of the methods for enrichment of single CTCs and illustrate the importance of single CTCs for performing tumor analyses. Future research will focus on aspects such as improving the separation efficiency, reducing costs, and increasing the detection sensitivity and accuracy.

15.
Polymers (Basel) ; 16(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38891553

RESUMO

In this study, the authors performed a strength analysis of seven groups of commercially available materials based on SLS incremental technology. Test samples were made with Original PRUSA SL1S printers, with 10 samples of each type from 7 resins selected for testing. The tests were carried out on an MTS Bionix machine in a static tensile test, during which the basic mechanical properties were determined. This is also a preliminary study to determine material constants in the Johnson-Cook strength model. The authors then performed numerical simulations to mirror the experimental tests in order to tune the rheological model. In addition, a fracture criterion was determined based on a hybrid FEM/SPH numerical method. This allowed for the expansion of material libraries currently used in numerical simulations, as well as the sensitivity of the materials' models. In subsequent studies, in order to determine the nature of material destruction, analysis of fracture surfaces was performed using a scanning electron microscope (SEM). The final study was a biocompatibility test to assess the biological properties of the material. The conducted research made it possible to determine the strength properties of resins currently used in 3D printers, expand the libraries of material models in the computational environment (with an error rate of less than 5%), as well as observe the nature of the cracks formed and biocompatibility in the context of predicting the use of these materials for biomedical applications.

16.
Molecules ; 29(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38893488

RESUMO

Research on bioactive compounds is essential to improve human health; promote adequate nutrition; drive innovation in the food, agricultural and biotechnology industries; and contribute to the preservation of the environment. The genus Diplotaxis (Brassicaceae) currently comprises around forty species, some of which are edible, particularly Diplotaxis tenuifolia (wild rocket), Diplotaxis erucoides (wall rocket), Diplotaxis muralis (annual wall rocket), Diplotaxis viminea (perennial wall rocket), and Diplotaxis simplex. The leaves of these species are rich in fiber and essential minerals, such as calcium, iron, potassium, and magnesium. Thirteen species have been characterized for their phenolic compounds, predominantly kaempferol, quercetin, and isorhamnetin glycosides. Furthermore, glucosinolate compounds were identified in nineteen species of the genus Diplotaxis. Many of the phytochemicals identified in Diplotaxis spp. demonstrated interesting biological activities, such as antioxidant, anti-inflammatory, antibacterial, hypoglycemic and hypolipidemic effects, as well as cytotoxicity and antiproliferative properties. This article provides a review of the phytochemistry of the Diplotaxis genus, highlighting its importance in food, its biological properties, potential pharmacological applications, and the dearth of research on many of these plants.


Assuntos
Brassicaceae , Compostos Fitoquímicos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Humanos , Brassicaceae/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Valor Nutritivo , Folhas de Planta/química
17.
Fitoterapia ; 176: 106051, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38838826

RESUMO

Owing to their extensive biological potential, essential oils (EOs) and their bioactive phytochemicals have gained attention from the scientific community. Within this domain, Terpinen-4-ol (T-4-ol), a bioactive monoterpene alcohol and the major constituent of tea tree oil (TTO), has made its way into translational research. Recent literature on T-4-ol strongly indicates its diverse pharmacological properties, including but not limited to antimicrobial, antivirulent, anti-oxidant, anti-inflammatory, anti-hypertensive, and anti-cancer effects. Hence, this review is the first to provide a comprehensive overview of the sources, bioavailability, safety, pharmaceutical delivery systems, and multifaceted biological properties of T-4-ol, emphasizing its medicinal potential for widescale application. The antibacterial and antifungal effectiveness of T-4-ol has been discussed, encompassing its role in combating a broad spectrum of bacterial and fungal pathogens. The review delves into the antivirulent prospects of T-4-ol, shedding light on its ability to attenuate virulence and mitigate bacterial pathogenesis. Scientific literature on the anti-oxidant and anti-inflammatory activity of T-4-ol highlighting its role in neutralizing reactive oxygen species and modulating inflammatory pathways has also been collated. Furthermore, the review elaborates on the cardioprotective and anti-hypertensive properties of T-4-ol and augments literature on its anti-cancer mechanism against various cancer cell lines. The review also provides in-depth knowledge of the pharmaceutical formulations of T-4-ol and recent knowledge about its application in clinical/field trials. The exploration of these diverse attributes positions T-4-ol as a promising candidate for further research and therapeutic repurposing in various biomedical applications.


Assuntos
Terpenos , Terpenos/farmacologia , Terpenos/química , Anti-Inflamatórios/farmacologia , Óleo de Melaleuca/farmacologia , Óleo de Melaleuca/química , Humanos , Antioxidantes/farmacologia , Compostos Fitoquímicos/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Animais , Estrutura Molecular
19.
Molecules ; 29(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38731617

RESUMO

In this study, a library of 3,7-di(hetero)aryl-substituted 10-(3-trimethylammoniumpropyl)10H-phenothiazine salts is prepared. These title compounds and their precursors are reversible redox systems with tunable potentials. The Hammett correlation gives a very good correlation of the first oxidation potentials with σp parameters. Furthermore, the title compounds and their precursors are blue to green-blue emissive. Screening of the salts reveals for some derivatives a distinct inhibition of several pathogenic bacterial strains (Mycobacterium tuberculosis, Staphylococcus aureus, Escherichia coli, Aconetobacter baumannii, and Klebsiella pneumoniae) in the lower micromolar range.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Fenotiazinas , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Fenotiazinas/farmacologia , Fenotiazinas/química , Fenotiazinas/síntese química , Sais/química , Sais/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Compostos de Amônio Quaternário/síntese química , Escherichia coli/efeitos dos fármacos , Oxirredução , Bactérias/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade
20.
Mar Drugs ; 22(5)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38786591

RESUMO

Marine molluscs are of enormous scientific interest due to their astonishing diversity in terms of their size, shape, habitat, behaviour, and ecological roles. The phylum Mollusca is the second most common animal phylum, with 100,000 to 200,000 species, and marine molluscs are among the most notable class of marine organisms. This work aimed to show the importance of marine molluscs as a potential source of nutraceuticals as well as natural medicinal drugs. In this review, the main classes of marine molluscs, their chemical ecology, and the different techniques used for the extraction of bioactive compounds have been presented. We pointed out their nutraceutical importance such as their proteins, peptides, polysaccharides, lipids, polyphenolic compounds pigments, marine enzymes, minerals, and vitamins. Their pharmacological activities include antimicrobial, anticancer, antioxidant, anti-inflammatory, and analgesic activities. Moreover, certain molluscs like abalones and mussels contain unique compounds with potential medicinal applications, ranging from wound healing to anti-cancer effects. Understanding the nutritional and therapeutic value of marine molluscs highlights their significance in both pharmaceutical and dietary realms, paving the way for further research and utilization in human health.


Assuntos
Organismos Aquáticos , Suplementos Nutricionais , Moluscos , Animais , Moluscos/química , Humanos , Produtos Biológicos/farmacologia , Produtos Biológicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA