Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Carbohydr Res ; 541: 109126, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823061

RESUMO

In general, 1,5-disubstituted 1,2,3-triazolyl moiety is much less common in the synthesis and applications in comparison to its regioisomeric counterpart. Moreover, the synthesis of 1,5-disubstituted 1,2,3-triazoles are not so straightforward as is the case for copper catalyzed strategy of 1,4-disubstituted 1,2,3-triazoles. The preparation of 1,5-triazolylated carbohydrates and nucleosides are even more complex because of the difficulties in accessing the appropriate starting materials as well as the compatibility of reaction conditions with the various protecting groups. 1,5-Disubstitution regioisomeric triazoles of carbohydrates and nucleosides were traditionally obtained as minor products through straightforward heating of the mixture of azides and terminal alkynes. However, the separation of isomers was tedious or in some cases futile. On the other hand, regioselective synthesis using ruthenium catalysis triggered serious concern of residual metal content in therapeutically important ingredients. Therefore, serious efforts are being made by several groups to develop non-toxic metal based or completely metal-free synthesis of 1,5-disubstituted 1,2,3-triazoles. This article strives to summarize the pre-Click era as well as the post-2001 reports on the synthesis and potential applications of 1,5-disubstituted 1,2,3-triazoles in biological systems.


Assuntos
Carboidratos , Nucleosídeos , Triazóis , Triazóis/química , Triazóis/síntese química , Nucleosídeos/química , Nucleosídeos/síntese química , Carboidratos/química , Química Click , Catálise , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA