Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Chem ; 462: 140969, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39197245

RESUMO

Alcoholic beverages flavour is complex and unique with different alcohol content, and the application of flavour perception could improve the objectivity of flavour evaluation. This study utilized electroencephalogram (EEG) to assess brain reactions to alcohol percentages (5 %-53 %) and Baijiu's complex flavours. The findings demonstrate the brain's proficiency in discerning between alcohol concentrations, evidenced by increasing physiological signal strength in tandem with alcohol content. When contrasted with alcohol solutions of equivalent concentrations, Baijiu prompts a more significant activation of brain signals, underscoring EEG's capability to detect subtleties due to flavour complexity. Additionally, the study reveals notable correlations, with δ and α wave intensities escalating in response to alcohol stimulation, coupled with substantial activation in the frontal, parietal, and right temporal regions. These insights verify the efficacy of EEG in charting the brain's engagement with alcoholic flavours, setting the stage for more detailed exploration into the neural encoding of these sensory experiences.


Assuntos
Bebidas Alcoólicas , Encéfalo , Eletroencefalografia , Etanol , Humanos , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Encéfalo/metabolismo , Adulto , Bebidas Alcoólicas/análise , Masculino , Adulto Jovem , Feminino , Etanol/análise , Paladar , Aromatizantes/química , Percepção Gustatória
2.
Food Res Int ; 173(Pt 1): 113311, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803622

RESUMO

Investigating brain activity is essential for exploring taste-experience related cues. The paper aimed to explore implicit (unconscious) emotional or physiological responses related to taste experiences using scalp electroencephalogram (EEG). We performed implicit measures of tastants of differing perceptual types (bitter, salty, sour and sweet) and intensities (low, medium, and high). The results showed that subjects were partially sensitive to different sensory intensities, i.e., for high intensities, taste stimuli could induce activation of different rhythm signals in the brain, with α and θ bands possibly being more sensitive to different taste types. Furthermore, the neural representations and corresponding sensory qualities (e.g., "sweet: pleasant" or "bitter: unpleasant") of different tastes could be discriminated at 250-1,500 ms after stimulus onset, and different tastes exhibited distinct temporal dynamic differences. Source localization indicated that different taste types activate brain areas associated with emotional eating, reward processing, and motivated tendencies, etc. Overall, our findings reveal a larger sophisticated taste map that accounted for the diversity of taste types in the human brain and assesses the emotion, reward, and motivated behavior represented by different tastes. This study provided basic insights and a perceptual foundation for the relationship between taste experience-related decisions and the prediction of brain activity.


Assuntos
Couro Cabeludo , Paladar , Humanos , Paladar/fisiologia , Percepção Gustatória/fisiologia , Encéfalo , Eletroencefalografia
3.
Skin Res Technol ; 22(4): 470-478, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26991667

RESUMO

BACKGROUND/PURPOSE: Neurophysiologic data on reactions of the human brain towards tactile stimuli evoked by fabrics moved on the skin are scarce. Furthermore, evaluation of fabrics' pleasantness using questionnaires suffers subjective biases. That is why we used a 64-channel electroencephalography (EEG) to objectively evaluate real-time brain reactions to fabric-skin interactions. METHODS: Tactile stimuli were triggered by selected fabrics of different qualities, i.e. modal/polyamide single jersey, cotton double rib and a jute fabric, applied hidden to either the palm or forearm of 24 subjects via a custom-made fabric-to-skin applicator called SOFIA. One-way anova analysis was carried out to verify the EEG data. RESULTS: The modal/polyamide fabric applied to the forearm and palm led to slightly stronger emotional valence scores in the brain than the conventional or baseline fabric. Furthermore, the single jersey elicits significant higher event-related potential (ERP) signals in all subjects when applied to the forearm, suggesting less distraction and better cognitive resources during the fabric/skin interaction. The brain thus reacts with instantaneous ERP to tactile stimulation of fabrics and is able to discriminate different qualities via implicit preferences. CONCLUSION: The test procedure described here may be a tool to evaluate the fabric feel with the exclusion of subjective biases.


Assuntos
Vestuário , Eletroencefalografia/métodos , Potenciais Evocados P300/fisiologia , Estimulação Física/métodos , Fenômenos Fisiológicos da Pele , Têxteis/análise , Tato/fisiologia , Adolescente , Adulto , Potenciais Somatossensoriais Evocados/fisiologia , Humanos , Pessoa de Meia-Idade , Pele/inervação , Propriedades de Superfície , Têxteis/classificação , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA