Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 685
Filtrar
1.
Evol Dev ; : e12491, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39228078

RESUMO

Fossils of the Ediacara Biota preserve the oldest evidence for complex, macroscopic animals. Most are difficult to constrain phylogenetically, however, the presence of rare, derived groups suggests that many more fossils from this period represent extant groups than are currently appreciated. One approach to recognize such early animals is to instead focus on characteristics widespread in animals today, for example multicellularity, motility, and axial polarity. Here, we describe a new taxon, Quaestio simpsonorum gen. et sp. nov. from the Ediacaran of South Australia. Quaestio is reconstructed with a thin external membrane connecting more resilient tissues with anterior-posterior polarity, left-right asymmetry and tentative evidence for dorsoventral differentiation. Associated trace fossils indicate an epibenthic and motile lifestyle. Our results suggest that Quaestio was a motile eumetazoan with a body plan not previously recognized in the Ediacaran, including definitive evidence of chirality. This organization, combined with previous evidence for axial patterning in a variety of other Ediacara taxa, demonstrates that metazoan body plans were well established in the Precambrian.

2.
Exp Appl Acarol ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088132

RESUMO

Vegetation cover has been consistently reported to be a factor influencing soil biota. Massive spreading of invasive plants may transform native plant communities, changing the quality of habitats as a result of modification of soil properties, most often having a directional effect on soil microorganisms and soil fauna. One of the most numerous microarthropods in the litter and soil is Acari. It has been shown that invasive plants usually have a negative effect on mites. We hypothesized that invasive Spiraea tomentosa affects the structure of the Uropodina community and that the abundance and species richness of Uropodina are lower in stands monodominated by S. tomentosa than in wet meadows free of this alien species. The research was carried out in wet meadows, where permanent plots were established in an invaded and uninvaded area of each meadow, soil samples were collected, soil moisture was determined and the mites were extracted. We found that Uropodina mite communities differed in the abundance of individual species but that the abundance and richness of species in their communities were similar. S. tomentosa invasion led primarily to changes in the quality of Uropodina communities, due to an increase in the shares of species from forest and hygrophilous habitats. Our results suggest that alien plant invasion does not always induce directional changes in mite assemblages, and conclude that the impact of an alien species on Uropodina may cause significant changes in the abundance and richness of individual species without causing significant changes in the abundance and diversity of their community.

3.
Glob Chang Biol ; 30(8): e17483, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39171768

RESUMO

The role of plant biodiversity in stabilizing ecosystem multifunctionality has been extensively studied; however, the impact of soil biota biodiversity on ecosystem multifunctional stability, particularly under multiple environmental changes, remains unexplored. By conducting an experiment with environmental changes (adding water and nitrogen to a long-term grazing experiment) and an experiment without environmental changes (an undisturbed site) in semi-arid grasslands, our research revealed that environmental changes-induced changes in temporal stability of both above- and belowground multifunctionality were mainly impacted by plant and soil biota asynchrony, rather than by species diversity. Furthermore, changes in temporal stability of above- and belowground multifunctionality, under both experiments with and without environmental changes, were mainly associated with plant and soil biota asynchrony, respectively, suggesting that the temporal asynchrony of plant and soil biota has independent and non-substitutable effects on multifunctional stability. Our findings emphasize the importance of considering both above- and belowground biodiversity or functions when evaluating the stabilizing effects of biodiversity on ecosystem functions.


Assuntos
Biodiversidade , Pradaria , Plantas , Solo/química , Ecossistema , Microbiologia do Solo , Biota , Nitrogênio/análise
4.
Geobiology ; 22(4): e12615, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39149974

RESUMO

The earliest evidence of complex macroscopic life on Earth is preserved in Ediacaran-aged siliciclastic deposits as three-dimensional casts and molds, known as Ediacara-style preservation. The mechanisms that led to this extraordinary preservation of soft-bodied organisms in fine- to medium-grained sandstones have been extensively debated. Ediacara-style fossilization is recorded in a variety of sedimentary facies characterized by clean quartzose sandstones (as in the eponymous Ediacara Member) as well as less compositionally mature, clay-rich sandstones and heterolithic siliciclastic deposits. To investigate this preservational process, we conducted experiments using different mineral substrates (quartzose sand, kaolinite, and iron oxides), a variety of soft-bodied organisms (microalgae, cyanobacteria, marine invertebrates), and a range of estimates for Ediacaran seawater dissolved silica (DSi) levels (0.5-2.0 mM). These experiments collectively yielded extensive amorphous silica and authigenic clay coatings on the surfaces of organisms and in intergranular pore spaces surrounding organic substrates. This was accompanied by a progressive drawdown of the DSi concentration of the experimental solutions. These results provide evidence that soft tissues can be rapidly preserved by silicate minerals precipitated under variable substrate compositions and a wide range of predicted scenarios for Ediacaran seawater DSi concentrations. These observations suggest plausible mechanisms explaining how interactions between sediments, organic substrates, and seawater DSi played a significant role in the fossilization of the first complex ecosystems on Earth.


Assuntos
Cianobactérias , Fósseis , Sedimentos Geológicos , Sedimentos Geológicos/química , Animais , Cianobactérias/metabolismo , Invertebrados , Microalgas , Água do Mar/química , Dióxido de Silício/química , Compostos Férricos/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-39205405

RESUMO

In the present study the concentration of selected elements in tissues of domestic rabbits and of wild brown-hares (kidneys, liver, and muscle - m. quadriceps femoris) in Slovakian habitats were determined. After mineralization the elements examined were detected using flame atomic absorption spectrophotometry/graphite furnace atomic absorption spectrophotometry. For rabbits, Fe in the liver was correlated with essential (Mn, Cu) (R2 = 0.94, p < 0.05; R2 = 0.96, p < 0.05 respectively) or toxic (Pb) elements (R2 = -0.93, p < 0.05). For hares, significant correlations were found between Cd and Cu or between Cd and Mn in the kidneys (R2 = -0.96, p < 0.05; R2 = 0.92, p < 0.05 respectively), which is the target organ for Cd. Higher concentrations of the elements were found in hare tissue, and this may be linked to pollution of their wild habitats. The xenobiotic elements as well as the essential elements were accumulated in the kidneys of the hares than rabbits. For liver, differences were less pronounced and significance was only for Fe and Cu. Muscle of hares was more contaminated than of rabbits for both biogenic and toxic elements. These results show that detectable concentrations of inorganic elements. These levels may be linked to contamination of the natural habitats of wild biota due to industry, traffic, agriculture, and urban sprawl.

6.
Artigo em Inglês | MEDLINE | ID: mdl-39207613

RESUMO

This work presents an integrated overview of polycyclic aromatic hydrocarbons' (PAHs) ubiquity comprising environmental contamination in the air, aquatic ecosystems, and soils; characterizes the contamination in biota; and identifies main biomonitors and human exposure to PAHs and associated health risks. Urban centers and industrial areas present increased concentrations in the air (1344.4-12,300 versus 0.03-0.60 ng/m3 in industrial/urban and rural zones) and soils (0.14-1.77 × 106 versus 2.00-9.04 × 103 versus 1.59-5.87 × 103 ng/g in urban, forest, and rural soils), respectively. Increased concentrations were found in coastal zones and superficial waters as well as in sediments (7.00 × 104-1.00 × 109 ng/g). Benzo(a)pyrene, a carcinogenic PAH, was found in all environmental media. Mosses, lichens, tree leaves, bivalves, cephalopods, terrestrials' snails, and honeybees are good biomonitors of biota contamination. More studies are needed to improve characterization of PAHs' levels, distribution, and bioaccumulation in the environmental media and assess the associated risks for biota and human health. Actions and strategies to mitigate and prevent the bioaccumulation of PAHs in the environment and trophic chains toward the WHO's One-Health Perspective to promote the health of all ecosystems and human life are urgently needed.

7.
Mar Pollut Bull ; 206: 116783, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39089206

RESUMO

Metal concentrations were determined in tissues of finfish, crabs, and bivalve molluscs collected from marine waters near Port Pirie, South Australia, the site of a long-standing multi-metals smelter and refinery. A general trend of tissue metal concentrations in order of highest to lowest was observed in bivalves > crabs > finfish. A lead concentration of 158 ± 6.6 mg/kg (wet wt.) was observed in blue mussels (Mytilus galloprovincialis) sampled close to the smelter. Lead concentrations correlated positively with proximity to the smelter in all biota analysed. Similar relationships were observed for cadmium, copper, zinc and selenium in all biota except razorfish (Pinna bicolor; Bivalvia: Pinnidae), which showed no correlation with proximity to the smelter for these metals. Inorganic arsenic concentrations were below the limit of reporting in the majority of the analysed samples, however inorganic arsenic concentrations in blue swimmer crabs (Portunus armatus) and blue mussels correlated with proximity to the smelter. Mercury concentrations in the biota analysed were generally low and showed variable relationships with proximity to the smelter, with no significant correlation observed in finfish and razorfish, a significant positive correlation in blue mussels, and a significant negative correlation in blue swimmer crabs. This is the first major study of metal concentrations in recreationally-targeted marine species near Port Pirie species for more than two decades. Comparison with data from previous studies conducted shows little change in tissue metal concentrations in marine biota near Port Pirie over the past 40 years.


Assuntos
Bivalves , Braquiúros , Monitoramento Ambiental , Peixes , Metais , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Braquiúros/metabolismo , Bivalves/metabolismo , Metais/metabolismo , Metais/análise , Peixes/metabolismo , Austrália do Sul , Metalurgia , Metais Pesados/análise , Metais Pesados/metabolismo
8.
Ecol Evol ; 14(7): e70070, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39041020

RESUMO

Many pathways of invasion have been posited, but ecologists lack an experimental framework to identify which mechanisms are dominant in a given invasion scenario. Plant-soil feedbacks (PSFs) are one such mechanism that tend to initially facilitate, but over time attenuate, invasive species' impacts on plant diversity and ecosystem function. PSFs are typically measured under greenhouse conditions and are often assumed to have significant effects under field conditions that change over time. However, direct tests of PSFs effects in natural settings and their change over time are rare. Here we compare the role of PSFs with the effects of biomass in limiting the dominance of an invasive species and impacts on resident species diversity. We characterized the effects of the invader Bromus inermis (Leyss.) on native plant communities over time and measured changes in its conspecific PSFs and vegetative growth to understand their integrated effects on community diversity. To do so, we combined data from a 6-year field study documenting the rate and impacts of invasion with a short-term greenhouse experiment quantifying PSF as a function of time since invasion in the field. We found that the nature and strength of B. inermis PSFs did not change over time and were not mediated by soil microbial communities. Though PSFs impacted B. inermis reproduction, they did not sufficiently limit vegetative growth to diminish the negative impacts of B. inermis biomass on native species. B. inermis experienced the full strength of its negative PSFs immediately upon invasion, but they were ineffective at reducing B. inermis vigor to facilitate the recovery of the native plant community. We recommend that conservation efforts focus on limiting B. inermis vegetative growth to facilitate community recovery.

9.
Environ Sci Technol ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39018327

RESUMO

This study pioneers the reporting of Se isotopes in marine top predators and represents the most extensive Se isotopic characterization in animals to date. A methodology based on hydride generation─multicollector inductively coupled plasma mass spectrometry─was established for such samples. The study was conducted on various internal organs of giant petrels (Macronectes spp.), encompassing bulk tissues (δ82/78Sebulk), distinct Se-specific fractions such as selenoneine (δ82/78SeSEN), and HgSe nanoparticles (δ82/78SeNPs). The δ82/78Sebulk results (2.0-5.6‰) offer preliminary insights into the fate of Se in key internal organs of seabirds, including the liver, the kidneys, the muscle, and the brain. Notably, the liver of all individuals was enriched in heavier Se isotopes compared to other examined tissues. In nanoparticle fraction, δ82/78Se varies significantly across individuals (δ82/78SeNPs from 0.6 to 5.7‰, n = 8), whereas it exhibits remarkable consistency among tissues and individuals for selenoneine (δ82/78SeSEN, 1.7 ± 0.3‰, n = 8). Significantly, there was a positive correlation between the shift from δ82/78Sebulk to δ82/78SeSEN and the proportion of Se present as selenoneine in the internal organs. This pilot study proves that Se species-specific isotopic composition is a promising tool for a better understanding of Se species fate, sources, and dynamics in animals.

10.
Mar Pollut Bull ; 206: 116764, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059220

RESUMO

Comprehensive studies simultaneously investigating the occurrence of chemicals of concern are limited. In this study, sediments and bivalves were collected from 24 locations along the Korean coast to evaluate the relative distribution, contamination characteristics, and ecological risks of legacy/emerging persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs). Our findings reveal that the concentrations of these contaminants were comparable to or lower than historical levels in the same Korean coast and other Asian countries. Notably, PAHs exhibited the highest distribution in sediments (84 %), whereas short-chain chlorinated paraffins (SCCPs) were dominant in bivalves (91 %). This study highlighted significant correlations in the sediment levels of each legacy pollutants, suggesting similar sources and geochemical behaviors. However, SCCPs displayed unique contamination patterns. Ecologically, PAHs and SCCPs presented low risks in sediments compared to Canadian Sediment Quality Guidelines, however 100 % and 33 % of bivalves, respectively, exceeded US EPA/Canadian Fish Tissue Guidelines.


Assuntos
Bivalves , Monitoramento Ambiental , Sedimentos Geológicos , Poluentes Orgânicos Persistentes , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , República da Coreia , Animais , Sedimentos Geológicos/química
11.
F1000Res ; 13: 583, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050029

RESUMO

Improvements in DNA sequencing technology are allowing the dramatic increase of whole genome data for a wide variety of species. Such genome sequence data can assist the monitoring of intraspecific genetic diversity, but is often lacking for threatened species. In this project, we focused on the national Red List, a catalog of extinct and threatened species, issued by the Japanese government. We combined the data included in it with the record of genome assembly in NCBI and tabulated the assembly availability of the species in the list. The combined data shows a low percentage (2.1%) of the availability of whole genome sequence data for the taxa ranked on the Japanese Red List as well as a strong bias towards mammals and birds in Animalia and vascular plants in Plantae. Our data presentation highlights potential systematic limitations in genome sequencing (e.g., budget for sequencing large genomes of amphibians) and instructs future policies including which taxon needs more effort for genome sequencing. The resultant tables are available in the original website https://treethinkers.nig.ac.jp/redlist/ and are regularly updated.


Assuntos
Biodiversidade , Espécies em Perigo de Extinção , Genômica , Animais , Genoma , Genômica/métodos , Japão
12.
Yale J Biol Med ; 97(2): 253-263, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38947109

RESUMO

Environmental mismatches are defined as changes in the environment that induce public health crises. Well known mismatches leading to chronic disease include the availability of technologies that facilitate unhealthy diets and sedentary lifestyles, both factors that adversely affect cardiovascular health. This commentary puts these mismatches in context with biota alteration, an environmental mismatch involving hygiene-related technologies necessary for avoidance of infectious disease. Implementation of hygiene-related technologies causes a loss of symbiotic helminths and protists, profoundly affecting immune function and facilitating a variety of chronic conditions, including allergic disorders, autoimmune diseases, and several inflammation-associated neuropsychiatric conditions. Unfortunately, despite an established understanding of the biology underpinning this and other environmental mismatches, public health agencies have failed to stem the resulting tide of increased chronic disease burden. Both biomedical research and clinical practice continue to focus on an ineffective and reactive pharmaceutical-based paradigm. It is argued that the healthcare of the future could take into account the biology of today, effectively and proactively dealing with environmental mismatch and the resulting chronic disease burden.


Assuntos
Doenças do Sistema Imunitário , Humanos , Doença Crônica , Animais , Meio Ambiente
13.
J Hazard Mater ; 475: 134937, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38889461

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) constitute important organic contaminants that have been degrading coastal ecosystems over the years. Evaluating PAH status in port ecosystems aligns with societal goals of maintaining clean habitats and sustainability. This comprehensive review systematically analyzed 123 articles, exploring the global distribution, sources, and ecological risks linked to PAH contamination in ports, focusing on water, sediment, and biota. The mean concentrations of 16 PAHs in water, sediment, and biota across worldwide ports were 175.63 ± 178.37 ng/L, 1592.65 ± 1836.5 µg/kg, and 268.47 ± 235.84 µg/kg, respectively. In line with PAH emissions and use in Asia, Asian ports had the highest PAH concentrations for water and biota, while African ports had the highest PAH concentrations for sediment. The temporal trend in PAH accumulation in sediments globally suggests stability. However, PAH concentrations in water and biota of global ports exhibit increasing trends, signaling aggravating PAH contamination within port aquatic ecosystems. Some ports exhibited elevated PAH levels, particularly in sediments with 4.5 %, 9.5 %, and 21 % of the ports categorized as very poor, poor, and moderate quality. Some PAH isomers exceeded guidelines, including the carcinogenic Benzo(a)pyrene (BaP). Coal, biomass, and petroleum combustion were major sources for PAHs. The structure of ports significantly influences the concentrations of PAHs. PAH concentrations in sediments of semi-enclosed ports were 3.5 times higher than those in open ports, while PAH concentrations in water and biota of semi-enclosed ports were lower than those in open ports. Finally, risk analyses conducted through Monte Carlo simulation indicated moderate to high risks to aquatic species, with probabilities of 74.8 % in water and 34.4 % in sediments of ports worldwide. This review underscores the imperative to delve deeper into the accumulation of PAHs and similar pollutants in ports for effective management and environmental protection.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Medição de Risco , Animais , Navios
14.
Aquat Toxicol ; 272: 106977, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38820743

RESUMO

Concerns have been conveyed regarding the availability and hazards of microplastics (MPs) in aquatic biota due to their widespread presence in aquatic habitats. Zebrafish (Danio rerio) are widely used as a model organism to study the adverse impacts of MPs due to their several compelling advantages, such as their small size, ease of breeding, inexpensive maintenance, short life cycle, year-round spawning, high fecundity, fewer legal restrictions, and genetic resemblances to humans. Exposure of organisms to MPs produces physical and chemical toxic effects, including abnormal behavior, oxidative stress, neurotoxicity, genotoxicity, immune toxicity, reproductive imbalance, and histopathological effects. But the severity of the effects is size and concentration-dependent. It has been demonstrated that smaller particles could reach the gut and liver, while larger particles are only confined to the gill, the digestive tract of adult zebrafish. This thorough review encapsulates the current body of literature concerning research on MPs in zebrafish and demonstrates an overview of MPs size and concentration effects on the physiological, morphological, and behavioral characteristics of zebrafish. Finding gaps in the literature paves the way for further investigation.


Assuntos
Comportamento Animal , Microplásticos , Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Comportamento Animal/efeitos dos fármacos
15.
Proc Biol Sci ; 291(2023): 20240101, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38808442

RESUMO

The early Ediacaran Weng'an biota (Doushantuo Formation, South China) provides a rare window onto the period of Earth history in which molecular timescales have inferred the initial phase of crown-metazoan diversification. Interpretation of the embryo-like fossils that dominate the biota remains contentious because they are morphologically simple and so difficult to constrain phylogenetically. Spiralicellula from the Weng'an biota is distinguished by spiral internal bodies, allied through development to Megasphaera or Helicoforamina and interpreted variously as metazoan embryos, encysting protists, or chlorophycean green algae. Here we show, using X-ray microtomography, that Spiralicellula has a single-layered outer envelope and no more than 32 internal cells, often preserving a nucleus and yolk granules. There is no correlation between the extent of spiral development and the number of component cells; rather, the spiral developed with each palintomic stage, associated with cell disaggregation and reorientation. Evidence for envelope thinning and cell loss was observed in all developmental stages, reflecting non-deterministic shedding of gametes or amoebae. The developmental biology of Spiralicellula is similar to Megasphaera and Helicoforamina, which otherwise exhibit more rounds of palintomy. We reject a crown-metazoan affinity for Spiralicellula and all other components of the Weng'an biota, diminishing the probability of crown-metazoan diversification before the early Ediacaran.


Assuntos
Evolução Biológica , Fósseis , Fósseis/anatomia & histologia , Animais , China , Microtomografia por Raio-X , Filogenia
16.
Fungal Biol ; 128(3): 1751-1757, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38796259

RESUMO

This study explores the fungal diversity associated with tarballs, weathered crude oil deposits, on Goa's tourist beaches. Despite tarball pollution being a longstanding issue in Goa state in India, comprehensive studies on associated fungi are scarce. Our research based on amplicon sequence analysis of fungal ITS region fills this gap, revealing a dominance of Aspergillus, particularly Aspergillus penicillioides, associated with tarballs from Vagator and Morjim beaches. Other notable species, including Aspergillus sydowii, Aspergillus carbonarius, and Trichoderma species, were identified, all with potential public health and ecosystem implications. A FUNGuild analysis was conducted to investigate the potential ecological roles of these fungi, revealing a diverse range of roles, including nutrient cycling, disease propagation, and symbiotic relationships. The study underscores the need for further research and monitoring, given the potential health risks and contribution of tarball-associated fungi to the bioremediation of crude oil-contaminated beaches.


Assuntos
Biodiversidade , DNA Fúngico , Fungos , Índia , DNA Fúngico/genética , Fungos/genética , Fungos/classificação , Fungos/isolamento & purificação , Análise de Sequência de DNA , DNA Espaçador Ribossômico/genética , Filogenia , Petróleo/microbiologia
17.
J Hazard Mater ; 472: 134463, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38723486

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a class of toxic manufactured chemicals in commercial and consumer products. They are resistant to environmental degradation and mobile in soil, air, and water. This study used the introduced bivalve Corbicula fluminea as a passive biomonitor at sampling locations in a primary drinking water source in Virginia, USA. Many potential PFAS sources were identified in the region. Perfluorohexane sulfonate (PFHxS) and 6:2 fluorotelomer sulfonic acid (6:2 FTS) levels were highest downstream of an airport. The highest levels of short-chain carboxylic acids were in locations downstream of a wastewater treatment plant. Measured PFAS concentrations varied by location in C. fluminea, sediment, and surface water samples. Two compounds were detected across all three mediums. Calculated partitioning coefficients confirm bioaccumulation of PFAS in C. fluminea and sorption to sediment. C. fluminea bioaccumulated two PFAS not found in the other mediums. Perfluoroalkyl carboxylic acids and short-chain compounds dominated in clam tissue, which contrasts with findings of accumulation of longer-chain and perfluorosulfonic acids in fish. These findings suggest the potential for using bivalves to complement other organisms to better understand the bioaccumulation of PFAS and their fate and transport in a freshwater ecosystem.


Assuntos
Corbicula , Fluorocarbonos , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Fluorocarbonos/análise , Corbicula/metabolismo , Corbicula/química , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Monitoramento Biológico , Virginia
18.
J Hazard Mater ; 472: 134574, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38739959

RESUMO

The pervasive and steadily increasing presence of microplastics/nanoplastics (MPs/NPs) in aquatic environments has raised significant concerns regarding their potential adverse effects on aquatic organisms and their integration into trophic dynamics. This emerging issue has garnered the attention of (eco)toxicologists, promoting the utilization of toxicotranscriptomics to unravel the responses of aquatic organisms not only to MPs/NPs but also to a wide spectrum of environmental pollutants. This review aims to systematically explore the broad repertoire of predicted molecular responses by aquatic organisms, providing valuable intuitions into complex interactions between plastic pollutants and aquatic biota. By synthesizing the latest literature, present analysis sheds light on transcriptomic signatures like gene expression, interconnected pathways and overall molecular mechanisms influenced by various plasticizers. Harmful effects of these contaminants on key genes/protein transcripts associated with crucial pathways lead to abnormal immune response, metabolic response, neural response, apoptosis and DNA damage, growth, development, reproductive abnormalities, detoxification, and oxidative stress in aquatic organisms. However, unique challenge lies in enhancing the fingerprint of MPs/NPs, presenting complicated enigma that requires decoding their specific impact at molecular levels. The exploration endeavors, not only to consolidate existing knowledge, but also to identify critical gaps in understanding, push forward the frontiers of knowledge about transcriptomic signatures of plastic contaminants. Moreover, this appraisal emphasizes the imperative to monitor and mitigate the contamination of commercially important aquatic species by MPs/NPs, highlighting the pivotal role that regulatory frameworks must play in protecting all aquatic ecosystems. This commitment aligns with the broader goal of ensuring the sustainability of aquatic resources and the resilience of ecosystems facing the growing threat of plastic pollutants.


Assuntos
Organismos Aquáticos , Microplásticos , Transcriptoma , Poluentes Químicos da Água , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/genética , Animais , Transcriptoma/efeitos dos fármacos , Nanopartículas/toxicidade , Nanopartículas/química
19.
Sci Total Environ ; 935: 173358, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38768727

RESUMO

The presence of contaminants of emerging concern in aquatic ecosystems represents an ever-increasing environmental problem. Aquatic biota is exposed to these contaminants, which can be absorbed and distributed to their organs. This study focused on the assessment, distribution, and ecological risk of 32 CECs in a Spanish river impacted by effluents from a wastewater treatment plant, analyzing the organs and plasma of common carp. Environmental concentrations in water and sediment were examined at sites upstream and downstream of the wastewater treatment plant. The two downstream sites showed 15 times higher total concentrations (12.4 µg L-1 and 30.1 µg L-1) than the two upstream sites (2.08 µg L-1 and 1.66 µg L-1). Half of the CECs were detected in fish organs, with amantadine having the highest concentrations in the kidney (158 ng g-1 w.w.) and liver (93 ng g-1 w.w.), followed by terbutryn, diazepam, and bisphenol F in the brain (50.2, 3.82 and 1.18 ng g-1 w.w.). The experimental bioaccumulation factors per organ were compared with the bioconcentration factors predicted by a physiologically based pharmacokinetic model, obtaining differences of one to two logarithmic units for most compounds. Risk quotients indicated a low risk for 38 % of the contaminants. However, caffeine and terbutryn showed an elevated risk for fish. The mixed risk quotient revealed a medium risk for most of the samples in the three environmental compartments: surface water, sediment, and fish.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Águas Residuárias , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Águas Residuárias/química , Animais , Sedimentos Geológicos/química , Medição de Risco , Carpas , Rios/química , Espanha , Peixes
20.
Heliyon ; 10(9): e30021, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707367

RESUMO

This research analyzes data on the microplastic (MP) contamination in the environmental systems (atmosphere, lithosphere, hydrosphere) and the levels of MPs in freshwater of cities with different levels of national income. This study investigates the influencing factors of MP generation, i.e., mismanaged plastic waste, untreated wastewater, number of registered motor vehicles, and stormwater runoff. The statistical correlations between the MP contamination in urban freshwater and the four influencing factors of MP generation are determined by linear regression. The results indicate that MPs are most abundant in aquatic systems (i.e., hydrosphere) and pose a serious threat to the human food chain. The regression analysis shows a strong correlation between mismanaged plastic waste and microfragment smaller than 300 µm in particle size in urban freshwater with high goodness-of-fit (R2 = 0.8091). A strong relationship with high goodness-of-fit also exists between untreated wastewater and microfragment of 1000-5000 µm in particle size (R2 = 0.9522). The key to mitigate the MP contamination in urban freshwater is to replace improper plastic waste management and wastewater treatment with proper management practices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA