RESUMO
BACKGROUND: Aberrant differentiation of Th17 cells has been identified as a critical factor in the development of rheumatoid arthritis (RA). BLIMP1 plays a key role in regulating plasma cell differentiation, T helper cell differentiation and Treg cell differentiation. Treatment with exosome injection or bone marrow mesenchymal stem cell (BMSC) transplantation reduce joint damage in RA. But the precise regulatory mechanisms remain unclear. METHODS: We injected BMSC-derived exosomes into RA mice, and then performed histological analysis on mouse ankle joints. We cultured CD4+ T cells in vitro, then added exosomes with or without si-TUG1 and induced the differentiation of Th17 cells and Treg cells, and then we used flow cytometry to detect the ratio of Th17 cells and Treg cells. Furthermore, we injected exosomes into sh-NC or sh-BLIMP1-treated RA mice, and then performed histological analysis on the ankle joints. RESULT: The results of our study demonstrate that exosome treatment decreased the proportion of differentiated Th17 cells, while increasing the proportion of Treg cells. And we observed that the Exo si-TUG1 group had an increased proportion of Th17 cells and a decreased proportion of Treg cells. We observed an increase in BLIMP1 expression in both the peripheral blood of mice and in CD4+ T cells cultured in vitro in the Exo group. Conversely, the Exo si-TUG1 group showed a decrease in BLIMP1 expression. Notably, inhibiting BLIMP1 expression led to the reversal of the therapeutic effects of exosomes. CONCLUSION: Our findings suggest that BMSC-derived exosomes promote the expression of BLIMP1 through Lnc TUG1-carrying exosomes, which may modulate the balance between Th17 cells and Treg cells. This mechanism ultimately alleviates damage caused by RA, suggesting that BMSC-derived exosomes enriched in Lnc TUG1 hold promise as a potential therapeutic approach for treating RA.
Assuntos
Artrite Experimental , Células-Tronco Mesenquimais , RNA Longo não Codificante , Linfócitos T Reguladores , Células Th17 , Animais , Humanos , Masculino , Camundongos , Artrite Experimental/terapia , Artrite Experimental/imunologia , Artrite Reumatoide/terapia , Artrite Reumatoide/imunologia , Diferenciação Celular , Células Cultivadas , Exossomos/metabolismo , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos DBA , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linfócitos T Reguladores/imunologia , Células Th17/imunologiaRESUMO
Antibody inhibitors pose an ongoing challenge to the treatment of subjects with inherited protein deficiency disorders, limiting the efficacy of both protein replacement therapy and corrective gene therapy. Beyond their central role as producers of serum antibody, B cells also exhibit many unique properties that could be exploited in cell therapy applications, notably including antigen-specific recognition and the linked capacity for antigen presentation. Here we employed CRISPR-Cas9 to demonstrate that ex vivo antigen-primed Blimp1-knockout "decoy" B cells, incapable of differentiation into plasma cells, participated in and downregulated host antigen-specific humoral responses after adoptive transfer. Following ex vivo antigen pulse, adoptively transferred high-affinity antigen-specific decoy B cells were diverted into germinal centers en masse, thereby reducing participation by endogenous antigen-specific B cells in T-dependent humoral responses and suppressing both cognate and linked antigen-specific immunoglobulin (Ig)G following immunization with conjugated antigen. This effect was dose-dependent and, importantly, did not impact concurrent unrelated antibody responses. We demonstrated the therapeutic potential of this approach by treating factor VIII (FVIII)-knockout mice with antigen-pulsed decoy B cells prior to immunization with an FVIII conjugate protein, thereby blunting the production of serum FVIII-specific IgG by an order of magnitude as well as reducing the proportion of animals exhibiting functional FVIII inhibition by 6-fold.
Assuntos
Formação de Anticorpos , Linfócitos B , Camundongos Knockout , Fator 1 de Ligação ao Domínio I Regulador Positivo , Animais , Camundongos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Formação de Anticorpos/imunologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fator VIII/imunologia , Fator VIII/genética , Sistemas CRISPR-Cas , Imunoglobulina G/imunologia , Transferência Adotiva , Humanos , Centro Germinativo/imunologia , Centro Germinativo/metabolismoRESUMO
During chronic infection, virus-specific CD8+ cytotoxic T lymphocytes (CTLs) progressively lose their ability to mount effective antiviral responses. This "exhaustion" is coupled to persistent upregulation of inhibitory receptor programmed death-1 (PD-1) (Pdcd1)-key in suppressing antiviral CTL responses. Here, we investigate allelic Pdcd1 subnuclear localization and transcription during acute and chronic lymphocytic choriomeningitis virus (LCMV) infection in mice. Pdcd1 alleles dissociate from transcriptionally repressive chromatin domains (lamin B) in virus-specific exhausted CTLs but not in naive or effector CTLs. Relative to naive CTLs, nuclear positioning and Pdcd1-lamina dissociation in exhausted CTLs reflect loss of Pdcd1 promoter methylation and greater PD-1 upregulation, although a direct correlation is not observed in effector cells, 8 days post-infection. Genetic deletion of B lymphocyte-induced maturation protein 1 (Blimp-1) enhances Pdcd1-lamina dissociation in effector CTLs, suggesting that Blimp-1 contributes to maintaining Pdcd1 localization to repressive lamina. Our results identify mechanisms governing Pdcd1 subnuclear localization and the broader role of chromatin dynamics in T cell exhaustion.
Assuntos
Coriomeningite Linfocítica , Vírus da Coriomeningite Linfocítica , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1 , Linfócitos T Citotóxicos , Animais , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/genética , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Núcleo Celular/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Doença Crônica , Regiões Promotoras Genéticas/genética , Loci GênicosRESUMO
Systemic lupus erythematosus (SLE) is a multifaceted autoimmune disorder characterized by diverse clinical manifestations and organ damage. Despite its elusive etiology, dysregulated subsets and functions of B cells are pivotal in SLE pathogenesis. Peoniflorin-6'-O-benzene sulfonate (CP-25), an esterification modification of Paeoniflorin, exhibits potent anti-inflammatory and immunomodulatory properties in autoimmune diseases (AID). However, the involvement of CP-25 and its target, GRK2, in SLE development has not been explored. In this study, we demonstrate that both genetic deficiency and pharmacological inhibition of GRK2 attenuate autoantibodies production, reduce systemic inflammation, and mitigate histopathological alterations in the spleen and kidney in the pristane-induced mouse SLE model. Importantly, our findings highlight that both genetic deficiency and pharmacological inhibition of GRK2 suppress plasma cells generation and restore dysregulated B-cell subsets by modulating two crucial transcription factors, Blimp1 and IRF4. Collectively, targeting GRK2 with CP-25 emerges as a promising therapeutic approach for SLE.
Assuntos
Modelos Animais de Doenças , Quinase 2 de Receptor Acoplado a Proteína G , Lúpus Eritematoso Sistêmico , Plasmócitos , Animais , Feminino , Camundongos , Anti-Inflamatórios/farmacologia , Autoanticorpos/sangue , Diferenciação Celular/efeitos dos fármacos , Quinase 2 de Receptor Acoplado a Proteína G/antagonistas & inibidores , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Glucosídeos/farmacologia , Rim/patologia , Rim/efeitos dos fármacos , Lúpus Eritematoso Sistêmico/induzido quimicamente , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monoterpenos/farmacologia , Plasmócitos/efeitos dos fármacos , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Baço/efeitos dos fármacos , Baço/patologia , Baço/imunologia , TerpenosRESUMO
Introduction: Marginal zone and follicular B cells are known to contribute to the development of angiotensin II-induced hypertension in mice, but the effector function(s) mediating this effect (e.g., antigen presentation, antibody secretion and/or cytokine production) are unknown. B cell differentiation into antibody secreting cells (ASCs) requires the transcription factor Blimp-1. Here, we studied mice with a Blimp-1 deficiency in follicular B cells to evaluate whether antibody secretion underlies the pro-hypertensive action of B cells. Methods: 10- to 14-week-old male follicular B cell Blimp-1 knockout (FoB-Blimp-1-KO) and floxed control mice were subcutaneously infused with angiotensin II (0.7â mg/kg/d) or vehicle (0.1% acetic acid in saline) for 28 days. BP was measured by tail-cuff plethysmography or radiotelemetry. Pulse wave velocity was measured by ultrasound. Aortic collagen was quantified by Masson's trichrome staining. Cell types and serum antibodies were quantified by flow cytometry and a bead-based multiplex assay, respectively. Results: In control mice, angiotensin II modestly increased serum IgG3 levels and markedly increased BP, cardiac hypertrophy, aortic stiffening and fibrosis. FoB-Blimp-1-KO mice exhibited impaired IgG1, IgG2a and IgG3 production despite having comparable numbers of B cells and ASCs to control mice. Nevertheless, FoB-Blimp-1-KO mice still developed hypertension, cardiac hypertrophy, aortic stiffening and fibrosis following angiotensin II infusion. Conclusions: Inhibition of follicular B cell differentiation into ASCs did not protect against angiotensin II-induced hypertension or vascular compliance. Follicular B cell functions independent of their differentiation into ASCs and ability to produce high-affinity antibodies, or other B cell subtypes, are likely to be involved in angiotensin II-induced hypertension.
RESUMO
Liver and lung tissue damage caused by sepsis is still one of the causes of death. B-lymphocyte-induced maturation protein-1 (Blimp-1) has a protective role in inflammation-related disease. However, whether Blimp-1 can regulate cell pyroptosis and affect disease progression in sepsis is still unclear. Animal and cell models were established by the cecal ligation and puncture method and lipopolysaccharides (LPS)-induced RAW 264.7 cells, respectively, and the role of Blimp-1 in regulation inflammatory response and pyroptosis was verified. The changes of inflammation and pyroptosis in liver and lung tissues of septic mice were determined by the addition of TAK-242 (TLR4 inhibitor). Cell pyroptosis and the level of inflammation was detected after Blimp-1 knockdown and TAK-242 treatment in the cell model. The expression of Blimp-1 was continuously increased in a septic mice model. After treatment with TAK-242, the expression of Blimp-1, pyroptosis and inflammatory levels were reduced in mice. In the LPS-induced cell model, cell injury by knockout Blimp-1 was increased, and cell activity was restored after TAK-242 intervention. Overexpression of Blimp-1 relieved LPS-induced cellular inflammatory damage and pyroptosis. Our study had shown that Blimp-1 could improve septic damage by regulating the level of cellular inflammation and pyroptosis in sepsis.
Assuntos
Inflamação , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Fator 1 de Ligação ao Domínio I Regulador Positivo , Piroptose , Sepse , Animais , Piroptose/efeitos dos fármacos , Sepse/metabolismo , Sepse/patologia , Sepse/complicações , Camundongos , Inflamação/patologia , Inflamação/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Células RAW 264.7 , Masculino , Modelos Animais de Doenças , Sulfonamidas/farmacologiaRESUMO
Deficiency in regulatory T cells (Tregs) is an important mechanism underlying the pathogenesis of pediatric aplastic anemia, but its specific mechanism is unclear. In our study, we aimed to investigate whether IL-2/STAT5 can regulate the proliferation of Tregs in aplastic anemia (AA) by regulating their expression of B lymphocyte-induced mature protein-1 (BLIMP-1) or interferon regulatory factor 4 (IRF4). Through clinical research and animal experiments, we found that poor activation of the IL-2/STAT5 signaling pathway may leads to low expression of BLIMP-1 in Tregs of children with AA, which leads to defects in the differentiation and proliferation of Tregs in AA. In AA model mice, treatment with IL-2c reversed the decrease in Treg proportions and reduction in Blimp-1 expression in Tregs by increasing the phosphorylation of Stat5 in Tregs. In AA, deficiency of IRF4 expression in Tregs is closely related to the deficiency of Tregs, but is not regulated by the IL-2/STAT5 pathway.
RESUMO
INTRODUCTION: Allergen-specific immunotherapy (AIT) plays a pivotal role in altering the immune status and tissue responses in allergic rhinitis (AR). This study focuses on the impact of sublingual immunotherapy (SLIT) involving dust mite drops, exploring the modulation of regulatory T cells (Treg) and their specific marker, BLIMP1, in the nasal mucosa. METHODS: Immune cells were isolated from nasal lavage fluid of patients with AR undergoing SLIT (n = 94). Treg cells were analyzed for BLIMP1 expression, and chemokine levels associated with Treg recruitment were assessed using Luminex assay. Patients were categorized on the basis of SLIT efficacy and followed for changes after discontinuation. RESULTS: SLIT induced a significant increase in nasal Treg cells (7.09 ± 2.59% vs. 0.75 ± 0.27%, P < 0.0001). BLIMP1 expression in Treg cells notably increased after SLIT (0.36 ± 0.22% to 16.86 ± 5.74%, P < 0.0001). Ineffective SLIT cases exhibited lower levels of nasal Treg and Blimp1 + Treg cells (both P < 0.0001). Receiver operating characteristic (ROC) analysis confirmed their potential as efficacy predictors (AUC = 0.908 and 0.968, respectively). SLIT discontinuation led to a significant reduction in Treg and Blimp1 + Treg cells (P < 0.001), emphasizing their maintenance during treatment. Pro-inflammatory cytokines decreased (P < 0.001), while CCL2 associated with Treg recruitment increased (P = 0.0015). CONCLUSION: Elevated nasal Blimp1 + Treg cells serve as a predictive biomarker for SLIT responsiveness in pediatric AR. Their influence on immunotherapy effectiveness contributes to a nuanced understanding of SLIT mechanisms, allowing for disease stratification and personalized treatment plans. This study offers scientific support for predicting SLIT efficacy, enhancing the prospects of improved treatment outcomes in AR.
Assuntos
Rinite Alérgica , Imunoterapia Sublingual , Humanos , Criança , Linfócitos T Reguladores/metabolismo , Rinite Alérgica/terapia , Resultado do Tratamento , Citocinas , AlérgenosRESUMO
In many infectious diseases, the pathogen-induced inflammatory response could result in protective immunity that should be regulated to prevent tissue damage and death. In fact, in Trypanosoma cruzi infection, the innate immune and the inflammatory response should be perfectly controlled to avoid significant lesions and death. Here, we investigate the role of Blimp-1 expression in T cells in resistance to T. cruzi infection. Therefore, using mice with Blimp-1 deficiency in T cells (CKO) we determined its role in the controlling parasites growth and lesions during the acute phase of infection. Infection of mice with Blimp-1 ablation in T cells resulted failure the cytotoxic CD8+ T cells and in marked Th1-mediated inflammation, high IFN-γ and TNF production, and activation of inflammatory monocyte. Interestingly, despite high nitric-oxide synthase activation (NOS-2), parasitemia and mortality in CKO mice were increased compared with infected WT mice. Furthermore, infected-CKO mice exhibited hepatic lesions characteristic of steatosis, with significant AST and ALT activity. Mechanistically, Blimp-1 signaling in T cells induces cytotoxic CD8+ T cell activation and restricts parasite replication. In contrast, Blimp-1 represses the Th1 response, leading to a decreased monocyte activation, less NOS-2 activation, and, consequently preventing hepatic damage and dysfunction. These data demonstrate that T. cruzi-induced disease is multifactorial and that the increased IFN-γ, NO production, and dysfunction of CD8+ T cells contribute to host death. These findings have important implications for the design of potential vaccines against Chagas disease.
Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Camundongos , Linfócitos T CD8-Positivos , Inflamação/patologia , Transdução de SinaisRESUMO
Blimp1 is the master regulator of B cell terminal differentiation in mammals, it inhibits expression of many transcription factors including bcl6, which provides the basis for promoting further development of activated B lymphocytes into plasma cells. Blimp-1 is thought to act as a sequence-specific recruitment factor for chromatin-modifying enzymes including histone deacetylases (HDAC) and methyltransferases to repress target genes. The cDNA of Ccblimp1a (Cyprinus carpio) open reading frame is 2337 bp encoding a protein of 777 amino acids. CcBlimp1a contains a SET domain, two Proline Rich domains, and five ZnF_C2H2 domains. Blimp1 are conserved in vertebrate species. Ccblimp1a transcripts were detected in common carp larvae from 1 dpf (day post fertilization)to 31 dpf. Ccblimp1a expression was up-regulated in peripheral blood leukocytes (PBL) and spleen leukocytes (SPL) of common carp stimulated by intraperitoneal lipopolysaccharide (LPS) injection. Ccblimp1a expression in PBL and SPL of common carp was induced by TNP-LPS and TNP-KLH. The results indicated TNP-LPS induced a rapid response in PBL and TNP-KLH induced much stronger response in SPL and PBL. IHC results showed that CcBlimp1 positive cells were distributed in the head kidney, trunk kidney, liver, and gut. Immunofluorescence stain results showed that CcBlimp1 was expressed in IgM + lymphocytes. The subcellular localization of CcBlimp1 in the nuclei indicated CcBlimp1 may be involved in the differentiation of IgM + lymphocytes. Further study focusing on the function of CcBlimp1 transcriptional repression was performed using dual luciferase assay. The results showed that the transcription repression of CcBlimp1 on bcl6aa promoter was affected by the histone deacetylation inhibitor and was synergized with histone deacetylase 3 (HDAC3). The results of Co-IP in HEK293T and immunoprecipitation in SPL indicated that CcBlimp1 recruited HDAC3 and might be involved in the formation of complexes. These results suggest that CcBlimp1 is an important transcription factor in common carp lymphocytes. Histone deacetylation modification mediated by HDAC3 may have important roles in CcBlimp1 transcriptional repression during the differentiation of lymphocytes.
Assuntos
Carpas , Humanos , Animais , Carpas/genética , Carpas/metabolismo , Histonas/metabolismo , Lipopolissacarídeos/farmacologia , Células HEK293 , Fatores de Transcrição/genética , Histona Desacetilases/metabolismo , Linfócitos B , Imunoglobulina M/metabolismo , Mamíferos/metabolismoRESUMO
Background: Vitamin D3 (VitD3) is known to have immunomodulatory functions, and VitD3 deficiency is associated with more severe asthma. Objective: We aimed to assess the immunoregulatory effects of VitD3 food supplementation on asthma manifestation, with particular focus on T cells and type 2 innate lymphoid cells. Methods: Preschool children and adult asthmatic cohorts were analyzed in the context of VitD3 supplementation and serum levels. In a murine model of ovalbumin-induced asthma, effects of diet VitD3 sufficiency and deficiency on T cells and type 2 innate lymphoid cells immune mechanisms were investigated. Results: We found less severe and better-controlled asthma phenotypes along with reduced need for steroid medication in preschool children and asthmatic adults with VitD3 supplementation. VitD3 serum levels correlated with B lymphocyte-induced maturation protein 1 (Blimp-1) expression in blood peripheral mononuclear cells. VitD3-supplement-fed mice showed decreased asthmatic traits, with a decrease in IgE serum levels, reduced airway mucus, and increased IL-10 production by lung cells. Furthermore, we discovered an upregulation of effector T cells and Blimp-1+ lung tissue-resident memory T cells as well as induction of anti-inflammatory Blimp-1+ lung innate lymphoid cells producing IL-10. Conclusion: Supplementing VitD3 resulted in amelioration of clinical asthma manifestations in human studies as well as in experimental allergic asthma, indicating that VitD3 shifts proinflammatory immune responses to anti-inflammatory immune responses via upregulating Blimp-1 in lung innate lymphoid cells and tissue-resident memory cells.
RESUMO
The mechanism underlying the initiation of parturition remains unclear. Cyclooxygenase 2 and prostaglandins in decidual membrane tissue play an important role in the "parturition cascade." With the advancement of gestation, the expression of the transcriptional suppressor B lymphocyte-induced maturation protein 1 in the decidual membrane gradually decreases. Through chromatin immunoprecipitation sequencing, we found that B lymphocyte-induced maturation protein 1 has a binding site in the distal intergenic of PTGS2(COX2). Tripartite motif-containing protein 66 is a chromatin-binding protein that usually performs transcriptional regulatory functions by "reading" histone modification sites in chromatin. In this study, tripartite motif-containing protein 66 exhibits the same trend of expression as B lymphocyte-induced maturation protein 1 in the decidua during gestation. Moreover, the co-immunoprecipitation assay revealed that tripartite motif-containing protein 66 combined with B lymphocyte-induced maturation protein 1. This finding indicated that tripartite motif-containing protein 66 formed a transcription complex with B lymphocyte-induced maturation protein 1, which coregulated the expression of COX2. In animal experiments, we injected si-Blimp1 adenoviruses (si-Blimp1), Blimp1 overexpression plasmid (Blimp1-OE), and Trim66 overexpression plasmid (Trim66-OE) through the tail vein of mice. The results showed that B lymphocyte-induced maturation protein 1 and tripartite motif-containing protein 66 affected the initiation of parturition in mice. Therefore, the present evidence suggests that B lymphocyte-induced maturation protein 1 and tripartite motif-containing protein 66 partially participate in the initiation of labor, which may provide a new perspective for exploring the mechanism of term labor.
RESUMO
The mammalian reproductive cycle, including those of humans and mice, begins very early in development. In utero, the ovaries become populated with primordial germ cells (PGCs) that will generate the oogonia. First, these cells proliferate mitotically, and then they trigger the meiotic program and initiate meiotic prophase I. Since these processes happen during gestation, their study had been very limited and challenging. Recently, we reported that, in the naked mole-rat (Heterocephalus glaber) ovary, there is mitotic expansion of the PGCs, and the initiation of the meiotic program occurs postnatally. In this chapter, we present a comprehensive collection of protocols that permit the analysis of naked mole-rat germ cells, from PGCs to oocytes, in meiotic prophase I, using in vivo and in vitro approaches.
Assuntos
Prófase Meiótica I , Ovário , Humanos , Feminino , Camundongos , Animais , Meiose , Oócitos , Células Germinativas , MamíferosRESUMO
REV7 is involved in various biological processes including DNA repair and mutagenesis, cell cycle regulation, gene transcription, and carcinogenesis. REV7 is highly expressed in adult testicular germ cells as well as several malignant tumors. REV7 expression levels are associated with prognosis in several human cancers, however, the mechanism of REV7 transcriptional regulation has not been elucidated. In this study, we characterized the promoter region of the REV7 gene. A luciferase reporter assay using the human germ cell tumor cell line NEC8 was utilized to examine the upstream genomic region of REV7 for transcriptional activity, and two transcriptional activation regions were identified. We determined a small genomic region important for transcriptional activation using site-directed mutagenesis; this region is shared by several putative binding motifs for transcription factors, including the cAMP-responsive element modulator (CREM), cAMP-response element binding protein (CREB), and B-lymphocyte-induced maturation protein-1 (BLIMP-1). Exogenous CREM and CREB expression had no effect on the transcriptional activity in NEC8 cells or the human embryonic kidney cell line HEK293T. In contrast, exogenous BLIMP-1 expression increased luciferase reporter activity in HEK293T cells but unexpectedly decreased activity in NEC8 cells. Chromatin immunoprecipitation analysis demonstrated that BLIMP-1 binds to the genomic region near the binding motif in the REV7 promoter. Additionally, BLIMP-1 overexpression promoted endogenous REV7 expression in HEK293T cells. These findings suggest that BLIMP-1 may be a putative transcriptional regulator of REV7 in mammalian cells.
Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Proteínas Repressoras , Animais , Humanos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Células HEK293 , Luciferases/metabolismo , Mamíferos/metabolismo , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismoRESUMO
Epidemiological evidence supports an association between cow's milk consumption and the risk of diffuse large B-cell lymphoma (DLBCL), the most common non-Hodgkin lymphoma worldwide. This narrative review intends to elucidate the potential impact of milk-related agents, predominantly milk-derived exosomes (MDEs) and their microRNAs (miRs) in lymphomagenesis. Upregulation of PI3K-AKT-mTORC1 signaling is a common feature of DLBCL. Increased expression of B cell lymphoma 6 (BCL6) and suppression of B lymphocyte-induced maturation protein 1 (BLIMP1)/PR domain-containing protein 1 (PRDM1) are crucial pathological deviations in DLBCL. Translational evidence indicates that during the breastfeeding period, human MDE miRs support B cell proliferation via epigenetic upregulation of BCL6 (via miR-148a-3p-mediated suppression of DNA methyltransferase 1 (DNMT1) and miR-155-5p/miR-29b-5p-mediated suppression of activation-induced cytidine deaminase (AICDA) and suppression of BLIMP1 (via MDE let-7-5p/miR-125b-5p-targeting of PRDM1). After weaning with the physiological termination of MDE miR signaling, the infant's BCL6 expression and B cell proliferation declines, whereas BLIMP1-mediated B cell maturation for adequate own antibody production rises. Because human and bovine MDE miRs share identical nucleotide sequences, the consumption of pasteurized cow's milk in adults with the continued transfer of bioactive bovine MDE miRs may de-differentiate B cells back to the neonatal "proliferation-dominated" B cell phenotype maintaining an increased BLC6/BLIMP1 ratio. Persistent milk-induced epigenetic dysregulation of BCL6 and BLIMP1 expression may thus represent a novel driving mechanism in B cell lymphomagenesis. Bovine MDEs and their miR cargo have to be considered potential pathogens that should be removed from the human food chain.
Assuntos
Linfoma Difuso de Grandes Células B , MicroRNAs , Animais , Feminino , Bovinos , Recém-Nascido , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Leite/metabolismo , Fosfatidilinositol 3-Quinases , Linfoma Difuso de Grandes Células B/patologia , Linfócitos B/metabolismoRESUMO
BACKGROUND: T cell activation and programming from their naïve/resting state, characterized by widespread modifications in chromatin accessibility triggering extensive changes in transcriptional programs, is orchestrated by several cytokines and transcription regulators. PRDM1 and PRDM2 encode for proteins with PR/SET and zinc finger domains that control several biological processes, including cell differentiation, through epigenetic regulation of gene expression. Different transcripts leading to main protein isoforms with (PR +) or without (PR-) the PR/SET domain have been described. Although many studies have established the critical PRDM1 role in hematopoietic cell differentiation, maintenance and/or function, the single transcript contribution has not been investigated before. Otherwise, very few evidence is currently available on PRDM2. Here, we aimed to analyze the role of PRDM1 and PRDM2 different transcripts as mediators of T lymphocyte activation. METHODS: We analyzed the transcription signature of the main variants from PRDM1 (BLIMP1a and BLIMP1b) and PRDM2 (RIZ1 and RIZ2) genes, in human T lymphocytes and Jurkat cells overexpressing PRDM2 cDNAs following activation through different signals. RESULTS: T lymphocyte activation induced an early increase of RIZ2 and RIZ1 followed by BLIMP1b increase and finally by BLIMP1a increase. The "first" and the "second" signals shifted the balance towards the PR- forms for both genes. Interestingly, the PI3K signaling pathway modulated the RIZ1/RIZ2 ratio in favor of RIZ1 while the balance versus RIZ2 was promoted by MAPK pathway. Cytokines mediating different Jak/Stat signaling pathways (third signal) early modulated the expression of PRDM1 and PRDM2 and the relationship of their different transcripts confirming the early increase of the PR- transcripts. Different responses of T cell subpopulations were also observed. Jurkat cells showed that the acute transient RIZ2 increase promoted the balancing of PRDM1 forms towards BLIMP1b. The stable forced expression of RIZ1 or RIZ2 induced a significant variation in the expression of key transcription factors involved in T lymphocyte differentiation. The BLIMP1a/b balance shifted in favor of BLIMP1a in RIZ1-overexpressing cells and of BLIMP1b in RIZ2-overexpressing cells. CONCLUSIONS: This study provides the first characterization of PRDM2 in T-lymphocyte activation/differentiation and novel insights on PRDM1 and PRDM2 transcription regulation during initial activation phases.
Assuntos
Epigênese Genética , Ativação Linfocitária , Humanos , Fosfatidilinositol 3-Quinases/genética , Fatores de Transcrição/genética , Citocinas/genética , Proteínas de Ligação a DNA/genética , Proteínas Nucleares/genética , Histona-Lisina N-Metiltransferase/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/genéticaRESUMO
During terminal differentiation of the mammalian retina, transcription factors control binary cell fate decisions that generate functionally distinct subtypes of photoreceptor neurons. For instance, Otx2 and RORß activate the expression of the transcriptional repressor Blimp-1/PRDM1 that represses bipolar interneuron fate and promotes rod photoreceptor fate. Moreover, Otx2 and Crx promote expression of the nuclear receptor Nrl that promotes rod photoreceptor fate and represses cone photoreceptor fate. Mutations in these four transcription factors cause severe eye diseases such as retinitis pigmentosa. Here, we show that a post-mitotic binary fate decision in Drosophila color photoreceptor subtype specification requires ecdysone signaling and involves orthologs of these transcription factors: Drosophila Blimp-1/PRDM1 and Hr3/RORß promote blue-sensitive (Rh5) photoreceptor fate and repress green-sensitive (Rh6) photoreceptor fate through the transcriptional repression of warts/LATS, the nexus of the phylogenetically conserved Hippo tumor suppressor pathway. Moreover, we identify a novel interaction between Blimp-1 and warts, whereby Blimp-1 represses a warts intronic enhancer in blue-sensitive photoreceptors and thereby gives rise to specific expression of warts in green-sensitive photoreceptors. Together, these results reveal that conserved transcriptional regulators play key roles in terminal cell fate decisions in both the Drosophila and the mammalian retina, and the mechanistic insights further deepen our understanding of how Hippo pathway signaling is repurposed to control photoreceptor fates for Drosophila color vision.
RESUMO
Testis-specific transcript 10 (Tex10) is a critical factor for pluripotent stem cell maintenance and preimplantation development. Here, we dissect its late developmental roles in primordial germ cell (PGC) specification and spermatogenesis using cellular and animal models. We discover that Tex10 binds the Wnt negative regulator genes, marked by H3K4me3, at the PGC-like cell (PGCLC) stage in restraining Wnt signaling. Depletion and overexpression of Tex10 hyperactivate and attenuate the Wnt signaling, resulting in compromised and enhanced PGCLC specification efficiency, respectively. Using the Tex10 conditional knockout mouse models combined with single-cell RNA sequencing, we further uncover critical roles of Tex10 in spermatogenesis with Tex10 loss causing reduced sperm number and motility associated with compromised round spermatid formation. Notably, defective spermatogenesis in Tex10 knockout mice correlates with aberrant Wnt signaling upregulation. Therefore, our study establishes Tex10 as a previously unappreciated player in PGC specification and male germline development by fine-tuning Wnt signaling.
RESUMO
The PRDM family transcription repressor Blimp-1 is present in almost all multicellular organisms and plays important roles in various developmental processes. This factor has several conserved motifs among different species, but the function of each motif is unclear. Drosophila Blimp-1 plays an important role in determining pupation timing by acting as an unstable transcriptional repressor of the ßftz-f1 gene. Thus, Drosophila provides a good system for analyzing the molecular and biological functions of each region in Blimp-1. Various Blimp-1 mutants carrying deletions at the conserved motifs were induced under the control of the heat shock promoter in prepupae, and the expression patterns of ßFTZ-F1 and Blimp-1 and pupation timing were observed. The results showed that the regions with strong and weak repressor functions exist within the proline-rich middle section of the factor and near the N-terminal conserved motif, respectively. Rapid degradation was supported by multiple regions that were mainly located in a large proline-rich region. Results revealed that pupation timing was affected by the repression ability and stability of Blimp-1. This suggests that both the repression function and instability of Blimp-1 are indispensable for the precise determination of pupation timing.
Assuntos
Proteínas de Drosophila , Drosophila , Animais , Proteínas de Ligação a DNA/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismoRESUMO
OBJECTIVE: Cytokine storm syndrome is a fatal condition related to infectious and autoimmune diseases. Here, we aim to investigate the regulatory mechanisms of Blimp-1 on multiple cytokine production. METHODS: The Blimp1 shRNA was transfected into RAW264.7 macrophages, followed by Toll-like receptor (TLR) ligand stimulation. The mRNA and protein levels of cytokines were detected by real-time PCR and flow cytometric bead array. The nuclear translocation of AP-1 and NF-κB p65 was measured by immunofluorescence staining. The transcriptional activity was detected by luciferase reporter assay with 5 × NF-κB reporter or with IL6 promoter reporter. RESULTS: Blimp-1 significantly inhibited the expression and secretion of IL-1ß, IL-6, and IL-18 in macrophages during stimulation with a variety of TLR ligands. The immunofluorescence staining results showed that Blimp-1 strictly controlled the nuclear translocation of NF-κB p65 in LPS-challenged macrophages. Furthermore, Blimp-1 directly inhibited the transcriptional activity of NF-κB and the transcription of IL6 gene. CONCLUSION: Blimp-1 represses the production of multiple pro-inflammatory cytokines by directly binding the genomic region and restricting the nuclear translocation and transcriptional activity of NF-κB. This finding may provide potential therapeutic strategies for the cytokine storm-related diseases.