Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 919
Filtrar
1.
FEBS J ; 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39097908

RESUMO

DABMA is a chemical molecule optimized from the parent compound ABMA and exhibits broad-spectrum antipathogenic activity by modulating the host's endolysosomal and autophagic pathways. Both DABMA and ABMA inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a cellular assay, which further expands their anti-pathogen spectrum in vitro. However, their precise mechanism of action has not yet been resolved. TMEM175 is a newly characterized endolysosomal channel which plays an essential role in the homeostasis of endosomes and lysosomes as well as organelle fusion. Here, we show that DABMA increases the endosomal TMEM175 current through organelle patch clamping with an EC50 of 17.9 µm. Depletion of TMEM175 protein significantly decreases the antitoxin activity of DABMA and affects its action on acidic- and Rab7-positive endosomes as well as on endolysosomal trafficking. Thus, TMEM175 is necessary for DABMA's activity and may represent a druggable target for the development of anti-infective drugs. Moreover, DABMA, as an activator of the TMEM175 channel, may be useful for the in-depth characterization of the physiological and pathological roles of this endolysosomal channel.

2.
Mini Rev Med Chem ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39185650

RESUMO

Most of the antiviral drugs in the market are designed to target viral proteins directly. They are generally considered safe for human use. However, they also suffer from several inherent limitations, in particular, narrow-spectrum antiviral profiles and liability to drug resistance. The other strategy for antiviral drug development is targeting host factors, which are highly involved at different stages in the viral life cycle. In contrast to direct-acting antiviral agents, host-targeting antiviral ones normally exhibit broad-spectrum antiviral properties along with a much higher genetic barrier to drug resistance. Cyclin-dependent kinases (CDKs) represent one such host factor. In this review, we summarized a number of CDK inhibitors (CDKIs) of varied chemical scaffolds with demonstrated antiviral activity. Challenges and issues associated with the repurposing of CDKIs as antiviral agents were also discussed.

3.
Curr Res Microb Sci ; 7: 100260, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39129758

RESUMO

HIV-1 envelope glycoprotein gp41 mediates fusion between HIV-1 and host cell membranes, making inhibitors of gp41 attractive anti-HIV drugs. We previously reported an efficient HIV-1 fusion inhibitor, ADS-J1, with a Y-shaped structure. Here, we discovered a new compound, ADS-J21, with a Y-shaped structure similar to that of ADS-J1 but with a lower molecular weight. Moreover, ADS-J21 exhibited effective anti-HIV-1 activity against divergent HIV-1 strains in vitro, including several HIV-1 laboratory-adapted strains and primary isolates with different subtypes (clades A to F) and tropisms (X4 or R5). Mechanistic studies have demonstrated that ADS-J21 blocks the formation of the gp41 six-helix bundle (6-HB) by targeting conserved amino acids Lys35 and Trp32. These findings suggest that ADS-J21 can be used as a new lead compound for further optimization in the development of a small-molecule fusion inhibitor.

4.
Anal Chim Acta ; 1320: 343006, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39142783

RESUMO

BACKGROUND: Salmonella, a foodborne pathogen poses significant threats to food safety and human health. Immunochromatographic (ICTS) sensors have gained popularity in the field of food safety due to their convenience, speed, and cost-effectiveness. However, most existing ICTS sensors rely on antibody sandwich structures which are limited by their dependence on high-quality paired antibodies and restricted sensitivity. For the first time, we combined multi-line ICTS strips with fluorescent bacterial probes to develop a label-free multi-line immunochromatographic sensor capable of detecting broad-spectrum Salmonella. Salmonella was labeled with the aggregation-induced luminescence material TCBPE, resulting in its transformation into a green fluorescent probe. RESULTS: Using this sensor, we successfully detected Salmonella typhimurium within the concentration range of 104-108 CFU/mL with a visual detection limit of 6.0 × 104 CFU/mL. Compared to single-line sensors, our multi-line sensor exhibited significantly improved fluorescence intensity resulting in enhanced detection sensitivity by 50 %. Furthermore, our developed multi-line ICTS sensor demonstrated successful detection of 18 different strains of Salmonella without any cross-reaction observed with 5 common foodborne pathogens tested. The applicability and reliability were validated using milk samples, cabbage juice samples as well and drinking water samples suggesting its potential for rapid and accurate detection of Salmonella in real-world scenarios across both the food industry and clinical settings. SIGNIFICANCE: In this experiment, we developed a TCBPE-based multiline immunochromatographic sensor. Specifically, Salmonella was labeled with the aggregation-induced luminescence material TCBPE, resulting in its transformation into a green fluorescent probe. Through the multi-line analysis system, the detection sensitivity and accuracy of the sensor are improved. In brief, the sensor does not require complex antibody labeling and paired antibodies, and only one antibody is needed to complete the detection process.


Assuntos
Cromatografia de Afinidade , Cromatografia de Afinidade/métodos , Cromatografia de Afinidade/instrumentação , Leite/microbiologia , Leite/química , Microbiologia de Alimentos , Animais , Corantes Fluorescentes/química , Salmonella/isolamento & purificação , Salmonella/imunologia , Contaminação de Alimentos/análise , Limite de Detecção , Salmonella typhimurium/isolamento & purificação , Salmonella typhimurium/imunologia , Brassica/química , Brassica/microbiologia
5.
EBioMedicine ; 106: 105269, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39111250

RESUMO

BACKGROUND: Influenza viruses pose a persistent threat to global public health, necessitating the development of innovative and broadly effective vaccines. METHODS: This study focuses on a multiepitope vaccine (MEV) designed to provide broad-spectrum protection against different influenza viruses. The MEV, containing 19 B-cell linear epitopes, 7 CD4+ T cells, and 11 CD8+ T cells epitopes identified through enzyme-linked immunospot assay (ELISPOT) in influenza viruses infected mice, was administered through a regimen of two doses of DNA vaccine followed by one dose of a protein vaccine in C57BL/6 female mice. FINDINGS: Upon lethal challenge with both seasonal circulating strains (H1N1, H3N2, BV, and BY) and historical strains (H1N1-PR8 and H3N2-X31), MEV demonstrated substantial protection against different influenza seasonal strains, with partial efficacy against historical strains. Notably, the increased germinal centre B cells and antibody-secreting cells, along with robust T cell immune responses, highlighted the comprehensive immune defence elicited by MEV. Elevated hemagglutinin inhibition antibody was also observed against seasonal circulating and historical strains. Additionally, mice vaccinated with MEV exhibited significantly lower counts of inflammatory cells in the lungs compared to negative control groups. INTERPRETATION: Our results demonstrated the efficacy of a broad-spectrum MEV against influenza viruses in mice. Conducting long-term studies to evaluate the durability of MEV-induced immune responses and explore its potential application in diverse populations will offer valuable insights for the continued advancement of this promising vaccine. FUNDING: Funding bodies are described in the Acknowledgments section.


Assuntos
Epitopos de Linfócito B , Vírus da Influenza B , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Animais , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Camundongos , Vírus da Influenza B/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Feminino , Epitopos de Linfócito B/imunologia , Vírus da Influenza A/imunologia , Anticorpos Antivirais/imunologia , Epitopos de Linfócito T/imunologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Vacinas de DNA/imunologia , Vacinas de DNA/administração & dosagem , Estações do Ano , Vírus da Influenza A Subtipo H3N2/imunologia , Humanos
6.
Front Microbiol ; 15: 1443183, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39176276

RESUMO

Introduction: The COVID-19 pandemic caused by the SARS-CoV-2 virus has underscored the urgent necessity for the development of antiviral compounds that can effectively target coronaviruses. In this study, we present the first evidence of the antiviral efficacy of hyperforin, a major metabolite of St. John's wort, for which safety and bioavailability in humans have already been established. Methods: Antiviral assays were conducted in cell culture with four human coronaviruses: three of high virulence, SARS-CoV-2, SARS-CoV, and MERS-CoV, and one causing mild symptoms, HCoV-229E. The antiviral activity was also evaluated in human primary airway epithelial cells. To ascertain the viral step inhibited by hyperforin, time-of-addition assays were conducted. Subsequently, a combination assay of hyperforin with remdesivir was performed. Results: The results demonstrated that hyperforin exhibited notable antiviral activity against the four tested human coronaviruses, with IC50 values spanning from 0.24 to 2.55 µM. Kinetic studies indicated that the observed activity occur at a post-entry step, potentially during replication. The antiviral efficacy of hyperforin was additionally corroborated in human primary airway epithelial cells. The results demonstrated a reduction in both intracellular and extracellular SARS-CoV-2 viral RNA, confirming that hyperforin targeted the replication step. Finally, an additive antiviral effect on SARS-CoV-2 was observed when hyperforin was combined with remdesivir. Discussion: In conclusion, hyperforin has been identified as a novel pan-coronavirus inhibitor with activity in human primary airway epithelial cells, a preclinical model for coronaviruses. These findings collectively suggest that hyperforin has potential as a candidate antiviral agent against current and future human coronaviruses.

7.
J Agric Food Chem ; 72(33): 18507-18519, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39113497

RESUMO

Small secreted peptides (SSPs) are essential for defense mechanisms in plant-microbe interactions, acting as danger-associated molecular patterns (DAMPs). Despite the first discovery of SSPs over three decades ago, only a limited number of SSP families, particularly within Solanaceae plants, have been identified due to inefficient approaches. This study employed comparative genomics screens with Solanaceae proteomes (tomato, tobacco, and pepper) to discover a novel SSP family, SolP. Bioinformatics analysis suggests that SolP may serve as an endogenous signal initiating the plant PTI response. Interestingly, SolP family members from tomato, tobacco, and pepper share an identical sequence (VTSNALALVNRFAD), named SlSolP12 (also referred to as NtSolP15 or CaSolP1). Biochemical and phenotypic analyses revealed that synthetic SlSolP12 peptide triggers multiple defense responses: ROS burst, MAPK activation, callose deposition, stomatal closure, and expression of immune defense genes. Furthermore, SlSolP12 enhances systemic resistance against Botrytis cinerea infection in tomato plants and interferes with classical peptides, flg22 and Systemin, which modulate the immune response. Remarkably, SolP12 activates ROS in diverse plant species, such as Arabidopsis thaliana, soybean, and rice, showing a broad spectrum of biological activities. This study provides valuable approaches for identifying endogenous SSPs and highlights SlSolP12 as a novel DAMP that could serve as a useful target for crop protection.


Assuntos
Botrytis , Genômica , Doenças das Plantas , Imunidade Vegetal , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/imunologia , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Imunidade Vegetal/genética , Peptídeos/imunologia , Peptídeos/química , Resistência à Doença/genética , Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas , Nicotiana/imunologia , Nicotiana/genética , Nicotiana/microbiologia , Nicotiana/metabolismo , Capsicum/imunologia , Capsicum/genética , Capsicum/microbiologia , Capsicum/química
8.
Front Microbiol ; 15: 1384691, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989016

RESUMO

Bacillus atrophaeus HAB-5 is a plant growth-promoting rhizobacterium (PGPR) that exhibits several biotechnological traits, such as enhancing plant growth, colonizing the rhizosphere, and engaging in biocontrol activities. In this study, we conducted whole-genome sequencing of B. atrophaeus HAB-5 using the single-molecule real-time (SMRT) sequencing platform by Pacific Biosciences (PacBio; United States), which has a circular chromosome with a total length of 4,083,597 bp and a G + C content of 44.21%. The comparative genomic analysis of B. atrophaeus HAB-5 with other strains, Bacillus amyloliquefaciens DSM7, B. atrophaeus SRCM101359, Bacillus velezensis FZB42, B. velezensis HAB-2, and Bacillus subtilis 168, revealed that these strains share 2,465 CDSs, while 599 CDSs are exclusive to the B. atrophaeus HAB-5 strain. Many gene clusters in the B. atrophaeus HAB-5 genome are associated with the production of antimicrobial lipopeptides and polypeptides. These gene clusters comprise distinct enzymes that encode three NRPs, two Transat-Pks, one terpene, one lanthipeptide, one T3PKS, one Ripp, and one thiopeptide. In addition to the likely IAA-producing genes (trpA, trpB, trpC, trpD, trpE, trpS, ywkB, miaA, and nadE), there are probable genes that produce volatile chemicals (acoA, acoB, acoR, acuB, and acuC). Moreover, HAB-5 contained genes linked to iron transportation (fbpA, fetB, feuC, feuB, feuA, and fecD), sulfur metabolism (cysC, sat, cysK, cysS, and sulP), phosphorus solubilization (ispH, pstA, pstC, pstS, pstB, gltP, and phoH), and nitrogen fixation (nif3-like, gltP, gltX, glnR, glnA, nadR, nirB, nirD, nasD, narl, narH, narJ, and nark). In conclusion, this study provides a comprehensive genomic analysis of B. atrophaeus HAB-5, pinpointing the genes and genomic regions linked to the antimicrobial properties of the strain. These findings advance our knowledge of the genetic basis of the antimicrobial properties of B. atrophaeus and imply that HAB-5 may employ a variety of commercial biopesticides and biofertilizers as a substitute strategy to increase agricultural output and manage a variety of plant diseases.

9.
Vet World ; 17(6): 1281-1290, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39077461

RESUMO

Background and Aim: With the emergence of severe acute respiratory syndrome-related coronavirus (SARS-CoV-2), antiviral drug development has gained increased significance due to the high incidence and potentially severe complications of the resulting coronavirus infection. Heterocycle compounds, acting as antimetabolites of DNA and RNA monomers, rank among the most effective antiviral drugs. These compounds' antiviral effects on various SARS-CoV-2 isolates, as found in existing data collections, form the basis for further research. The aim of this study was to examine the possible antiviral effect of some originally synthesized heterocyclic compounds. Materials and Methods: The main methods were cell culturing, cytotoxicity assay, qRT-PCR assay, tissue and blood cells analysis, and micro-computed tomography (micro-CT) imaging. Results: In both in vitro and in vivo conditions, the elimination of SARS-Cov-2 occurred significantly earlier after administration of the compounds compared to the control group. In hamsters, the primary symptoms of coronavirus disease disappeared following administration of heterocycle compounds. Conclusion: Using delta and omicron strains of the SARS-CoV-2 virus, newly created heterocycle compound analogs dramatically reduced SARS-CoV-2 multiplication, resulting in a drop in viral RNA load in the supernatant under in vitro conditions. Improvements in pathological manifestations in the blood, bone marrow, and internal organs of hamsters demonstrated that heterocycle compounds inhibited SARS-CoV-2 replication both in vitro and in vivo.

10.
Expert Opin Drug Discov ; : 1-19, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078037

RESUMO

INTRODUCTION: Highly pathogenic coronaviruses (CoVs), such as severe acute respiratory syndrome CoV (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV), and the most recent SARS-CoV-2 responsible for the COVID-19 pandemic, pose significant threats to human populations over the past two decades. These CoVs have caused a broad spectrum of clinical manifestations ranging from asymptomatic to severe distress syndromes (ARDS), resulting in high morbidity and mortality. AREAS COVERED: The accelerated advancements in antiviral drug discovery, spurred by the COVID-19 pandemic, have shed new light on the imperative to develop treatments effective against a broad spectrum of CoVs. This perspective discusses strategies and lessons learnt in targeting viral non-structural proteins, structural proteins, drug repurposing, and combinational approaches for the development of antivirals against CoVs. EXPERT OPINION: Drawing lessons from the pandemic, it becomes evident that the absence of efficient broad-spectrum antiviral drugs increases the vulnerability of public health systems to the potential onslaught by highly pathogenic CoVs. The rapid and sustained spread of novel CoVs can have devastating consequences without effective and specifically targeted treatments. Prioritizing the effective development of broad-spectrum antivirals is imperative for bolstering the resilience of public health systems and mitigating the potential impact of future highly pathogenic CoVs.

11.
ACS Appl Mater Interfaces ; 16(29): 38631-38644, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38980701

RESUMO

Achievement of a stable surface coating with long-term resistance to biofilm formation remains a challenge. Catechol-based polymerization chemistry and surface deposition are used as tools for surface modification of diverse materials. However, the control of surface deposition of the coating, surface coverage, coating properties, and long-term protection against biofilm formation remain to be solved. We report a new approach based on supramolecular assembly to generate long-acting antibiofilm coating. Here, we utilized catechol chemistry in combination with low molecular weight amphiphilic polymers for the generation of such coatings. Screening studies with diverse low molecular weight (LMW) polymers and different catechols are utilized to identify lead compositions, which resulted in a thick coating with high surface coverage, smoothness, and antibiofilm activity. We have identified that small supramolecular assemblies (∼10 nm) formed from a combination of polydopamine and LMW poly(N-vinyl caprolactam) (PVCL) resulted in relatively thick coating (∼300 nm) with excellent surface coverage in comparison to other polymers and catechol combinations. The coating properties, such as thickness (10-300 nm) and surface hydrophilicity (with water contact angle: 20-60°), are readily controlled. The optimal coating composition showed excellent antibiofilm properties with long-term (>28 days) antibiofilm activity against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) strains. We further utilized the combination of optimal binary coating with silver to generate a coating with sustained release of silver ions, resulting in killing both adhered and planktonic bacteria and preventing long-term surface bacterial colonization. The new coating method utilizing LMW polymers opens a new avenue for the development of a novel class of thick, long-acting antibiofilm coatings.


Assuntos
Biofilmes , Catecóis , Polímeros , Staphylococcus aureus , Biofilmes/efeitos dos fármacos , Catecóis/química , Catecóis/farmacologia , Polímeros/química , Polímeros/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Peso Molecular , Propriedades de Superfície , Antibacterianos/farmacologia , Antibacterianos/química , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia
12.
Virus Res ; 347: 199432, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38969014

RESUMO

The Stimulator of Interferon Genes (STING) is involved in cytosolic DNA sensing and type I Interferons (IFN-I) induction. Aiming to identify new STING agonists with antiviral activity and given the known biological activity of benzothiazole and benzimidazole derivatives, a series of benzofuran derivatives were tested for their ability to act as STING agonists, induce IFN-I and inhibit viral replication. Compounds were firstly evaluated in a gene reporter assay measuring luciferase activity driven by the human IFN-ß promoter in cells expressing exogenous STING (HEK293T). Seven of them were able to induce IFN-ß transcription while no induction of the IFN promoter was observed in the presence of a mutated and inactive STING, showing specific protein-ligand interaction. Docking studies were performed to predict their putative binding mode. The best hit compounds were then tested on human coronavirus 229E replication in BEAS-2B and MRC-5 cells and three derivatives showed EC50 values in the µM range. Such compounds were also tested on SARS-CoV-2 replication in BEAS-2B cells and in Calu-3 showing they can inhibit SARS-CoV-2 replication at nanomolar concentrations. To further confirm their IFN-dependent antiviral activity, compounds were tested to verify their effect on phospho-IRF3 nuclear localization, that was found to be induced by benzofuran derivatives, and SARS-CoV-2 replication in Vero E6 cells, lacking IFN production, founding them to be inactive. In conclusion, we identified benzofurans as STING-dependent immunostimulatory compounds and host-targeting inhibitors of coronaviruses representing a novel chemical scaffold for the development of broad-spectrum antivirals.


Assuntos
Antivirais , Benzofuranos , Proteínas de Membrana , Replicação Viral , Humanos , Benzofuranos/farmacologia , Benzofuranos/química , Antivirais/farmacologia , Antivirais/química , Replicação Viral/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Células HEK293 , SARS-CoV-2/efeitos dos fármacos , Animais , Simulação de Acoplamento Molecular , Interferon beta/genética , Linhagem Celular , Chlorocebus aethiops , Células Vero
13.
J Am Soc Mass Spectrom ; 35(8): 1669-1679, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38970800

RESUMO

The multiattribute method (MAM) has emerged as a powerful tool for simultaneously screening multiple product quality attributes of therapeutic antibodies. One such potential critical quality attribute (CQA) is glycation, a common modification that can impact the heterogeneity, functional activity, and immunogenicity of therapeutic antibodies. However, current methods for monitoring glycation levels in MAM are rare and not sufficiently rapid and accurate. In this study, an improved mass spectrometry (MS)-based MAM was developed to simultaneously monitor glycation and other quality attributes including afucosylation. The method was evaluated using two therapeutic antibodies with different glycosylation site numbers. Treatment with IdeS, Endo F2, and dithiothreitol generated three distinct subunits, and the glycation results obtained were similar to those treated with PNGase F, which is routinely used to release glycans; the sample processing time was greatly reduced while providing additional quality attribute information. The MS-based MAM was also employed to assess the glycation progression following forced glycation in various buffer solutions. A significant increase in oxidation was observed when forced glycation was conducted in an ammonium bicarbonate buffer solution, and a total of 23 potential glycation sites and 4 significantly oxidized sites were identified. Notably, we found that ammonium bicarbonate was found to specifically stimulate oxidation, while glycation had a synergistic effect on oxidation. These findings establish this study as a novel methodology for achieving a technologically advanced platform and concept that enhances the efficacy of product development and quality control, characterized by its broad-spectrum, rapid, and accurate nature.


Assuntos
Espectrometria de Massas , Glicosilação , Espectrometria de Massas/métodos , Oxirredução , Anticorpos Monoclonais/química , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/metabolismo , Espectrometria de Massas em Tandem/métodos
14.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000477

RESUMO

The appearance of new respiratory virus infections in humans with epidemic or pandemic potential has underscored the urgent need for effective broad-spectrum antivirals (BSAs). Bioactive compounds derived from plants may provide a natural source of new BSA candidates. Here, we investigated the novel phytocomplex formulation SP4™ as a candidate direct-acting BSA against major current human respiratory viruses, including coronaviruses and influenza viruses. SP4™ inhibited the in vitro replication of SARS-CoV-2, hCoV-OC43, hCoV-229E, Influenza A and B viruses, and respiratory syncytial virus in the low-microgram range. Using hCoV-OC43 as a representative respiratory virus, most of the antiviral activity of SP4™ was observed to stem primarily from its dimeric A-type proanthocyanidin (PAC-A) component. Further investigations of the mechanistic mode of action showed SP4™ and its PAC-A-rich fraction to prevent hCoV-OC43 from attaching to target cells and exert virucidal activity. This occurred through their interaction with the spike protein of hCoV-OC43 and SARS-CoV-2, thereby interfering with spike functions and leading to the loss of virion infectivity. Overall, these findings support the further development of SP4™ as a candidate BSA of a natural origin for the prevention of human respiratory virus infections.


Assuntos
Antivirais , Coronavirus Humano OC43 , Proantocianidinas , SARS-CoV-2 , Replicação Viral , Proantocianidinas/farmacologia , Proantocianidinas/química , Antivirais/farmacologia , Antivirais/química , Humanos , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Coronavirus Humano OC43/efeitos dos fármacos , Animais , Cães , Vírus da Influenza A/efeitos dos fármacos , Coronavirus Humano 229E/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Chlorocebus aethiops
15.
Mol Plant ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39030909

RESUMO

Plant cell walls are a critical site where plants and pathogens continuously struggle for physiological dominance. Here we show that dynamic remodeling of pectin methylesterification of plant cell walls is a component of the physiological and co-evolutionary struggles between hosts and pathogens. A Phytophthora sojae secreted pectin methylesterase (PsPME1) decreases the degree of pectin methylesterification, thus synergizing with an endo-polygalacturonase (PsPG1) to weaken plant cell walls. To counter PsPME1-mediated susceptibility, a plant-derived pectin methylesterase inhibitor protein, GmPMI1, protects pectin to maintain a high methylesterification status. GmPMI1 protects plant cell walls from enzymatic degradation by inhibiting both soybean and P. sojae pectin methylesterases during infection. However, constitutive expression of GmPMI1 disrupted the tradeoff between host growth and defense responses. So, we used AlphaFold structure tools to design a modified form of GmPMI1 (GmPMI1R) which specifically targets and inhibits pectin methylesterases secreted from pathogens but not from the plants. Transient expression of GmPMI1R enhanced plant resistance to oomycetes and fungal pathogens. In summary, our work highlights biochemical modification of the cell wall as an important focal point in the physiological and co-evolutionary conflict between the hosts and microbes and serves as an important proof-of-concept for how rapid advancements in AI-driven structure-based tools can accelerate the prediction of new strategies for plant protection.

16.
Drug Dev Res ; 85(5): e22237, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39032059

RESUMO

The global prevalence of RNA virus infections has presented significant challenges to public health in recent years, necessitating the expansion of its alternative therapeutic library. Due to its evolutional conservation, RNA-dependent RNA polymerase (RdRp) has emerged as a potential target for broad-spectrum antiviral nucleoside analogues. However, after over half a century of structural modification, exploring unclaimed chemical space using frequently-used structural substitution methods to design new nucleoside analogues is challenging. In this study, we explore the use of the "ring-opening" strategy to design new base mimics, thereby using these base mimics to design new nucleoside analogues with broad-spectrum antiviral activities. A total of 29 compounds were synthesized. Their activity against viral RdRp was initially screened using an influenza A virus RdRp high-throughput screening model. Then, the antiviral activity of 38a was verified against influenza virus strain A/PR/8/34 (H1N1), demonstrating a 50% inhibitory concentration (IC50) value of 9.95 µM, which was superior to that of ribavirin (the positive control, IC50 = 11.43 µM). Moreover, 38a also has inhibitory activity against coronavirus 229E with an IC50 of 30.82 µM. In addition, compounds 42 and 46f exhibit an 82% inhibition rate against vesicular stomatitis virus at a concentration of 20 µM and hardly induce cytotoxicity in host cells. This work demonstrates the feasibility of designing nucleoside analogues with "ring-opening" bases and suggests the "ring-opening" nucleosides may have greater polarity, and designing prodrugs is an important aspect of optimizing their antiviral activity. Future research should focus on enhancing the conformational restriction of open-loop bases to mimic Watson-Crick base pairing better and improve antiviral activity.


Assuntos
Antivirais , Desenho de Fármacos , Nucleosídeos , RNA Polimerase Dependente de RNA , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Nucleosídeos/química , Nucleosídeos/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Humanos , Animais , Células Madin Darby de Rim Canino , Cães , Relação Estrutura-Atividade
17.
Artigo em Inglês | MEDLINE | ID: mdl-38973700

RESUMO

Introduction: Recently, antimicrobial resistance has received considerable attention. Broad-spectrum antimicrobial agents are recommended as the initial therapy for post-operative intra-abdominal infections. However, at our institution, we have adopted a tactic of initially treating post-operative intra-abdominal complications with relatively narrow-spectrum antimicrobial agents, such as second-generation cephalosporins. In the present study, we aimed to retrospectively analyze the use of antimicrobial agents and the resulting treatment outcomes in patients with intra-abdominal complications after gastrectomy at our facility. Methods: We conducted a retrospective observational study of patients treated with antibiotic agents for intra-abdominal infectious complications after gastrectomy between 2011 and 2021. We determined the proportion of "initial treatment failures" associated with the initial administration of antibiotic agents for post-operative intra-abdominal complications. Results: Post-operative intra-abdominal infections were observed in 29 patients. Broad-spectrum antimicrobial agents were not administered. We successfully treated 19 patients. Initial treatment failure was observed in 10 patients, of whom five experienced failure due to bacterial resistance to the initial antimicrobial agent. All 10 patients who experienced initial treatment failure were discharged after drainage procedures or other treatments. There were no deaths due to post-operative complications. Cefmetazole was used as the initial antimicrobial agent in 27 of the 29 patients. Conclusions: Considering that all patients with post-gastrectomy intra-abdominal infections were successfully treated using relatively narrow-spectrum antimicrobial agents, and initial treatment failure due to antimicrobial-resistant pathogens was 17.2%, the use of narrow-range antimicrobial agents for intra-abdominal infections after gastrectomy can be deemed appropriate.

18.
Front Immunol ; 15: 1424307, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011043

RESUMO

Introduction: Bluetongue (BT) poses a significant threat to the livestock industry, affecting various animal species and resulting in substantial economic losses. The existence of numerous BT virus (BTV) serotypes has hindered control efforts, highlighting the need for broad-spectrum vaccines. Methodology: In this study, we evaluated the conserved amino acid sequences within key non-structural (NS) proteins of BTV and identified numerous highly conserved murine- and bovine-specific MHC class I-restricted (MHC-I) CD8+ and MHC-II-restricted CD4+ epitopes. We then screened these conserved epitopes for antigenicity, allergenicity, toxicity, and solubility. Using these epitopes, we developed in silico-based broad-spectrum multiepitope vaccines with Toll-like receptor (TLR-4) agonists. The predicted proinflammatory cytokine response was assessed in silico using the C-IMMSIM server. Structural modeling and refinement were achieved using Robetta and GalaxyWEB servers. Finally, we assessed the stability of the docking complexes through extensive 100-nanosecond molecular dynamics simulations before considering the vaccines for codon optimization and in silico cloning. Results: We found many epitopes that meet these criteria within NS1 and NS2 proteins and developed in silico broad-spectrum vaccines. The immune simulation studies revealed that these vaccines induce high levels of IFN-γ and IL-2 in the vaccinated groups. Protein-protein docking analysis demonstrated promising epitopes with strong binding affinities to TLR-4. The docked complexes were stable, with minimal Root Mean Square Deviation and Root Mean Square Fluctuation values. Finally, the in silico-cloned plasmids have high % of GC content with > 0.8 codon adaptation index, suggesting they are suitable for expressing the protein vaccines in prokaryotic system. Discussion: These next-generation vaccine designs are promising and warrant further investigation in wet lab experiments to assess their immunogenicity, safety, and efficacy for practical application in livestock. Our findings offer a robust framework for developing a comprehensive, broad-spectrum vaccine, potentially revolutionizing BT control and prevention strategies in the livestock industry.


Assuntos
Vírus Bluetongue , Biologia Computacional , Epitopos de Linfócito T , Proteínas não Estruturais Virais , Vacinas Virais , Animais , Vírus Bluetongue/imunologia , Epitopos de Linfócito T/imunologia , Vacinas Virais/imunologia , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/genética , Camundongos , Biologia Computacional/métodos , Sorogrupo , Bovinos , Bluetongue/prevenção & controle , Bluetongue/imunologia , Bluetongue/virologia , Sequência Conservada
19.
Transplant Cell Ther ; 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39074685

RESUMO

Febrile neutropenia (FN) is a complication in approximately 90% of autologous stem cell transplant (SCT) patients. Guidelines support early broad-spectrum antibiotics (BSA) to prevent morbidity and mortality. However, in patients who are clinically stable and deemed to have a fever of unknown origin, the optimal duration of BSA is unknown. Accumulating evidence suggests that de-escalation of BSA in select patients may decrease duration of BSA exposure without compromising clinical outcomes such as infection, recurrent fever, and readmission. With this, a de-escalation protocol was implemented at Vanderbilt University Medical Center (VUMC) to identify autologous SCT patients who may benefit from early de-escalation of BSA. The objectives of this study were to analyze the impact of early empiric antibiotic de-escalation on the duration of BSA as well as its impact on the incidence of recurrent fever and documented infection in autologous SCT patients. This was a single-center, retrospective study evaluating patients older than 18 years of age who underwent autologous SCT and experienced an episode of FN from January 2018 to December 2022 at VUMC (N = 195). The protocol was initiated on January 1, 2020, to de-escalate BSA back to prophylaxis in stable neutropenic patients determined to have a fever of unknown origin. The primary outcome was the number of BSA days within 30 days. Secondary clinical outcomes included recurrent fever, documented infection, readmission, 30-day mortality, and 90-day non-relapsed mortality (NRM). Outcomes were compared across pre- and postprotocol groups with a Wilcoxon rank sum test, Pearson chi-square test, or regression analysis as appropriate. The median BSA duration was 4.7 and 2.7 days in the pre- and postprotocol groups, respectively (P < .001). Recurrent fever (14.2% versus 16.0%, P = .726), documented infection (1.7% versus 6.7%, P = .068), and readmission (13.3% versus 22.7%, P = .091) within 30 days were not significantly different between the two groups. Neither 30-day mortality (0.8% versus 1.3%, P = .736) nor 90-day NRM (0.8% versus 1.3%, P = .736) differed. The implementation of an early de-escalation protocol for autologous SCT patients who develop FN was associated with a reduction in duration of BSA compared to the preprotocol group without a significant difference in readmission, recurrent fevers, and documented infections. This study adds to existing evidence that early de-escalation of BSA in FN patients with a fever of unknown origin who are afebrile and clinically stable is safe and reduces unnecessary antibiotic use.

20.
Antiviral Res ; 228: 105945, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38914284

RESUMO

Broad-acting antiviral strategies to prevent respiratory tract infections are urgently required. Emerging or re-emerging viral diseases caused by new or genetic variants of viruses such as influenza viruses (IFVs), respiratory syncytial viruses (RSVs), human rhinoviruses (HRVs), parainfluenza viruses (PIVs) or coronaviruses (CoVs), pose a severe threat to human health, particularly in the very young or old, or in those with pre-existing respiratory conditions such as asthma or chronic obstructive pulmonary disease (COPD). Although vaccines remain a key component in controlling and preventing viral infections, they are unable to provide broad-spectrum protection against recurring seasonal infections or newly emerging threats. HEX17 (aka Neumifil), is a first-in-class protein-based antiviral prophylactic for respiratory viral infections. HEX17 consists of a hexavalent carbohydrate-binding module (CBM) with high affinity to sialic acids, which are typically present on terminating branches of glycans on viral cellular receptors. This allows HEX17 to block virus engagement of host receptors and inhibit infection of a wide range of viral pathogens and their variants with reduced risk of antiviral resistance. As described herein, HEX17 has demonstrated broad-spectrum efficacy against respiratory viral pathogens including IFV, RSV, CoV and HRV in multiple in vivo and in vitro studies. In addition, HEX17 can be easily administered via an intranasal spray and is currently undergoing clinical trials.


Assuntos
Administração Intranasal , Antivirais , Infecções Respiratórias , Antivirais/farmacologia , Antivirais/administração & dosagem , Humanos , Infecções Respiratórias/virologia , Infecções Respiratórias/tratamento farmacológico , Animais , Viroses/tratamento farmacológico , Viroses/prevenção & controle , Viroses/virologia , Vírus/efeitos dos fármacos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA