RESUMO
This study aims to elucidate the role of miR-378a-3p in facilitating the proliferation and differentiation of synovium-derived mesenchymal stem cells (SMSCs) into chondrocytes. The effects of overexpressing miR-378a-3p on SMSCs were investigated through histological analysis, quantitative PCR, and western blotting. Then we identified binding sites of miR-378a-3p with BMP2 through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses and predictions from the RegRNA 2.0 database. Subsequently, BMP2 was confirmed as the target by which miR-378a-3p promotes the chondrogenic differentiation of SMSCs using a luciferase reporter gene assay and an miR-378a-3p RNA interference plasmid. Finally, by constructing a rat model with articular cartilage damage, we detected the reparative effects of miR-378a-3p overexpression on cartilage damage. Additionally, we verified the mechanism by which miR-378a-3p promotes chondrogenic differentiation in SMSCs. MiR-378a-3p enhances the proliferation and differentiation of SMSCs into chondrocytes by modulating the BMP2-Smad signaling pathway, thereby facilitating repair processes for articular cartilage injuries in rats. Notably, knockdown of BMP2 diminished the reparative efficacy of miR-378a-3p on articular cartilage damage. Upregulation of miR-378a-3p promotes chondrogenic differentiation in SMSCs through activation of the BMP2-Smad pathway, positioning it as a potential therapeutic target for osteoarthritis.
RESUMO
BACKGROUND: The management of non-small cell lung cancer (NSCLC) often includes the use of radiotherapy, with individual outcomes being impacted by the tumor's response to this treatment modality. Cephalomannine (CPM), a taxane diterpenoid found in Taxus spp, has been found to have anti-tumor activity. This study was aim to the explore the role and mechanism by which CPM affects radiotherapy resistance in NSCLC. METHODS: H460 cells were pretreated with different doses of CPM. H460 cells were transfected with ß-catenin overexpression plasmids. The cell viability, colony-forming ability, migration ability, and sphere-forming ability and apoptosis of the cells were measured by using CCK-8, colony-forming, transwell, and sphere-forming assay and flow cytometry. Western blot assay was employed to detect the expression of ß-catenin and BMP2. RESULTS: The cell viability, proliferation, migration and sphere-forming ability of cells in the radiotherapy-resistant (RR) group were significantly higher than those in the radiotherapy-sensitivity (RS) group. Conversely, the apoptosis rate of cells in the RR group was lower than that in the RS group. However, after CPM pretreatment of RR group cells, the above phenomena were reversed in a CPM dose-dependent manner. Subsequently, pretreatment with CPM resulted in a decrease in the expression levels of ß-catenin and BMP2 in the RR group. In addition, overexpression of ß-catenin mitigated the inhibitory effects of CPM on radiotherapy-resistant NSCLC cells. CONCLUSION: CPM has the potential to decrease radiotherapy resistance in NSCLC cells by inhibiting the ß-catenin-BMP2 signaling pathway, promoting apoptosis, and ultimately impeding cell growth.
RESUMO
Vascular calcification (VC) arises from the accumulation of calcium salts in the intimal or tunica media layer of the aorta, contributing to higher risk of cardiovascular events and mortality. Despite this, the mechanisms driving VC remain incompletely understood. We previously described that nesfatin-1 functioned as a switch for vascular smooth muscle cells (VSMCs) plasticity in hypertension and neointimal hyperplasia. In this study, we sought to investigate the role and mechanism of nesfatin-1 in VC. The expression of nesfatin-1 was measured in calcified VSMCs and aortas, as well as in patients. Loss- and gain-of-function experiments were evaluated the roles of nesfatin-1 in VC pathogenesis. The transcription activation of nesfatin-1 was detected using a mass spectrometry. We found higher levels of nesfatin-1 in both calcified VSMCs and aortas, as well as in patients with coronary calcification. Loss-of-function and gain-of-function experiments revealed that nesfatin-1 was a key regulator of VC by facilitating the osteogenic transformation of VSMCs. Mechanistically, nesfatin-1 promoted the de-ubiquitination and stability of BMP-2 via inhibiting the E3 ligase SYTL4, and the interaction of nesfatin-1 with BMP-2 potentiated BMP-2 signaling and induced phosphorylation of Smad, followed by HDAC4 phosphorylation and nuclear exclusion. The dissociation of HDAC4 from RUNX2 elicited RUNX2 acetylation and subsequent nuclear translocation, leading to the transcription upregulation of OPN, a critical player in VC. From a small library of natural compounds, we identified that Curculigoside and Chebulagic acid reduced VC development via binding to and inhibiting nesfatin-1. Eventually, we designed a mass spectrometry-based DNA-protein interaction screening to identify that STAT3 mediated the transcription activation of nesfatin-1 in the context of VC. Overall, our study demonstrates that nesfatin-1 enhances BMP-2 signaling by inhibiting the E3 ligase SYTL4, thereby stabilizing BMP-2 and facilitating the downstream phosphorylation of SMAD1/5/9 and HDAC4. This signaling cascade leads to RUNX2 activation and the transcriptional upregulation of MSX2, driving VC. These insights position nesfatin-1 as a potential therapeutic target for preventing or treating VC, advancing our understanding of the molecular mechanisms underlying this critical cardiovascular condition.
Assuntos
Proteína Morfogenética Óssea 2 , Músculo Liso Vascular , Nucleobindinas , Osteogênese , Transdução de Sinais , Calcificação Vascular , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Nucleobindinas/metabolismo , Nucleobindinas/genética , Humanos , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia , Calcificação Vascular/genética , Proteína Morfogenética Óssea 2/metabolismo , Animais , Masculino , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Miócitos de Músculo Liso/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Aorta/metabolismo , Aorta/patologiaRESUMO
Purpose: Affibodies are a class of versatile affinity proteins with a wide variety of therapeutic applications, ranging from contrast agents for imaging to cell-targeting therapeutics. We have identified several affibodies specific to bone morphogenetic protein-2 (BMP-2) with a range of binding affinities and demonstrated the ability to tune release rate of BMP-2 from affibody-conjugated poly(ethylene glycol) maleimide (PEG-mal) hydrogels based on affibody affinity strength. In this work, we compare the purity, structure, and activity of recombinant, bacterially-expressed BMP-2-specific affibodies with affibodies synthesized via solid-phase peptide synthesis. Methods: High- and low-affinity BMP-2-specific affibodies were recombinantly expressed using BL21(DE3) E. coli and chemically synthesized using microwave-assisted solid-phase peptide synthesis with Fmoc-Gly-Wang resin. The secondary structures of the affibodies and dissociation constants of affibody-BMP-2 binding were characterized by circular dichroism and biolayer interferometry, respectively. Endotoxin levels were measured using chromogenic limulus amebocyte lysate (LAL) assays. Affibody-conjugated PEG-mal hydrogels were fabricated and loaded with BMP-2 to evaluate hydrogel capacity for controlled release, quantified by enzyme-linked immunosorbent assays (ELISA). Results: Synthetic and recombinant affibodies were determined to be α-helical by circular dichroism. The synthetic high- and low-affinity BMP-2-specific affibodies demonstrated comparable BMP-2 binding dissociation constants to their recombinant counterparts. Recombinant affibodies retained some endotoxins after purification, while endotoxins were not detected in the synthetic affibodies above FDA permissible limits. High-affinity affibody-conjugated hydrogels reduced cumulative BMP-2 release compared to the low-affinity affibody-conjugated hydrogels and hydrogels without affibodies. Conclusions: Synthetic affibodies demonstrate comparable structure and function to recombinant affibodies while reducing endotoxin contamination and increasing product yield, indicating that solid-phase peptide synthesis is a viable method of producing affibodies for controlled protein release and other applications.
RESUMO
BACKGROUND: Craniofacial clefts can form a significant defect within bone and cartilage, which can negatively affect tissue homeostasis and the remodeling process. Multiple proteins can affect supportive tissue growth, while also regulating local immune response and tissue protection. Some of these factors, like galectin-10 (Gal-10), nuclear factor kappa-light-chain-enhancer of activated B cells protein 65 (NF-κB p65), heat shock protein 60 (HSP60) and 70 (HSP70) and cathelicidin (LL-37), have not been well studied in cleft-affected supportive tissue, while more known tissue regeneration regulators like type I collagen (Col-I) and bone morphogenetic proteins 2 and 4 (BMP-2/4) have not been assessed jointly with immunomodulation and protective proteins. Information about the presence and interaction of these proteins in cleft-affected supportive tissue could be helpful in developing biomaterials and improving cleft treatment. METHODS: Two control groups and two cleft patient groups for bone tissue and cartilage, respectively, were organized with five patients in each group. Immunohistochemistry with the semiquantitative counting method was implemented to determine Gal-10-, NF-κB p65-, HSP60-, HSP70-, LL-37-, Col-I- and BMP-2/4-positive cells within the tissue. RESULTS: Factor-positive cells were identified in each study group. Multiple statistically significant correlations were identified. CONCLUSIONS: A significant increase in HSP70-positive chondrocytes in cleft patients could indicate that HSP70 might be reacting to stressors caused by the local tissue defect. A significant increase in Col-I-positive osteocytes in cleft patients might indicate increased bone remodeling and osteocyte activity due to the presence of a cleft. Correlations between factors indicate notable differences in molecular interactions within each group.
RESUMO
Guiding endogenous regeneration of bone defects using biomaterials and regenerative medicine is considered an optimal strategy. One of the effective therapeutic approaches involves using transgene-expressed stem cells to treat tissue destruction and replace damaged parts. Among the various gene editing techniques for cells, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is considered as a promising method owing to the increasing therapeutic potential of cells by targeting specific sites. Herein, a vitamin D-incorporated poly(lactic-co-glycolic acid) (PLGA) scaffold with bone morphogenetic protein 2 (BMP2)/vascular endothelial growth factor (VEGF)-overexpressed tonsil-derived MSCs (ToMSCs) via CRISPR/Cas9 was introduced for bone tissue regeneration. The optimized seeding ratio of engineered ToMSCs on the scaffold demonstrated favorable immunomodulatory function, angiogenesis, and osteogenic activity in vitro. The multifunctional scaffold could potentially support stem cell in vivo and induce the transition from M1 to M2 macrophage with magnesium hydroxide and vitamin D. This study highlights the improved synergistic effect of a vitamin D-incorporated PLGA scaffold and a gene-edited ToMSCs for bone tissue engineering and regenerative medicine.
RESUMO
In clinical settings, addressing large bone defects remains a significant challenge for orthopedic surgeons. The use of genetically modified bone marrow mesenchymal stem cells (BMSCs) has emerged as a highly promising approach for these treatments. Signal peptide-CUB-EGF domain-containing protein 3 (SCUBE3) is a multifunctional secreted glycoprotein, the role of which remains unclear in human hBMSCs. This study used various experimental methods to elucidate the potential mechanism by which SCUBE3 influences osteogenic differentiation of hBMSCs in vitro. Additionally, the therapeutic efficacy of SCUBE3, in conjunction with porous GeLMA microspheres, was evaluated in vivo using a mouse bone defect model. Our findings indicate that SCUBE3 levels increase significantly during early osteogenic differentiation of hBMSCs, and that reducing SCUBE3 levels can hinder this differentiation. Overexpressing SCUBE3 elevated osteogenesis gene and protein levels and enhanced calcium deposition. Furthermore, treatment with recombinant human SCUBE3 (rhSCUBE3) protein boosted BMP2 and TGF-ß expression, activated mitophagy in hBMSCs, ameliorated oxidative stress, and restored osteogenic function through SMAD phosphorylation. In vivo, GELMA/OE treatment effectively accelerated bone healing in mice. In conclusion, SCUBE3 fosters osteogenic differentiation and mitophagy in hBMSCs by activating the BMP2/TGF-ß signaling pathway. When combined with engineered hydrogel cell therapy, it could offer valuable guidance for the clinical management of extensive bone defects.
Assuntos
Proteína Morfogenética Óssea 2 , Diferenciação Celular , Células-Tronco Mesenquimais , Mitofagia , Osteogênese , Transdução de Sinais , Fator de Crescimento Transformador beta , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Osteogênese/fisiologia , Animais , Mitofagia/fisiologia , Camundongos , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 2/genética , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Células Cultivadas , MasculinoRESUMO
Bone morphogenetic protein-2 (BMP-2) has been commercially approved by the Food and Drug Administration for use in bone defects and diseases. BMP-2 promotes osteogenic differentiation of mesenchymal stem cells. In bone tissue engineering, BMP-2 incorporated into scaffolds can be used for stimulating bone regeneration in organoid construction, drug testing platforms, and bone transplants. However, the high dosage and uncontrollable release rate of BMP-2 challenge its clinical application, mainly due to the short circulation half-life of BMP-2, microbial contamination in bone extracellular matrix hydrogel, and the delivery method. Moreover, in clinical translation, the requirement of high doses of BMP-2 for efficacy poses challenges in cost and safety. Based on these, novel strategies should ensure that BMP-2 is delivered precisely to the desired location within the body, regulating the timing of BMP-2 release to coincide with the bone healing process, as well as release BMP-2 in a controlled manner to optimize its therapeutic effect and minimize side effects. This review highlights improvements in bone tissue engineering applying spatiotemporal and controlled BMP-2 delivery, including molecular engineering, biomaterial modification, and synergistic therapy, aiming to provide references for future research and clinical trials.
Assuntos
Proteína Morfogenética Óssea 2 , Osso e Ossos , Engenharia Tecidual , Proteína Morfogenética Óssea 2/metabolismo , Engenharia Tecidual/métodos , Humanos , Animais , Osso e Ossos/metabolismo , Regeneração Óssea , Alicerces Teciduais/química , OsteogêneseRESUMO
Gunshot injuries to the foot with segmental bone defects can be challenging to treat. When the vascularity is intact and the soft tissues allows, the goal should be to reconstruct the bony defect. We present 2 cases of a gunshot injury to the foot with a defect of the first metatarsal bone. Both cases were treated, with favorable outcome, with a structural iliac crest graft, internal fixation, and bone morphogenic protein 2.Level of Evidence: V, cases series, technical.
RESUMO
Mutations in SOST can lead to various monogenic bone diseases. Its paralog, SOSTDC1, shares 55 % protein sequence homology and belongs to the BMP antagonist class. Sostdc1-/- mice exhibit distinct effects on cortical and trabecular bone. Genetic polymorphisms in SOSTDC1 impacting peak bone mass makes SOSTDC1 gene, a candidate for influencing BMD variation in humans. SOSTDC1 is upregulated in bone loss conditions, altering BMP-responsive genes and signaling modulators, suggesting its dual BMP/Wnt antagonist role may enhance both pathways. Overexpression of SOSTDC1 confirmed its role as an osteogenic antagonist. Glycine max (Soy)-derived miR4352b, identified for cross-kingdom applications, precisely targets SOSTDC1, a key regulator of bone. SOSTDC1 competitively binds to BMP2 receptor, BMPR1A. Gma-miR4352b suppresses SOSTDC1 expression, enhancing osteogenesis and countering SOSTDC1's inhibition of osteogenic potential. Modeling estrogen deficiency to mimic elevated SOSTDC1 levels, we observed an inverse correlation with SOSTDC1 expression, while serum BMP2 and PINP levels increased following gma-miR4352b supplementation. In fracture healing, SOSTDC1's crucial role becomes evident in conditions of delayed fracture healing. As healing progresses, SOSTDC1 expression decreases. Gma-miR4352b, compared to scrambled miRNA, remarkably promotes callus formation, achieving 68 % healing by day 10, surpassing the scrambled group at 44 %. By the day 13, the treatment group exhibits advanced healing, challenging to find the callus, while the scrambled group maintains a healing rate similar to day10. The accelerated healing in the treatment group underscores the importance of SOSTDC1 in influencing early fracture healing, potentially through the activation of both BMP2 and Wnt signaling pathways.
RESUMO
In this study, we developed scaffolds materials with microspheres to form a double sustained release system.Chitosan/nano-hydroxyapatite (CS-HA) was used as a drug carrier to construct a sustained-release system for Bone morphogenetic protein-2(BMP-2) and Vancomycin (VAN). Furthermore, VAN and BMP-2 loaded microspheres (Ms) were prepared by the emulsion ultrasonic method.The resultant composites were characterized by Scanning electron microscope (SEM), compressive strength, porosity, and biodegradation. The characterization results showed uniform porous and rough surface, enhanced thermal stability, and highest compressive strength ((1.912 ± 0.012) Kpa, the surface of the two microspheres was slightly folded and showed a regular spherical shape.The loading rate of BMP-2 was (59.611 × 10-4 ± 0.023 × 10-4)% and the encapsulation rate was (6.022 ± 0.005)%. The release rate of vancomycin and BMP-2 was 57.194% and 12.968% respectively. Osteogenic differentiation of Bone marrow mesenchymal stem cells (BMSCs) was confirmed by alkaline phosphatase quantification. The deposition of late osteogenic markers (calcium phosphates) detected by Alizarin red, which indicated extracellular matrix mineralization. The results showed that BMP-2/VAN in CS-HA hydrogel successfully achieved the sequential release of the double drugs, which could benefit bone regeneration.
Assuntos
Proteína Morfogenética Óssea 2 , Quitosana , Durapatita , Hidrogéis , Osteomielite , Vancomicina , Vancomicina/administração & dosagem , Vancomicina/farmacocinética , Proteína Morfogenética Óssea 2/administração & dosagem , Quitosana/administração & dosagem , Quitosana/química , Durapatita/administração & dosagem , Osteomielite/tratamento farmacológico , Animais , Antibacterianos/administração & dosagem , Doença Crônica , Preparações de Ação Retardada , Portadores de Fármacos , Microesferas , Liberação Controlada de Fármacos , Osteogênese/efeitos dos fármacos , Células-Tronco MesenquimaisRESUMO
Vascular calcification is quite common in patients with end-stage chronic kidney disease and is a major trigger for cardiovascular complications in these patients. These complications significantly impact the survival rate and long-term prognosis of individuals with chronic kidney disease. Numerous studies have demonstrated that the development of vascular calcification involves various pathophysiological mechanisms, with the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) being of utmost importance. High phosphate levels, bone morphogenetic protein 2 (BMP2), and runt-related transcription factor 2 (RUNX2) play crucial roles in the osteogenic transdifferentiation process of VSMCs. This article primarily reviews the molecular mechanisms by which high phosphate, BMP2, and RUNX2 regulate vascular calcification secondary to chronic kidney disease, and discusses the complex interactions among these factors and their impact on the progression of vascular calcification. The insights provided here aim to offer new perspectives for future research on the phenotypic switching and osteogenic transdifferentiation of VSMCs, as well as to aid in optimizing clinical treatment strategies for this condition, bearing significant clinical and scientific implications.
Assuntos
Proteína Morfogenética Óssea 2 , Subunidade alfa 1 de Fator de Ligação ao Core , Hiperfosfatemia , Músculo Liso Vascular , Insuficiência Renal Crônica , Calcificação Vascular , Humanos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia , Calcificação Vascular/etiologia , Proteína Morfogenética Óssea 2/metabolismo , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/complicações , Hiperfosfatemia/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Transdiferenciação Celular , Osteogênese/fisiologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologiaRESUMO
Bone morphogenetic protein 2 (BMP2) and BMP6 are key regulators of systemic iron homeostasis. All BMPs are generated as inactive precursor proteins that dimerize and are cleaved to generate the bioactive ligand and inactive prodomain fragments, but nothing is known about how BMP2 or BMP6 homodimeric or heterodimeric precursor proteins are proteolytically activated. Here, we conducted in vitro cleavage assays, which revealed that BMP2 is sequentially cleaved by furin at two sites, initially at a site upstream of the mature ligand, and then at a site adjacent to the ligand domain, while BMP6 is cleaved at a single furin motif. Cleavage of both sites of BMP2 is required to generate fully active BMP2 homodimers when expressed in Xenopus embryos or liver endothelial cells, and fully active BMP2/6 heterodimers in Xenopus. We analyzed BMP activity in Xenopus embryos expressing chimeric proteins consisting of the BMP2 prodomain and BMP6 ligand domain, or vice versa. We show that the prodomain of BMP2 is necessary and sufficient to generate active BMP6 homodimers and BMP2/6 heterodimers, whereas the BMP6 prodomain cannot generate active BMP2 homodimers or BMP2/6 heterodimers. We examined BMP2 and BMP6 homodimeric and heterodimeric ligands generated from native and chimeric precursor proteins expressed in Xenopus embryos. Whereas native BMP6 is not cleaved when expressed alone, it is cleaved to generate BMP2/6 heterodimers when co-expressed with BMP2. Furthermore, BMP2-6 chimeras are cleaved to generate BMP6 homodimers. Our findings reveal an important role for the BMP2 prodomain in dimerization and proteolytic activation of BMP6.
RESUMO
Biomaterials are widely employed across diverse biomedical applications and represent an attractive strategy to explore how extracellular matrix components influence cellular response. In this study, the previously developed streptavidin platforms is aimed to use to investigate the role of glycosaminoglycans (GAGs) in bone morphogenetic protein 2 (BMP2) signaling. However, it is observed that the interpretation of findings is skewed due to the GAG-unrelated, non-specific binding of BMP2 on components of biomaterials. Non-specific adsorption of proteins is a recurrent and challenging issue for biomaterial studies. Despite the initial incorporation of anti-fouling polyethylene glycol (PEG) chains within biomaterials, the residual non-specific BMP2 adsorption still triggered BMP2 signaling within the same range as conditions of interest. The various options are explored to prevent BMP2 non-specific adsorption and a successful blocking condition involving a combination of bovine serum albumin and trehalose are identified. Furthermore, the effect of this blocking step improved when using gold platforms instead of glass, particularly with Chinese hamster ovary (CHO) cells. With this specific example, it is suggested that non-specific adsorption of BMPs on biomaterials may be a general concern - often undetected by classical surface-sensitive techniques - that needs to be addressed to better interpret cellular responses.
RESUMO
Growth factor holds great promise for bone regeneration, and spatiotemporal control of their expressing through site-specific reactions is crucial but challenging for on-demand therapy. In this study, we present the development of a novel unnatural amino acids (UAAs)-triggered therapeutic switch (UATS) system, composed of an orthogonal aminoacyl-tRNA-synthase (aaRS)-tRNA pair and a bone morphogenetic protein 2 (BMP2) gene harboring premature stop codon, which enable in situ and on-demand initiation of the expression of BMP2. The resulting UATS system allowed specifically control of base expressing on the BMP2 mRNA that switched to the BMP2 protein with complete structure and function to facilitate bone regeneration. Our investigations showed that the UATS system exhibits remarkable attributes of rapid, sensitive, reversible, and sustained BMP2 expression both in vitro and in vivo settings. Moreover, the implantation of microencapsulated cells with UATS system is applied to a mouse femur defect model, demonstrating high effciency in controlled expressing of BMP2 protein and substantial repair of bone defect following oral administration of UAAs. Therefore, our findings underscore the great potential of UATS system for on-demand awakening of functional growth factor, thus offering promising prospects in the realm of regenerative medicine.
Assuntos
Proteína Morfogenética Óssea 2 , Regeneração Óssea , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Animais , Humanos , Camundongos , Fêmur/metabolismo , Masculino , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , RNA de Transferência/genética , Osteogênese , Camundongos Endogâmicos C57BLRESUMO
OBJECTIVE: Delayed fracture healing increases the suffering of patients. An in-depth investigation of the pathogenesis of delayed fracture healing may offer new direction for the prevention and treatment. METHODS: The study included 63 normal healing tibial fractures and 58 delayed healing tibial fractures patients. Long non-coding RNA (lncRNA)TRPM2-AS, microRNA-545-3p (miR-545-3p), bone morphogenetic protein 2 (Bmp2) mRNA and osteogenic differentiation markers, including runt-related transcription factor 2 (Runx2), osteocalcin (Ocn), and alkaline phosphatase (Alp) mRNA expression were determined by Real-time quantitative reverse transcription-polymerase chain reaction in serum and MC3T3-E1 cells. The prediction potential of TRPM2-AS in delayed healing fracture patients was verified by receiver operating characteristic curves. The binding relationship of TRPM2-AS/miR-545-3p/Bmp2 was evaluated by dual luciferase reporter gene assay. Cell proliferation and apoptosis were detected by CCK-8 and flow cytometry. RESULTS: TRPM2-AS was remarkably down-regulated in patients with delayed fracture healing and could better predict the fracture healing status. TRPM2-AS downregulation inhibited osteogenic markers mRNA expression, restrained proliferation, and promoted apoptosis of MC3T3-E1 cells (p < 0.05). In delayed fracture healing, miR-545-3p was dramatically up-regulated and was negatively regulated by TRPM2-AS. Reducing miR-545-3p eliminate the negative effect of TRPM2-AS down-regulation on osteoblast proliferation and differentiation (p < 0.05). miR-545-3p targets Bmp2, which plays a positive role in osteoblast differentiation (p < 0.05). CONCLUSION: This study found that TRPM2-AS has the potential to be a diagnostic marker for delayed fracture healing and revealed that the TRPM2-AS/miR-545-3p/Bmp2 axis affects fracture healing by regulating osteoblast.
Assuntos
Proteína Morfogenética Óssea 2 , Consolidação da Fratura , MicroRNAs , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Apoptose/genética , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular/genética , Proliferação de Células/genética , Consolidação da Fratura/genética , Consolidação da Fratura/fisiologia , MicroRNAs/genética , Osteoblastos/metabolismo , Osteogênese/genética , Osteogênese/fisiologia , RNA Longo não Codificante/genética , Fraturas da Tíbia/genética , Canais de Cátion TRPM/genéticaRESUMO
A new dual-functional implant based on gellan-xanthan hydrogel with calcium-magnesium silicate ceramic diopside and recombinant lysostaphin and bone morphogenetic protein 2 (BMP-2)-ray is developed. In this composite, BMP-2 is immobilized on microparticles of diopside while lysostaphin is mixed directly into the hydrogel, providing sustained release of BMP-2 to allow gradual bone formation and rapid release of lysostaphin to eliminate infection immediately after implantation. Introduction of diopside of up to 3% (w/v) has a negligible effect on the mechanical properties of the hydrogel but provides a high sorption capacity for BMP-2. The hydrogels show good biocompatibility and antibacterial activity. Lysostaphin released from the implants over a 3 h period efficiently kills planktonic cells and completely destroys 24 h pre-formed biofilms of Staphylococcus aureus. Furthermore, in vivo experiments in a mouse model of critically-sized cranial defects infected with S. aureus show a complete lack of osteogenesis when implants contain only BMP-2, whereas, in the presence of lysostaphin, complete closure of the defect with newly formed mineralized bone tissue is observed. Thus, the new implantable gellan-xanthan hydrogel with diopside and recombinant lysostaphin and BMP-2 shows both osteogenic and antibacterial properties and represents a promising material for the treatment and/or prevention of osteomyelitis after bone trauma.
RESUMO
Biomaterial-based approaches for bone regeneration seek to explore alternative strategies to repair non-healing fractures and critical-sized bone defects. Fracture non-union occurs due to a number of factors resulting in the formation of bone defects. Rigorous evaluation of the biomaterials in relevant models and assessment of their potential to translate towards clinical use is vital. Large animal experimentation can be used to model fracture non-union while scaling-up materials for clinical use. Growth factors modulate cell phenotype, behaviour and initiate signalling pathways leading to changes in matrix deposition and tissue formation. Bone morphogenetic protein-2 (BMP-2) is a potent osteogenic growth factor, with a rapid clearance time in vivo necessitating clinical use at a high dose, with potential deleterious side-effects. The current studies have examined the potential for Laponite® nanoclay coated poly(caprolactone) trimethacrylate (PCL-TMA900) scaffolds to bind BMP-2 for enhanced osteoinduction in a large animal critical-sized bone defect. An ovine femoral condyle defect model confirmed PCL-TMA900 scaffolds coated with Laponite®/BMP-2 produced significant bone formation compared to the uncoated PCL-TMA 900 scaffold in vivo, assessed by micro-computed tomography (µCT) and histology. This indicated the ability of Laponite® to deliver the bioactive BMP-2 on the PCL-TMA900 scaffold. Bone formed around the Laponite®/BMP-2 coated PCL-TMA900 scaffold, with no erroneous bone formation observed away from the scaffold material confirming localisation of BMP-2 delivery. The current studies demonstrate the ability of a nanoclay to localise and deliver bioactive BMP-2 within a tailored octet-truss scaffold for efficacious bone defect repair in a large animal model with significant implications for translation to the clinic.
Assuntos
Proteína Morfogenética Óssea 2 , Regeneração Óssea , Fêmur , Impressão Tridimensional , Silicatos , Alicerces Teciduais , Animais , Proteína Morfogenética Óssea 2/administração & dosagem , Proteína Morfogenética Óssea 2/farmacologia , Regeneração Óssea/efeitos dos fármacos , Silicatos/química , Silicatos/farmacologia , Silicatos/administração & dosagem , Alicerces Teciduais/química , Ovinos , Fêmur/patologia , Fêmur/lesões , Fêmur/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Osteogênese/efeitos dos fármacos , Modelos Animais de DoençasRESUMO
Bone grafting is the most common treatment for repairing bone defects. However, current bone grafting methods have several drawbacks. Bone tissue engineering emerges as a promising solution to these problems. An ideal engineered bone graft should exhibit high mechanical strength, osteogenic properties, and pre-vascularization. Both top-down (using bulk scaffold) and bottom-up (using granular modules) approaches face challenges in fulfilling these requirements. In this paper, we propose a novel sectional modular bone approach to construct osteogenic, pre-vascularized bone grafts in anatomical shapes. We 3D-printed a series of rigid, thin, sectional, porous scaffolds from a biodegradable polymer, tailored to the dimensions of a femur bone shaft. These thin sectional modules promote efficient nutrition and waste removal due to a shorter diffusion distance. The modules were pre-vascularized viain-situangiogenesis, achieved through endothelial cell sprouting from the scaffold struts. Angiogenesis was further enhanced through co-culture with bioprinted fibroblast microtissues, which secreted pre-angiogenic growth factors. Sectional modules were assembled around a porous rod incorporated with Bone Morphogenetic Protein-2 (BMP-2), which released over 3 weeks, demonstrating sustained osteogenic activity. The assembled scaffold, in the anatomical shape of a human femur shaft, was pre-vascularized, osteogenic, and possessed high mechanical strength, supporting 12 times the average body weight. The feasibility of implanting the assembled bone graft was demonstrated using a 3D-printed femur bone defect model. Our method provides a novel modular engineering approach for regenerating tissues that require high mechanical strength and vascularization.
Assuntos
Bioimpressão , Proteína Morfogenética Óssea 2 , Transplante Ósseo , Neovascularização Fisiológica , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Proteína Morfogenética Óssea 2/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Humanos , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Animais , Fêmur/irrigação sanguínea , Preparações de Ação Retardada/química , Osteogênese/efeitos dos fármacos , Osso e Ossos/irrigação sanguínea , Células Endoteliais da Veia Umbilical Humana , AngiogêneseRESUMO
Bone grafting procedures are commonly used for the repair, regeneration, and fusion of bones in a wide range of orthopaedic surgeries, including large bone defects and spine fusion procedures. Autografts are the clinical gold standard, though recombinant human bone morphogenetic proteins (rhBMPs) are often used, particularly in difficult clinical situations. However, treatment with rhBMPs can have off-target effects and increase surgical costs, adding to patients' already high economic and mental burden. Recent studies have identified that FDA-approved immunosuppressant drug, FK506 (Tacrolimus), can also activate the BMP pathway by binding to its inhibitors. This study tested the hypothesis that FK506, as a standalone treatment, could induce osteogenic differentiation of human mesenchymal stromal cells (hMSCs), as well as functional bone formation in a rat segmental bone defect model and rabbit spinal fusion model. FK506 enhanced osteogenic differentiation and mineralization of hMSCs in vitro. Standalone treatment with FK506 delivered on a collagen sponge produced consistent bone bridging of a critically sized rat femoral defect with functional mechanical properties comparable to naïve bone. In a rabbit single level posterolateral spine fusion model, treatment with FK506 delivered on a collagen sponge successfully fused the L5-L6 vertebrae at rates comparable to rhBMP-2 treatment. These data demonstrate the ability of FK506 to induce bone formation in human cells and two challenging in vivo models, and indicate FK506 can be utilized to treat a variety of spine disorders.