Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38930382

RESUMO

Lotus-type porous metals, characterized by low densities, large surface areas, and directional properties, are contemporarily utilized as lightweight, catalytic, and energy-damping materials; heat sinks; etc. In this study, the effects of dimensionless working parameters on the morphology of lotus-type pores in metals during unidirectional solidification were extensively investigated via general algebraic expressions. The independent dimensionless parameters include metallurgical, transport, and geometrical parameters such as Sieverts' law constant, a partition coefficient, the solidification rate, a mass transfer coefficient, the imposed mole fraction of a solute gas, the total pressure at the top free surface, hydrostatic pressure, a solute transport parameter, inter-pore spacing, and initial contact angle. This model accounts for transient gas pressure in the pore, affected by the solute transfer, gas, capillary, and hydrostatic pressures, and Sieverts' laws at the bubble cap and top free surface. Solute transport across the cap accounts for solute convection at the cap and the amount of solute rejected by the solidification front into the pore. The shape of lotus-type pores can be described using a proposed fifth-degree polynomial approximation, which captures the major portions between the initial contact angle and the maximum radius at a contact angle of 90 degrees, obtained by conserving the total solute content in the system. The proposed polynomial approximation, along with its working parameters, offers profound insights into the formation and shape of lotus-type pores in metals. It systematically provides deep insights into mechanisms that may not be easily revealed with experimental studies. The prediction of a lotus-type pore shape is thus algebraically achieved in good agreement with the available experimental data and previous analytical results.

2.
Heliyon ; 10(5): e26224, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434264

RESUMO

Sufficient conditions to control solute transport across the cap responsible for the formation, development, and final shape of the lotus-type pores for different spatial variations of the partition coefficient, and the ratio between concentration in solid at the solidification front and concentration at a reference state near the top free surface during unidirectional solidification are presented in this study. Lotus-type porous material contemporarily used in micro-or nano-technologies strongly depend on distributions, orientations, and shapes of pores in solid. The model accounts for solute pressure in the pore affected by solute transport and balance of gas, capillary and hydrostatic pressures, and Sieverts' law or Henry's law at the bubble cap and top free surface. Solute transport across the cap accounts for rejection and convection-affected concentration at solidification front, and convection based on the reference state deviated from that at the top free surface. The resulting simultaneous systems of unsteady first-order ordinary differential equations are solved by MATLAB code. Changing rate of solute pressure in the pore responsible for entrapment and final length of lotus-type pores affected by volume expansion, and solute transport due to diffusion and rejection by the solidification front at the cap is also analyzed. The predicted shapes of lotus-type pores agree with algebraic expression confirmed by available experimental data.

3.
ACS Appl Mater Interfaces ; 9(19): 16536-16545, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28452456

RESUMO

Efficient depot systems for entrapment and storage of small water-soluble molecules are of high demand for wide variety of applications ranging from implant based drug delivery in medicine and catalysis in chemical processes to anticorrosive systems in industry where surface-mediated active component delivery is required on a time and site specific manner. This work reports the fabrication of individually sealed hollow-structured polyelectrolyte multilayer (PEM) microchamber arrays based on layer-by-layer self-assembly as scaffolds and microcontact printing. These PEM chambers are composed out of biocompatible polyelectrolytes and sealed by a monolayer of hydrophobic biocompatible and biodegradable polylactic acid (PLA). Coating the chambers with hydrophobic PLA allows for entrapment of a microair-bubble in each chamber that seals and hence drastically reduces the PEM permeability. PLA@PEM microchambers are proven to enable prolonged subaqueous storage of small hydrophilic salts and molecules such as crystalline NaCl, doxicycline, and fluorescent dye rhodamine B. The presented microchambers are able to entrap air bubbles and demonstrate a novel strategy for entrapment, storage, and protection of micropackaged water-soluble substances in precipitated form. These chambers allow triggered release as demonstrated by ultrasound responsiveness of the chambers. Low-frequency ultrasound exposure is utilized for microchamber opening and payload release.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA