Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Indian J Microbiol ; 64(1): 100-109, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38468747

RESUMO

The objective of this study was to investigate the effect of bovine milk derived exosomes (MDEs) on the gut microbiota of Dextran sodium sulfate (DSS)-induced colitis mice. Total of 42 specific pathogen free (SPF) male BALB/c mice (3 weeks old) were randomly assigned to three groups including control group, DSS group (DSS) and bovine milk derived exosome group (Exo), with 7 replicates/cages per treatment and two mice in one cage. 16S rRNA gene sequencing of cecal digesta samples was conducted. DSS significantly decreased the average daily feed intake of mice in DSS and Exo groups (P = 0.03). Shannon index of the DSS group was significantly lower than the control group (P < 0.05) whereas no difference between the control group and Exo group was observed. Administration of MDEs tended to increase the relative abundance of Campylobaterota. Compared to the control group, the relative abundance of Roseburia was significantly decreased in the DSS group (P < 0.05) whereas no difference between the Exo group and control group was observed. MDEs also tended to increase the relative abundance of Lachnospiraceae_UCG_006. In conclusion, oral administration of 10 µL MDEs (1 mg/mL) positively affected gut microbiota of DSS-induced colitis mice. The results of this study provided valuable reference for MDEs application in the prevention and treatment of colitis.

2.
J Cosmet Dermatol ; 23(4): 1374-1385, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38105431

RESUMO

BACKGROUND: Exosomes are small vesicles released from cells and are found in various mammalian biological fluids, such as bovine milk, which has been employed in skincare for many years, apart from its dairy applications. In addition, exosomes have been recognized as vehicles for intercellular communication. AIMS: In this study, we aimed to investigate the novel effects of bovine milk-derived exosomes (MK-Exo) on antiaging in human skin. METHODS: Initially, MK-Exo were co-cultured with keratinocytes and fibroblasts; subsequent analysis involved qPCR and western blotting to assess induced gene expression. Subsequently, MK-Exo were topically applied to the facial skin of 31 female volunteers twice daily for 28 days. The functions were evaluated after conducting safety assessments in vivo. RESULTS: Purified MK-Exo demonstrated the ability to be taken up directly by keratinocytes and fibroblasts in vitro, resulting in the upregulation of natural factors associated with skin moisturization, including filaggrin (FLG), aquaporin 3 (AQP3), and CD44 in keratinocytes, as well as hyaluronidase (HAS2) in fibroblasts. Concurrently, MK-Exo promoted fibroblast cell migration and restored the expression of type I and III collagen (Col I and Col III) following exposure to ultraviolet radiation. Furthermore, phototoxicity, photoallergy, repeated skin irritation, skin allergy, and patch tests confirmed the safety of MK-Exo for skin application. Finally, we elucidated the roles of MK-Exo in preserving moisture and reducing wrinkles in humans. CONCLUSION: Our findings unveil the novel contributions of MK-Exo to human skin aging, presenting a new avenue in the field of skincare.


Assuntos
Exossomos , Animais , Feminino , Humanos , Exossomos/metabolismo , Raios Ultravioleta/efeitos adversos , Leite , Pele/metabolismo , Queratinócitos , Mamíferos
3.
Vaccines (Basel) ; 11(3)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36992256

RESUMO

Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has presented numerous challenges to global health. Vaccines, including lipid-based nanoparticle mRNA, inactivated virus, and recombined protein, have been used to prevent SARS-CoV-2 infections in clinics and have been immensely helpful in controlling the pandemic. Here, we present and assess an oral mRNA vaccine based on bovine-milk-derived exosomes (milk-exos), which encodes the SARS-CoV-2 receptor-binding domain (RBD) as an immunogen. The results indicate that RBD mRNA delivered by milk-derived exosomes can produce secreted RBD peptides in 293 cells in vitro and stimulates neutralizing antibodies against RBD in mice. These results indicate that SARS-CoV-2 RBD mRNA vaccine loading with bovine-milk-derived exosomes is an easy, cheap, and novel way to introduce immunity against SARS-CoV-2 in vivo. Additionally, it also can work as a new oral delivery system for mRNA.

4.
J Agric Food Chem ; 69(17): 5134-5143, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33890462

RESUMO

Epicatechin gallate (ECG) is a main effective catechin widely existing in natural plants and food, with well-known health benefits. The present study first designed a new exosome-based delivery system for ECG and examined its neuroprotective effects on a rotenone (Rot)-induced Parkinson's disease (PD) model in vitro. Exosomes (Exo) were isolated from fresh bovine milk, and their average size was 85.15 ± 2.00 nm. ECG was encapsulated into Exo by a sonication method, and the loading efficiency of ECG-loaded exosomes (ECG-Exo) was 25.96 ± 0.45%. The neuroprotective effects of ECG-Exo were evaluated on Rot-induced SHSY5Y cells and compared with free ECG. Cell viability, cellular reactive oxygen species, apoptosis rate, and the expressions of caspase-3, Bax, Bcl-2, parkin, PINK1, and Atg5 were determined. Our results showed that Exo delivered ECG successfully into SHSY5Y cells and exhibited enhanced neuroprotective effects. ECG-Exo might inhibit SHSY5Y cell damage induced by Rot through antiapoptosis and antimitophagy.


Assuntos
Catequina , Exossomos , Fármacos Neuroprotetores , Doença de Parkinson , Animais , Apoptose , Catequina/análogos & derivados , Catequina/farmacologia , Bovinos , Leite , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico
5.
J Agric Food Chem ; 68(45): 12692-12701, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33137256

RESUMO

Bovine milk-derived exosomes (BMDEs) have potential applications in the pharmaceutical industry as drug delivery carriers. A comprehensive analysis of protein glycosylation in exosomes is necessary to elucidate the process of targeted delivery. In this work, free oligosaccharides (FOSs), O-glycans, and N-glycans in BMDEs and whey were first analyzed through multiple derivation strategies. In summary, 13 FOSs, 44 O-glycans, and 94 N-glycans were identified in bovine milk. To analyze site-specific glycosylation of glycoproteins, a one-step method was used to enrich and characterize intact glycopeptides. A total of 1359 proteins including 114 glycoproteins were identified and most of these were located in the exosomes. Approximately 95 glycopeptides were initially discovered and 5 predicted glycosites were confirmed in BMDEs. Collectively, these findings revealed the characterization and distribution of glycans and glycoproteins in BMDEs, providing insight into the potential applications of BMDEs in drug delivery and food science.


Assuntos
Exossomos/química , Leite/química , Animais , Bovinos , Glicopeptídeos/química , Glicoproteínas/química , Glicosilação , Polissacarídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA