Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
J Pharm Sci ; 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39313151

RESUMO

The development of pharmaceutical products is the critical bridge that moves a potential new medicine from academic discovery to applied treatment of patients. It translates an idea for a new drug to bench-level research on how it can be manufactured, formulated, characterized and controlled for use in non-clinical and early clinical trials. From pre-clinical R&D discovery work through the commercial launch, substantial R&D CMC data is generated to develop and optimize cGMP manufacturing and testing operations, while also supporting product comparability, elucidating product / impurity structures, assessing critical quality attributes, developing the drug delivery mode, and developing the product formulation for long-term stability. Significant R&D CMC work continues post-approval to support continuous improvement and market expansion of the commercial product. These activities are crucial elements of Product Lifecycle Management, and taken together, they comprise Pharmaceutical Quality or Chemistry, Manufacturing and Controls (CMC). The objective of this paper is to mitigate the regulatory ambiguity of R&D quality systems with practical, risk-based examples and recommendations when conducting supportive CMC studies for biological products. Making sound strategic CMC decisions under any circumstances assumes data from R&D studies are reliable, traceable, and complete. While there are specific regulatory guidelines on phase-appropriate cGMP activities, none exist for quality practices in R&D CMC laboratories conducting non-cGMP studies. Hindsight is not the time to discover that R&D studies lack key elements that would otherwise have allowed the data to be directly presented to regulators, if needed. There is a strong prospective business interest in protecting considerable investments made for CMC R&D studies. Therefore, establishment of a robust and stage-appropriate R&D laboratory quality system is essential for companies seeking to capitalize on prior knowledge, protect investments, and be prepared for accelerated approval pathways.

2.
J Pharm Sci ; 113(8): 2114-2127, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38710387

RESUMO

Cell-based medicinal products (CBMPs) are a growing class of therapeutics that promise new treatments for complex and rare diseases. Given the inherent complexity of the whole human cells comprising CBMPs, there is a need for robust and fast analytical methods for characterization, process monitoring, and quality control (QC) testing during their manufacture. Existing techniques to evaluate and monitor cell quality typically constitute labor-intensive, expensive, and highly specific staining assays. In this work, we combine image-based deep learning with flow imaging microscopy (FIM) to predict cell health metrics using cellular morphology "fingerprints" extracted from images of unstained Jurkat cells (immortalized human T-lymphocyte cells). A supervised (i.e., algorithm trained with human-generated labels for images) fingerprinting algorithm, trained on images of unstained healthy and dead cells, provides a robust stain-free, non-invasive, and non-destructive method for determining cell viability. Results from the stain-free method are in good agreement with traditional stain-based cytometric viability measurements. Additionally, when trained with images of healthy cells, dead cells and cells undergoing chemically induced apoptosis, the supervised fingerprinting algorithm is able to distinguish between the three cell states, and the results are independent of specific treatments or signaling pathways. We then show that an unsupervised variational autoencoder (VAE) algorithm trained on the same images, but without human-generated labels, is able to distinguish between samples of healthy, dead and apoptotic cells along with cellular debris based on learned morphological features and without human input. With this, we demonstrate that VAEs are a powerful exploratory technique that can be used as a process monitoring analytical tool.


Assuntos
Sobrevivência Celular , Aprendizado Profundo , Humanos , Células Jurkat , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Aprendizado de Máquina Supervisionado , Aprendizado de Máquina não Supervisionado , Controle de Qualidade , Citometria de Fluxo/métodos
3.
J Pharm Sci ; 113(7): 1804-1815, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38570072

RESUMO

Adeno-associated viruses (AAVs) are effective vectors for gene therapy. However, AAV drug products are inevitably contaminated with empty particles (EP), which lack a genome, owing to limitations of the purification steps. EP contamination can reduce the transduction efficiency and induce immunogenicity. Therefore, it is important to remove EPs and to determine the ratio of full genome-containing AAV particles to empty particles (F/E ratio). However, most of the existing methods fail to reliably evaluate F/E ratios that are greater than 90 %. In this study, we developed two approaches based on the image analysis of cryo-electron micrographs to determine the F/E ratios of various AAV products. Using our developed convolutional neural network (CNN) and morphological analysis, we successfully calculated the F/E ratios of various AAV products and determined the slight differences in the F/E ratios of highly purified AAV products (purity > 95 %). In addition, the F/E ratios calculated by analyzing more than 1000 AAV particles had good correlations with theoretical F/E ratios. Furthermore, the CNN reliably determined the F/E ratio with a smaller number of AAV particles than morphological analysis. Therefore, combining 100 keV cryo-EM with the developed image analysis methods enables the assessment of a wide range of AAV products.


Assuntos
Microscopia Crioeletrônica , Dependovirus , Vetores Genéticos , Processamento de Imagem Assistida por Computador , Microscopia Crioeletrônica/métodos , Dependovirus/genética , Processamento de Imagem Assistida por Computador/métodos , Humanos , Redes Neurais de Computação , Vírion/ultraestrutura , Terapia Genética/métodos , Células HEK293
5.
J Pharm Sci ; 113(6): 1415-1425, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38373591

RESUMO

The comparability assessment of a biological product after implementing a manufacturing process change should involve a risk-based approach. Process changes may occur at any stage of the product lifecycle: early development, clinical manufacture for pivotal trials, or post-approval. The risk of the change to impact product quality varies. The design of the comparability assessment should be adapted accordingly. A working group reviewed and consolidated industry approaches to assess comparability of traditional protein-based biological products during clinical development and post-approval. The insights compiled in this review article encompass topics such as a risk-evaluation strategy, the design of comparability studies, definition of assessment criteria for comparability, holistic evaluation of data, and the regulatory submission strategy. These practices can be leveraged across the industry to help companies in design and execution of comparability assessments, and to inform discussions with global regulators.


Assuntos
Produtos Biológicos , Humanos , Medição de Risco/métodos , Aprovação de Drogas/métodos , Desenvolvimento de Medicamentos/métodos
6.
Int J Pharm ; 652: 123843, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38266941

RESUMO

The degradation of polysorbate surfactants can limit the shelf life of biologic pharmaceutical products. Polysorbate is susceptible to degradation via either oxidation or hydrolysis pathways which releases free fatty acids (FFA) and other complex polymers. Degradants from Polysorbate 80 (PS80) can form particles and impact drug product quality. PS80 degradation products appear at low concentrations, and their refractive indexes are similar to that of the buffer, making them very challenging to detect. Furthermore, aggregates of FFA are similar in size and refractive index to protein aggregates adding complexity to characterizing these particles in protein solutions. Total Holographic Characterization (THC) is used in this work to characterize FFA particles of oleic acid and linoleic acid, the two most common degradation products of PS80. We demonstrate that the characteristic THC profile of the FFA oleic acid emulsion droplets can be used to monitor the degradation of PS80. THC can detect oleic acid at a concentration down to less than 100 ng/mL. Using the characteristic THC signal of oleic acid as a marker, the degradation of PS80 in protein solutions can be monitored quantitatively even in the presence of other contaminants of the same size, including silicone oil emulsion droplets and protein aggregates.


Assuntos
Polissorbatos , Agregados Proteicos , Emulsões , Tensoativos , Ácidos Graxos não Esterificados , Ácido Oleico
7.
J Pharm Sci ; 113(4): 891-899, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37926233

RESUMO

During biopharmaceutical development, particle monitoring and characterization are crucial. Notably, particles can be impurities considered as critical quality attribute, or active pharmaceutical ingredient (e.g., viral vectors) or drug delivery system (e.g., lipid nanoparticles) itself. Three-dimensional homodyne light detection (3D-HLD) is a novel technique that can characterize particles in the ∼0.2 µm to 2.0 µm size range. We evaluated 3D-HLD for the analysis of high concentration protein formulations (up to 200 mg/mL), where formulation refractive index and background noise became limiting factors with increasing protein concentration. Sample viscosity however did not impact 3D-HLD results, in contrast to comparative analyses with NTA and MRPS. We also applied 3D-HLD in high-throughput screenings at high protein concentration or of lipid nanoparticle and viral vector formulations, where impurities were analyzed in the presence of a small (<0.2 µm) particulate active pharmaceutical ingredient. 3D-HLD turned out to be in good agreement with or a good complement to other state-of-the-art particle characterization techniques, including BMI, MRPS, and DLS. The main application of 3D-HLD is high-throughput particle analysis at low sample volume. Follow-up investigation of the optimized particle sizing approach and of detection settings could further improve the understanding of the method and potentially increase ease of operation.


Assuntos
Produtos Biológicos , Nanopartículas , Princípios Ativos , Proteínas/análise , Nanopartículas/análise , Ensaios de Triagem em Larga Escala , Tamanho da Partícula
8.
Pharm Res ; 40(10): 2457-2467, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37798537

RESUMO

PURPOSE: Nuclear magnetic resonance (NMR) spectroscopy provides the sensitivity and specificity to probe the higher order structure (HOS) of monoclonal antibodies (mAbs) for potential changes. This study demonstrates an application of chemometric tools to measure differences in the NMR spectra of mAbs after forced degradation relative to the respective unstressed starting materials. METHODS: Samples of adalimumab (Humira, ADL-REF) and trastuzumab (Herceptin, TRA-REF) were incubated in three buffer-pH conditions at 40°C for 4 weeks to compare to a control sample that was left unstressed. Replicate 1D 1H and 2D 1H-13C HMQC NMR spectra were collected on all samples. Chemometric analyses such as Easy Comparability of HOS (ECHOS), PROtein FIngerprinting by Lineshape Enhancement (PROFILE), and Principal Component Analysis (PCA) were applied to capture and quantitate differences between the spectra. RESULTS: Visual and statistical inspection of the 2D 1H-13C HMQC spectra of adalimumab and trastuzumab after forced degradation conditions shows no changes in the spectra relative to the unstressed material. Chemometric analysis of the 1D 1H NMR spectra shows only minor changes in the spectra of adalimumab after forced degradation, but significant differences in trastuzumab. CONCLUSION: The chemometric analyses support the lack of statistical differences in the structure of pH-thermal stressed adalimumab, however, it reveals conformational changes or chemical modifications in trastuzumab after forced degradation. Application of chemometrics in comparative NMR studies enables HOS characterization and showcases the sensitivity and specificity in detecting differences in the spectra of mAbs after pH-thermal forced degradation with respect to local and global protein structure.


Assuntos
Anticorpos Monoclonais , Quimiometria , Anticorpos Monoclonais/química , Adalimumab , Espectroscopia de Ressonância Magnética/métodos , Trastuzumab , Concentração de Íons de Hidrogênio
9.
Antibodies (Basel) ; 12(3)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37753973

RESUMO

This study presents a novel degradation pathway of a human immunoglobulin G (IgG) molecule featuring a light chain N-terminal asparagine. We thoroughly characterize this pathway and investigate its charge profiles using cation exchange chromatography (CEX) and capillary isoelectric focusing (cIEF). Beyond the well-documented asparagine deamidation into isoaspartic acid, aspartic acid, and succinimide intermediate, a previously unreported clipping degradation pathway is uncovered. This newly identified clipped N-terminal IgG variant exhibits a delayed elution in CEX, categorized as a "basic variant", while retaining the same main peak isoelectric point (pI) in cIEF. The influence of temperature and pH on N-terminal asparagine stability is assessed across various stressed conditions. A notable correlation between deamidation percentage and clipped products is established, suggesting a potential hydrolytic chemical reaction underlying the clipping process. Furthermore, the impact of N-terminal asparagine modifications on potency is evaluated through ELISA binding assays, revealing minimal effects on binding affinity. Sequence alignment reveals homology to a human IgG with the germline gene from Immunoglobulin Lambda Variable 6-57 (IGLV6-57), which has implications for amyloid light-chain (AL) amyloidosis. This discovery of the N-terminal clipping degradation pathway contributes to our understanding of immunoglobulin light chain misfolding and amyloid fibril deposition under physiological conditions.

10.
J Pharm Sci ; 112(10): 2629-2636, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37586591

RESUMO

Microbial transglutaminase (mTG) has become a powerful tool for manufacturing antibody-drug conjugates (ADCs). It enables site-specific conjugation by catalyzing formation of stable isopeptide bond between glutamine (Q) side chain and primary amine. However, the downstream impact of mTG-mediated conjugation on ADC product quality, especially on high molecular weight (HMW) size variant formation has not been studied in a systematic manner. This study investigates the mechanisms underlying the formation of HMW size variants in mTG-mediated ADCs using size exclusion chromatography (SEC) and liquid chromatography-mass spectrometry (LC-MS). Our findings revealed that the mTG-mediated glutamine and lysine (K) crosslinking is the primary source of the increased level of HMW size variants in the ADCs. In the study, two monoclonal antibodies (mAbs) with glutamine engineered for site-specific conjugation were used as model systems. Based on the LC-MS analysis, a single lysine (K56) in the heavy chain (HC) was identified as the major Q-K crosslinking site in one of the two mAbs. The HC C-terminal K was observed to crosslink to the target Q in both mAbs. Quantitative correlation was established between the percentage of HMW size variants determined by SEC and the percentage of crosslinked peptides quantified by MS peptide mapping. Importantly, it was demonstrated that the level of HMW size variants in the second ADC was substantially reduced by the complete removal of HC C-terminal K before conjugation. The current work demonstrates that crosslinking and other side reactions during mTG-mediated conjugation needs to be carefully monitored and controlled to ensure process consistency and high product quality of the final ADC drug product.


Assuntos
Imunoconjugados , Imunoconjugados/química , Transglutaminases/química , Peso Molecular , Lisina/química , Glutamina , Anticorpos Monoclonais/química
11.
J Pharm Sci ; 112(12): 3240-3247, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37619816

RESUMO

Rayleigh and Mie light scattering from particulates, soluble protein aggregates, or large proteins can lead to inaccuracy of concentration measurements using ultraviolet (UV) spectroscopy and Beer's Law. While a number of light scattering correction equations have been proposed in the literature, they can also lead to incorrect values if samples vary in particulate and/or soluble aggregate levels or depart in other ways from which the equations were developed. We propose a curve-fitting baseline subtraction approach based on fundamental Rayleigh and Mie scattering equations which also factors in instrument baseline artifacts. We validated this Rayleigh-Mie correction against a wide variety of positive and negative controls, including protein size standards, protein aggregates induced by forced degradation, lentivirus and polystyrene nanospheres.


Assuntos
Artefatos , Agregados Proteicos
12.
J Pharm Sci ; 112(10): 2637-2643, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37595748

RESUMO

Trisulfide is a post-translational modification (PTM) commonly found in recombinant antibodies. It has been demonstrated that trisulfide had no impact on the bioactivity of mono-specific antibodies (MsAbs). However, the impact of trisulfide on multi-specific antibodies has not been evaluated. In this study, two mass spectrometric methods were developed for comprehensive trisulfide characterization. The non-reduced peptide mapping method combined with the unique electron activated dissociation (EAD) provided signature fragments for confident trisulfide identification as well as trisulfide quantitation at individual sites. A higher throughput method using Fab mass analysis was also developed and qualified to support routine monitoring of trisulfide during process development. Fab mass analysis features simpler sample preparation and shorter analysis time but provides comparable results to the non-reduced peptide mapping method. In this study, a bi-specific (BsAb) and a tri-specific antibody (TsAb) were compared side-by-side with a MsAb to evaluate the impact of trisulfide on the structure and function of multi-specific antibodies. Results indicated that trisulfide dominantly formed at similar locations across different antibody constructs and had no impact on the size heterogeneity, charge heterogeneity, or bioactivities of any assessed antibodies. Together with the in vitro stability under heat stress (25 °C and 40 °C for up to four weeks) and rapid conversion from trisulfide to disulfide during in vivo circulation, trisulfide could be categorized as a non-critical quality attribute (non-CQA) for antibody products.


Assuntos
Anticorpos , Dissulfetos , Espectrometria de Massas , Mapeamento de Peptídeos , Processamento de Proteína Pós-Traducional
13.
Anal Chim Acta ; 1274: 341574, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37455084

RESUMO

BACKGROUND: Gonadotropins are a class of heavily glycosylated protein hormones, thus extremely challenging to characterize by mass spectrometry. As biopharmaceuticals, gonadotropins are prescribed for the treatment of infertility and are derived from different sources: either from pooled urine of pregnant women or upon production in genetically modified Chinese Hamster Ovary cells. Human chorionic gonadotropin (hCG) is sold as a biopharmaceutical under the name Pregnyl® (urinary hCG, u-hCG) and Ovitrelle® (recombinant hCG, r-hCG), and recombinant human follicle stimulating hormone (r-hFSH) is marketed as Gonal-f®. Recently, we reported the exhaustive characterization of r-hCG at different structural levels. RESULTS: We implement size exclusion (SE) HPLC-MS to automatize the acquisition of native mass spectra of r-hCG dimer, but also u-hCG and r-hFSH, comparing the drug products up to intact heterodimer level. A hybrid HPLC-MS approach was employed for the characterization of r-hCG, u-hCG and r-hFSH drug products at different structural levels. Released glycans were analyzed by porous graphitized carbon (PGC)-HPLC-MS/MS, glycopeptides by reversed-phase (RP)-HPLC-MS/MS, subunits by RP-HPLC-MS and finally the intact native heterodimers by semi-automated online buffer exchange SE-HPLC-MS. The data were integrated using bioinformatic tools, to finally unravel the composition of 1481 co-existing dimeric glycoforms for r-hCG, 1167 glycoforms for u-hCG, and 1440 glycoforms for r-hFSH, and to compare critical quality attributes of the different drug products such as their degree of sialylation and O-glycosylation. SIGNIFICANCE AND NOVELTY: The strong alliance of bioanalytics and bioinformatics data integration at the different structural levels allowed the identification of more than thousand different glycoforms of r-hCG, u-hCG, and r-hFSH. The results showed that these biopharmaceuticals differ considerably in their glycosylation patterns and highlight the importance of in-depth characterization of biopharmaceuticals for quality control. © 2017 Elsevier Inc. All rights reserved.


Assuntos
Produtos Biológicos , Hormônio Foliculoestimulante Humano , Cricetinae , Animais , Gravidez , Feminino , Humanos , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem , Células CHO , Cricetulus , Gonadotropina Coriônica/análise
14.
J Pharm Sci ; 112(8): 2190-2202, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37211315

RESUMO

Characterization of particulate impurities such as aggregates is necessary to develop safe and efficacious adeno-associated virus (AAV) drug products. Although aggregation of AAVs can reduce the bioavailability of the virus, only a limited number of studies focus on the analysis of aggregates. We explored three technologies for their capability to characterize AAV monomers and aggregates in the submicron (<1 µm) size range: (i) mass photometry (MP), (ii) asymmetric flow field flow fractionation coupled to a UV-detector (AF4-UV/Vis) and (iii) microfluidic resistive pulse sensing (MRPS). Although low counts for aggregates impeded a quantitative analysis, MP was affirmed as an accurate and rapid method for quantifying the genome content of empty/filled/double-filled capsids, consistent with sedimentation velocity analytical ultracentrifugation results. MRPS and AF4-UV/Vis enabled the detection and quantification of aggregate content. The developed AF4-UV/Vis method separated AAV monomers from smaller aggregates, thereby enabling a quantification of aggregates <200 nm. MRPS was experienced as a straightforward method to determine the particle concentration and size distribution between 250-2000 nm, provided that the samples do not block the microfluidic cartridge. Overall, within this study we explored the benefits and limitations of the complementary technologies for assessing aggregate content in AAV samples.


Assuntos
Dependovirus , Fracionamento por Campo e Fluxo , Dependovirus/genética , Fracionamento por Campo e Fluxo/métodos , Vírion/genética , Tamanho da Partícula
15.
AAPS PharmSciTech ; 24(4): 84, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949219

RESUMO

Biopharmaceuticals are large, complex and labile therapeutic molecules prone to instability due to various factors during manufacturing. To ensure their safety, quality and efficacy, a wide range of critical quality attributes (CQAs) such as product concentration, aggregation, particle size, purity and turbidity have to be met. Size exclusion chromatography (SEC) is the gold standard to measure protein aggregation and degradation. However, other techniques such as dynamic light scattering (DLS) are employed in tandem to measure the particle size distribution (PSD) and polydispersity of biopharmaceutical formulations. In this study, the application of multi-angle dynamic light scattering (MADLS) was evaluated for the determination of particle size, particle concentration and aggregation in 3 different protein modalities, namely bovine serum albumin (BSA) and two biopharmaceuticals including a monoclonal antibody (mAb) and an enzyme. The obtained calibration curve (R2 > 0.95) for the particle number concentration of the 3 proteins and the observed correlation between MADLS and SEC (R2 = 0.9938) for the analysis of aggregation in the enzyme can be employed as a 3-in-1 approach to assessing particle size, concentration and aggregation for the screening and development of products while also reducing the number of samples and experiments required for analysis prior to other orthogonal tests.


Assuntos
Produtos Biológicos , Difusão Dinâmica da Luz , Soroalbumina Bovina/química , Anticorpos Monoclonais/análise , Luz
16.
J Pharm Sci ; 112(4): 985-990, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36596393

RESUMO

Determination of subvisible particle (SVP) content in biopharmaceuticals is a prerequisite to ensure the quality of liquid biopharmaceutical products. Here, we present a comparison of the recently introduced holographic video microscopy (total holographic characterization, THC) with two orthogonal and well-established analytical technologies: micro flow imaging (MFI) and resonant mass measurement (RMM). The capabilities of the THC were investigated under conditions commonly applied in drug product development. Three different antibody products were used at different concentrations and formulations to cover a wide range of realistic use-cases. The comparison was particularly focused on protein aggregates to investigate the applicability of THC to this critical class of particles in drug product development. Protein concentrations up to 100 mg/ml were investigated covering a broad range of viscosity and refractive indices, both important parameters in particle detection. The comparison reveals that THC is highly sensitive to detect protein aggregates in a size range from 0.5 µm to 10 µm. THC shows a significant superiority to FI and RMM in detecting heterogenous protein aggregates which often appear as transparent and porous particles. Additionally, THC needs very small sample amount of about 30 µl and short measurement times, making it applicable for early development stages and high-throughput approaches. These results show that THC is a valuable supplement to the existing particle characterization method portfolio in drug product development.


Assuntos
Produtos Biológicos , Microscopia de Vídeo , Agregados Proteicos , Proteínas , Imunoglobulinas , Tamanho da Partícula
17.
J Pharm Sci ; 112(1): 138-147, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35667631

RESUMO

The succinic acid/succinate system has an excellent buffering capacity at acidic pH values (4.5-6.0), promising to be a buffer of choice for biologics having slightly acidic to basic isoelectric points (pI 6 - 9). However, its prevalence in drug products is limited due to the propensity (risk) of its components to crystallize during freezing and the consequent shift in the pH which might affect the product stability. Most of these previous assessments have been performed under operational conditions that do not simulate typical drug product processing conditions. In this work, we have characterized the physicochemical behavior of succinate formulations under representative pharmaceutical conditions. Our results indicate that the pH increases by ∼ 1.2 units in 25 mM and 250 mM succinate buffers at pharmaceutically relevant freezing conditions. X-ray diffractometry studies revealed selective crystallization of monosodium succinate, which is posed as the causative mechanism. This salt crystallization was not observed in the presence of 2% w/v sucrose, suggesting that this pH shift can be mitigated by including sucrose in the formulation. Additionally, three monoclonal antibodies (mAbs) that represent different IgG subtypes and span a range of pIs (5.9 - 8.8) were formulated with succinate and sucrose and subjected to freeze-thaw, frozen storage and lyophilization. No detrimental impact on quality attributes (QA) such as high molecular weight (HMW) species, turbidity, alteration in protein concentration and sub-visible particles, was observed of any of the mAbs tested. Lastly, drug formulations lyophilized in succinate buffer with sucrose demonstrated acceptable QA profiles upon accelerated kinetic storage stability, supporting the use of succinate buffers in mAb drug products.


Assuntos
Produtos Biológicos , Ácido Succínico , Ácido Succínico/química , Soluções Tampão , Concentração de Íons de Hidrogênio , Liofilização/métodos , Succinatos , Sacarose/química , Estabilidade de Medicamentos
18.
J Pharm Sci ; 112(2): 492-505, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36167196

RESUMO

An increase in protein aggregates during transportation should be suppressed in therapeutic protein products because the aggregates have a potential risk of immunogenicity. In this study, three protein solutions in vials were exposed to tri-axial vibration with various combinations of frequency and acceleration using a transportation test system to investigate the relationship between low g-force stresses and protein aggregate generation. The number concentration of micron aggregates detected by flow imaging analysis increased markedly when the acceleration and frequency of agitation were within a specific range, in other words, above a threshold. This threshold was common among the three protein solutions. The suppression of micron aggregate formation by adding a surfactant suggested that agitation above the threshold increased micron aggregates mainly via interface-mediated routes. Notably, agitation, including agitation below the threshold, accelerated spontaneous oligomerization (nanometer aggregate generation) of proteins in bulk solution even in the presence of the surfactant. Studies of stability against mechanical stresses (e.g., a random vibration test to simulate actual shipment, with a time-compressed setting by increasing acceleration) need to be performed and discussed with careful consideration of the threshold for generating micron aggregates.


Assuntos
Anticorpos Monoclonais , Tensoativos , Anticorpos Monoclonais/metabolismo , Agregados Proteicos , Estresse Mecânico
19.
J Pharm Sci ; 112(3): 673-679, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36220394

RESUMO

Monitoring of residual host cell proteins (HCPs) in therapeutic protein is essential to ensure product quality, safety and efficacy. Despite the development of advanced mass spectrometry techniques and optimized workflows, identifying and quantifying all problematic HCPs present at low levels remain challenging. Here, we developed a practical, effective strategy for the identification and quantification of low abundance HCPs, which facilitates the improvement of downstream purification process to eliminate potentially problematic HCPs. A case study of using this strategy to investigate a problematic HCP is presented. Initially, a commonly used native digestion approach coupled with UPLC-MS/MS was applied for HCP profiling, wherein several lipases and proteases were identified in a monoclonal antibody named mAb1 in early stages of purification process development. A highly active lipase, liver carboxylesterase (CES), was found to be responsible for polysorbate 80 degradation. To facilitate process improvement, after the identification of CES, we developed a highly sensitive LC-MS/MS-MRM assay with a lower limit of quantification of 0.05 ppm for routine monitoring of the CES in mAb1 produced through the different processes. This workflow was applied in low-level lipase identification and absolute quantification, which facilitated the investigation of polysorbate degradation and downstream purification improvement to further remove the problematic HCP. The current MRM method increased the sensitivity of HCP quantification by over 10-fold that in previously published studies, thus meeting the needs for quantification of problematic HCPs at sub-ppm to ppb levels during drug development. This workflow could be readily adapted to the detection and quantification of other problematic HCPs present at extremely low levels in therapeutic protein drug candidates.


Assuntos
Anticorpos Monoclonais , Espectrometria de Massas em Tandem , Animais , Cricetinae , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Anticorpos Monoclonais/química , Lipase , Cricetulus , Células CHO
20.
J Pharm Sci ; 112(1): 76-82, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35995205

RESUMO

Protein structural changes during freezing and subsequent thawing are of great importance to a variety of biopharmaceutical applications. In this work, we studied the influence of non-ionic surfactants (polysorbate 20 and poloxamer 188) on protein structural changes during freeze and thaw using lysozyme as a model protein. Small-angle neutron scattering was employed to characterize protein structures in both liquid and frozen solution states. The results show minimal impact of polysorbate 20 on lysozyme structures during freeze and thaw using practically relevant concentrations. Polysorbate 20 used at 0.04% (w/w) completely prevents freeze-induced aggregation of lysozyme. Poloxamer 188 seems to interact with lysozyme; when applied at high concentrations (10% w/w), such interaction prevents protein crowding or close packing typically associated with freeze concentration. Despite such interactions, lysozyme aggregation is observed with 10% (w/w) of poloxamer 188 during freezing, although the aggregation is reversed upon thawing.


Assuntos
Poloxâmero , Polissorbatos , Poloxâmero/química , Tensoativos/química , Congelamento , Muramidase/química , Espalhamento a Baixo Ângulo , Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA