Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Expert Opin Drug Metab Toxicol ; 20(6): 459-471, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38832686

RESUMO

INTRODUCTION: Advances in the accessibility of manufacturing technologies and iPSC-based modeling have accelerated the overall progress of organs-on-a-chip. Notably, the progress in multi-organ systems is not progressing with equal speed, indicating that there are still major technological barriers to overcome that may include biological relevance, technological usability as well as overall accessibility. AREAS COVERED: We here review the progress in the field of multi-tissue- and body-on-a-chip pre and post- SARS-CoV-2 pandemic and review five selected studies with increasingly complex multi-organ chips aiming at pharmacological studies. EXPERT OPINION: We discuss future and necessary advances in the field of multi-organ chips including how to overcome challenges regarding cell diversity, improved culture conditions, model translatability as well as sensor integrations to enable microsystems to cover organ-organ interactions in not only toxicokinetic but more importantly pharmacodynamic and -kinetic studies.


Assuntos
COVID-19 , Dispositivos Lab-On-A-Chip , Farmacocinética , Humanos , Animais , Preparações Farmacêuticas/metabolismo , Preparações Farmacêuticas/administração & dosagem , Modelos Biológicos , Sistemas Microfisiológicos
2.
J Infect Dis ; 228(Suppl 5): S337-S354, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37669225

RESUMO

The National Center for Advancing Translational Sciences (NCATS) Assay Guidance Manual (AGM) Workshop on 3D Tissue Models for Antiviral Drug Development, held virtually on 7-8 June 2022, provided comprehensive coverage of critical concepts intended to help scientists establish robust, reproducible, and scalable 3D tissue models to study viruses with pandemic potential. This workshop was organized by NCATS, the National Institute of Allergy and Infectious Diseases, and the Bill and Melinda Gates Foundation. During the workshop, scientific experts from academia, industry, and government provided an overview of 3D tissue models' utility and limitations, use of existing 3D tissue models for antiviral drug development, practical advice, best practices, and case studies about the application of available 3D tissue models to infectious disease modeling. This report includes a summary of each workshop session as well as a discussion of perspectives and challenges related to the use of 3D tissues in antiviral drug discovery.


Assuntos
Antivirais , Descoberta de Drogas , Antivirais/farmacologia , Antivirais/uso terapêutico , Bioensaio
3.
Front Immunol ; 13: 1011143, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225917

RESUMO

The FDA has predicted that at least 10-20 gene therapy products will be approved by 2025. The surge in the development of such therapies can be attributed to the advent of safe and effective gene delivery vectors such as adeno-associated virus (AAV). The enormous potential of AAV has been demonstrated by its use in over 100 clinical trials and the FDA's approval of two AAV-based gene therapy products. Despite its demonstrated success in some clinical settings, AAV-based gene therapy is still plagued by issues related to host immunity, and recent studies have suggested that AAV vectors may actually integrate into the host cell genome, raising concerns over the potential for genotoxicity. To better understand these issues and develop means to overcome them, preclinical model systems that accurately recapitulate human physiology are needed. The objective of this review is to provide a brief overview of AAV gene therapy and its current hurdles, to discuss how 3D organoids, microphysiological systems, and body-on-a-chip platforms could serve as powerful models that could be adopted in the preclinical stage, and to provide some examples of the successful application of these models to answer critical questions regarding AAV biology and toxicity that could not have been answered using current animal models. Finally, technical considerations while adopting these models to study AAV gene therapy are also discussed.


Assuntos
Dependovirus , Vetores Genéticos , Animais , Dependovirus/genética , Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos/genética , Humanos , Organoides
4.
Stem Cell Res Ther ; 13(1): 431, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987699

RESUMO

Body-on-a-chip (BoC) platforms are established from multiple organs-on-chips (OoCs) to recapitulate the interactions between different tissues. Recently, Vunjak-Novakovic and colleagues reported the creation of a BoC system comprising four fluidically linked OoCs. Herein, the major innovations in their BoC system are discussed, followed by our future perspectives on enhancing the physiological relevance and scalability of BoCs for applications in studying disease mechanisms, testing potential therapeutics, and developing personalized medicine.


Assuntos
Corpo Humano , Dispositivos Lab-On-A-Chip , Humanos , Medicina de Precisão
5.
Front Cell Dev Biol ; 9: 721338, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568333

RESUMO

Identification and approval of new drugs for use in patients requires extensive preclinical studies and clinical trials. Preclinical studies rely on in vitro experiments and animal models of human diseases. The transferability of drug toxicity and efficacy estimates to humans from animal models is being called into question. Subsequent clinical studies often reveal lower than expected efficacy and higher drug toxicity in humans than that seen in animal models. Microphysiological systems (MPS), sometimes called organ or human-on-chip models, present a potential alternative to animal-based models used for drug toxicity screening. This review discusses multi-organ MPS that can be used to model diseases and test the efficacy and safety of drug candidates. The translation of an in vivo environment to an in vitro system requires physiologically relevant organ scaling, vascular dimensions, and appropriate flow rates. Even small changes in those parameters can alter the outcome of experiments conducted with MPS. With many MPS devices being developed, we have outlined some established standards for designing MPS devices and described techniques to validate the devices. A physiologically realistic mimic of the human body can help determine the dose response and toxicity effects of a new drug candidate with higher predictive power.

6.
Micromachines (Basel) ; 12(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919242

RESUMO

Organ-on-a-chip technology has the potential to accelerate pharmaceutical drug development, improve the clinical translation of basic research, and provide personalized intervention strategies. In the last decade, big pharma has engaged in many academic research cooperations to develop organ-on-a-chip systems for future drug discoveries. Although most organ-on-a-chip systems present proof-of-concept studies, miniaturized organ systems still need to demonstrate translational relevance and predictive power in clinical and pharmaceutical settings. This review explores whether microfluidic technology succeeded in paving the way for developing physiologically relevant human in vitro models for pharmacology and toxicology in biomedical research within the last decade. Individual organ-on-a-chip systems are discussed, focusing on relevant applications and highlighting their ability to tackle current challenges in pharmacological research.

7.
Micromachines (Basel) ; 12(2)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525451

RESUMO

Tissue chips (TCs) and microphysiological systems (MPSs) that incorporate human cells are novel platforms to model disease and screen drugs and provide an alternative to traditional animal studies. This review highlights the basic definitions of TCs and MPSs, examines four major organs/tissues, identifies critical parameters for organization and function (tissue organization, blood flow, and physical stresses), reviews current microfluidic approaches to recreate tissues, and discusses current shortcomings and future directions for the development and application of these technologies. The organs emphasized are those involved in the metabolism or excretion of drugs (hepatic and renal systems) and organs sensitive to drug toxicity (cardiovascular system). This article examines the microfluidic/microfabrication approaches for each organ individually and identifies specific examples of TCs. This review will provide an excellent starting point for understanding, designing, and constructing novel TCs for possible integration within MPS.

8.
Pflugers Arch ; 473(7): 1061-1085, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33629131

RESUMO

Development of new drugs is of high interest for the field of cardiac and cardiovascular diseases, which are a dominant cause of death worldwide. Before being allowed to be used and distributed, every new potentially therapeutic compound must be strictly validated during preclinical and clinical trials. The preclinical studies usually involve the in vitro and in vivo evaluation. Due to the increasing reporting of discrepancy in drug effects in animal and humans and the requirement to reduce the number of animals used in research, improvement of in vitro models based on human cells is indispensable. Primary cardiac cells are difficult to access and maintain in cell culture for extensive experiments; therefore, the human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) became an excellent alternative. This technology enables a production of high number of patient- and disease-specific cardiomyocytes and other cardiac cell types for a large-scale research. The drug effects can be extensively evaluated in the context of electrophysiological responses with a use of well-established tools, such as multielectrode array (MEA), patch clamp, or calcium ion oscillation measurements. Cardiotoxicity, which is a common reason for withdrawing drugs from marketing or rejection at final stages of clinical trials, can be easily verified with a use of hiPSC-CM model providing a prediction of human-specific responses and higher safety of clinical trials involving patient cohort. Abovementioned studies can be performed using two-dimensional cell culture providing a high-throughput and relatively lower costs. On the other hand, more complex structures, such as engineered heart tissue, organoids, or spheroids, frequently applied as co-culture systems, represent more physiological conditions and higher maturation rate of hiPSC-derived cells. Furthermore, heart-on-a-chip technology has recently become an increasingly popular tool, as it implements controllable culture conditions, application of various stimulations and continuous parameters read-out. This paper is an overview of possible use of cardiomyocytes and other cardiac cell types derived from hiPSC as in vitro models of heart in drug research area prepared on the basis of latest scientific reports and providing thorough discussion regarding their advantages and limitations.


Assuntos
Coração/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Animais , Desenvolvimento de Medicamentos/métodos , Humanos , Dispositivos Lab-On-A-Chip , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/fisiologia
9.
Bioact Mater ; 6(4): 1012-1027, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33102943

RESUMO

Nanomedicine involves the use of engineered nanoscale materials in an extensive range of diagnostic and therapeutic applications and can be applied to the treatment of many diseases. Despite the rapid progress and tremendous potential of nanomedicine in the past decades, the clinical translational process is still quite slow, owing to the difficulty in understanding, evaluating, and predicting nanomaterial behaviors within the complex environment of human beings. Microfluidics-based organ-on-a-chip (Organ Chip) techniques offer a promising way to resolve these challenges. Sophisticatedly designed Organ Chip enable in vitro simulation of the in vivo microenvironments, thus providing robust platforms for evaluating nanomedicine. Herein, we review recent developments and achievements in Organ Chip models for nanomedicine evaluations, categorized into seven broad sections based on the target organ systems: respiratory, digestive, lymphatic, excretory, nervous, and vascular, as well as coverage on applications relating to cancer. We conclude by providing our perspectives on the challenges and potential future directions for applications of Organ Chip in nanomedicine.

10.
Int J Bioprint ; 6(4): 302, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33089000

RESUMO

While the number of studies related to severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is constantly growing, it is essential to provide a framework of modeling viral infections. Therefore, this review aims to describe the background presented by earlier used models for viral studies and an approach to design an "ideal" tissue model for SARS-CoV-2 infection. Due to the previous successful achievements in antiviral research and tissue engineering, combining the emerging techniques such as bioprinting, microfluidics, and organoid formation are considered to be one of the best approaches to form in vitro tissue models. The fabrication of an integrated multi-tissue bioprinted platform tailored for SARS-CoV-2 infection can be a great breakthrough that can help defeat coronavirus disease in 2019.

11.
Bioengineering (Basel) ; 7(3)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947816

RESUMO

Organs-on-a-Chip (OOAC) is a disruptive technology with widely recognized potential to change the efficiency, effectiveness, and costs of the drug discovery process; to advance insights into human biology; to enable clinical research where human trials are not feasible. However, further development is needed for the successful adoption and acceptance of this technology. Areas for improvement include technological maturity, more robust validation of translational and predictive in vivo-like biology, and requirements of tighter quality standards for commercial viability. In this review, we reported on the consensus around existing challenges and necessary performance benchmarks that are required toward the broader adoption of OOACs in the next five years, and we defined a potential roadmap for future translational development of OOAC technology. We provided a clear snapshot of the current developmental stage of OOAC commercialization, including existing platforms, ancillary technologies, and tools required for the use of OOAC devices, and analyze their technology readiness levels. Using data gathered from OOAC developers and end-users, we identified prevalent challenges faced by the community, strategic trends and requirements driving OOAC technology development, and existing technological bottlenecks that could be outsourced or leveraged by active collaborations with academia.

12.
Biotechnol Prog ; 36(6): e3048, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32663376

RESUMO

Body-on-a-chip and organ-on-a-chip systems utilize polydimethylsiloxane (PDMS) because of the relative suitability of the material for fabrication of microfluidic channels and chambers used in these devices. However, hydrophobic molecules, especially therapeutic compounds, tend to adsorb to PDMS, which may distort the dose-response curves that feed into the pharmacokinetic/pharmacodynamic models used to translate preclinical data into predictions of clinical outcomes. Surface modification by organosilanes is one method being explored to modify PDMS, but the effect of organosilanes on drug adsorption isotherms is not well characterized. We utilized Inverse Liquid-Solid Chromatography to characterize the adsorption parameters of the drugs acetaminophen, diclofenac, and verapamil with native PDMS and organosilane-modified (fluoropolymer (13F) and polyethylene glycol) PDMS surfaces, to correlate the modifications with changes in drug adsorption. It was determined that the organosilane modifications significantly changed the energy of adsorption of the test drug utilizing our methodology.


Assuntos
Cromatografia Líquida , Dimetilpolisiloxanos/química , Interações Medicamentosas , Dispositivos Lab-On-A-Chip , Adsorção/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Compostos de Organossilício/química , Compostos de Organossilício/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia
13.
Methods Cell Biol ; 158: 1-10, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32423644

RESUMO

Current in vitro model systems cannot recapitulate the complex interactions between multiple organs in the body, and the whole-body responses to drugs involving multiple organs. In addition, many diseases arise from a mechanism involving multiple organs, making it difficult to build realistic models of such diseases. Organ-on-a-chip technology offers an opportunity to mimic physiological microenvironment of in vivo tissues, as well as to reproduce interactions between organs by connecting these "organ modules." By realizing multi-organ interactions on a chip, it becomes possible to develop an in vitro model of diseases that involves complex interactions between organs. Here, we introduce the concept of "body-on-a-chip," with a specific emphasis on recapitulating the interaction between the gut and the liver, which play important roles in many diseases, as well as responses to drugs.


Assuntos
Trato Gastrointestinal/fisiologia , Dispositivos Lab-On-A-Chip , Fígado/fisiologia , Células CACO-2 , Células Hep G2 , Humanos , Metabolismo dos Lipídeos
14.
Biotechnol Bioeng ; 117(3): 736-747, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31758543

RESUMO

In vitro systems that mimic organ functionality have become increasingly important tools in drug development studies. Systems that measure the functional properties of skeletal muscle are beneficial to compound screening studies and also for integration into multiorgan devices. To date, no studies have investigated human skeletal muscle responses to drug treatments at the single myotube level in vitro. This report details a microscale cantilever chip-based assay system for culturing individual human myotubes. The cantilevers, along with a laser and photo-detector system, enable measurement of myotube contractions in response to broad-field electrical stimulation. This system was used to obtain baseline functional parameters for untreated human myotubes, including peak contractile force and time-to-fatigue data. The cultured myotubes were then treated with known myotoxic compounds and the resulting functional changes were compared to baseline measurements as well as known physiological responses in vivo. The collected data demonstrate the system's capacity for screening direct effects of compound action on individual human skeletal myotubes in a reliable, reproducible, and noninvasive manner. Furthermore, it has the potential to be utilized for high-content screening, disease modeling, and exercise studies of human skeletal muscle performance utilizing iPSCs derived from specific patient populations such as the muscular dystrophies.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Modelos Biológicos , Contração Muscular/efeitos dos fármacos , Músculo Esquelético , Atorvastatina/toxicidade , Células Cultivadas , Doxorrubicina/toxicidade , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Dispositivos Lab-On-A-Chip , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Distrofias Musculares/metabolismo
15.
Biochem Pharmacol ; 173: 113648, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31586589

RESUMO

Oxysterols are molecules derived by the oxidation of cholesterol and can be formed either by auto-oxidation, enzymatically or by both processes. Among the oxysterols formed by auto-oxidation, 7-ketocholesterol and 7ß-hydroxycholesterol are the main forms generated. These oxysterols, formed endogenously and brought in large quantities by certain foods, have major cytotoxic properties. They are powerful inducers of oxidative stress, inducing dysfunction of organelles (mitochondria, lysosomes and peroxisomes) that can cause cell death. These molecules are often identified in increased amounts in common pathological states such as cardiovascular diseases, certain eye conditions, neurodegenerative disorders and inflammatory bowel diseases. To oppose the cytotoxic effects of these molecules, it is important to know their biological activities and the signaling pathways they affect. Numerous cell models of the vascular wall, eye, brain, and digestive tract have been used. Currently, to counter the cytotoxic effects of 7-ketocholesterol and 7ß-hydroxycholesterol, natural molecules and oils, often associated with the Mediterranean diet, as well as synthetic molecules, have proved effective in vitro. Bioremediation approaches and the use of functionalized nanoparticles are also promising. At the moment, invertebrate and vertebrate models are mainly used to evaluate the metabolism and the toxicity of 7-ketocholesterol and 7ß-hydroxycholesterol. The most frequently used models are mice, rats and rabbits. In order to cope with the difficulty of transferring the results obtained in animals to humans, the development of in vitro alternative methods such as organ/body-on-a-chip based on microfluidic technology are hopeful integrative approaches.


Assuntos
Modelos Animais de Doenças , Hidroxicolesteróis/toxicidade , Cetocolesteróis/toxicidade , Organelas/efeitos dos fármacos , Animais , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/metabolismo , Catarata/induzido quimicamente , Catarata/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Hidroxicolesteróis/química , Hidroxicolesteróis/metabolismo , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/metabolismo , Cetocolesteróis/química , Cetocolesteróis/metabolismo , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/metabolismo , Organelas/metabolismo
16.
Microphysiol Syst ; 42020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34131641

RESUMO

BACKGROUND: Decreasing the amount of liquid inside microphysiological systems (MPS) can help uncover the presence of toxic drug metabolites. However, maintaining near-physiological volume ratios among blood surrogate and multiple organ mimics is technically challenging. Here, we developed a body cube and tested its ability to support four human tissues (kidney, GI tract, liver, and bone marrow) scaled down from in vivo functional volumes by a factor of 73,000 with 80 µL of cell culture medium (corresponding to ~1/73000th of in vivo blood volume). METHODS: GI tract cells (Caco-2), liver cells (HepG2/C3A), bone marrow cells (Meg-01), and kidney cells (HK-2) were co-cultured inside the body cube with 80 µL of common, recirculating cell culture medium for 72 h. The system was challenged with acetaminophen and troglitazone, and concentrations of aspartate aminotransferase (AST), albumin, and urea were monitored over time. RESULTS: Cell viability analysis showed that 95.5%±3.2% of liver cells, 89.8%±4.7% of bone marrow cells, 82.8%±8.1% of GI tract cells, and 80.1%±11.5% of kidney cells were viable in co-culture for 72 h. Both acetaminophen and troglitazone significantly lowered cell viability in the liver chamber as indicated by viability analysis and a temporary increase of AST in the cell culture medium. Both drugs also lowered urea production in the liver by up to 45%. CONCLUSIONS: Cell viability data and the production of urea and albumin indicate that the co-culture of GI tract, liver, bone marrow, and kidney tissues with near-physiological volume ratios of tissues to blood surrogate is possible for up to 72 h. The body-cube was capable of reproducing liver toxicity to HepG2/C3A liver cells via acetaminophen and troglitazone. The developed design provides a viable format for acute toxicity testing with near-physiological blood surrogate to tissue volume ratios.

17.
Biosensors (Basel) ; 9(3)2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31546916

RESUMO

Organs-on-chips are considered next generation in vitro tools capable of recreating in vivo like, physiological-relevant microenvironments needed to cultivate 3D tissue-engineered constructs (e.g., hydrogel-based organoids and spheroids) as well as tissue barriers. These microphysiological systems are ideally suited to (a) reduce animal testing by generating human organ models, (b) facilitate drug development and (c) perform personalized medicine by integrating patient-derived cells and patient-derived induced pluripotent stem cells (iPSCs) into microfluidic devices. An important aspect of any diagnostic device and cell analysis platform, however, is the integration and application of a variety of sensing strategies to provide reliable, high-content information on the health status of the in vitro model of choice. To overcome the analytical limitations of organs-on-a-chip systems a variety of biosensors have been integrated to provide continuous data on organ-specific reactions and dynamic tissue responses. Here, we review the latest trends in biosensors fit for monitoring human physiology in organs-on-a-chip systems including optical and electrochemical biosensors.


Assuntos
Técnicas Biossensoriais/métodos , Procedimentos Analíticos em Microchip/métodos , Sistemas de Liberação de Medicamentos , Humanos
18.
Adv Sci (Weinh) ; 6(13): 1900294, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31380185

RESUMO

The integration of metabolic competence in developmental toxicity assays in vitro is of fundamental importance to better predict adverse drug effects. Here, a microfluidic hanging-drop platform is presented that seamlessly integrates liver metabolism into the embryonic stem cell test (EST). Primary human liver microtissues (hLiMTs) and embryoid bodies (EBs) are combined in the same fluidic network, so that hLiMT-generated metabolites are directly transported to the EBs. Gravity-driven flow through the network enables continuous intertissue communication, constant medium turnover, and, most importantly, immediate exchange of metabolites. As a proof of concept, the prodrug cyclophosphamide is investigated and a fourfold lower ID50 concentration (50% inhibition of EB differentiation) is found after biotransformation, which demonstrates the potentially adverse effects of metabolites on embryotoxicity. The metaEST platform provides a promising tool to increase the predictive power of the current EST assay by more comprehensively including and better reflecting physiological processes in in vitro tests.

19.
Expert Opin Drug Metab Toxicol ; 15(1): 61-75, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30526128

RESUMO

Introduction: Human pluripotent stem cells (hPSCs) are capable of differentiating into all types of cells in the body and so provide suitable toxicology screening systems even for hard-to-obtain human tissues. Since hPSCs can also be generated from differentiated cells and current gene editing technologies allow targeted genome modifications, hPSCs can be applied for drug toxicity screening both in normal and disease-specific models. Targeted hPSC differentiation is still a challenge but cardiac, neuronal or liver cells, and complex cellular models are already available for practical applications. Areas covered: The authors review new gene-editing and cell-biology technologies to generate sensitive toxicity screening systems based on hPSCs. Then the authors present the use of undifferentiated hPSCs for examining embryonic toxicity and discuss drug screening possibilities in hPSC-derived models. The authors focus on the application of human cardiomyocytes, hepatocytes, and neural cultures in toxicity testing, and discuss the recent possibilities for drug screening in a 'body-on-a-chip' model system. Expert opinion: hPSCs and their genetically engineered derivatives provide new possibilities to investigate drug toxicity in human tissues. The key issues in this regard are still the selection and generation of proper model systems, and the interpretation of the results in understanding in vivo drug effects.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/diagnóstico , Células-Tronco Pluripotentes/citologia , Testes de Toxicidade/métodos , Animais , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Hepatócitos/citologia , Humanos , Dispositivos Lab-On-A-Chip , Modelos Biológicos , Miócitos Cardíacos/citologia , Neurônios/citologia
20.
Bioengineering (Basel) ; 5(3)2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29933623

RESUMO

A low percentage of novel drug candidates succeed and reach the end of the drug discovery pipeline, mainly due to poor initial screening and assessment of the effects of the drug and its metabolites over various tissues in the human body. For that, emerging technologies involving the production of organoids from human pluripotent stem cells (hPSCs) and the use of organ-on-a-chip devices are showing great promise for developing a more reliable, rapid and cost-effective drug discovery process when compared with the current use of animal models. In particular, the possibility of virtually obtaining any type of cell within the human body, in combination with the ability to create patient-specific tissues using human induced pluripotent stem cells (hiPSCs), broadens the horizons in the fields of drug discovery and personalized medicine. In this review, we address the current progress and challenges related to the process of obtaining organoids from different cell lineages emerging from hPSCs, as well as how to create devices that will allow a precise examination of the in vitro effects generated by potential drugs in different organ systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA