Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
1.
J Hazard Mater ; 480: 136337, 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39488974

RESUMO

Long-term emission behaviors of volatile organic compounds (VOCs) from indoor buildings materials heavily depend on the value of three key parameters (initial concentration C0, diffusion coefficient Dm, partition coefficient K) that govern emissions over time. We made the first attempt to quantitatively explore the variation of parameters through a long-lasting aging test that simulates natural indoor exposure. Over a span of 431 days, we obtained a substantial dataset consisting of ten thousand data points. The parameters of six VOCs (formaldehyde, benzene, toluene, ethylbenzene, o-xylene, p-m-xylene) from three kinds of wood-based boards with different aging intervals were determined. Our findings demonstrate that C0 decreases exponentially with aging time, while Dm and K merely fluctuate with it. With the obtained correlations, ventilation time for renovated house is proposed to meet the WHO standard. These results lay the groundwork for predicting long-term indoor VOC concentrations, which is crucial for indoor air quality pre-evaluation.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39379651

RESUMO

Construction and demolition waste generates the largest amount of waste by volume, which threatens sustainable development and adversely affects the environment. These wastes contain a significant amount of aluminosilicates that have the potential to be used as building materials for value-added applications applicable to alternative construction materials. This study aims to synthesize geopolymers from brick powder using metakaolin/lime as additives and compare their physico-mechanical properties. The compressive strengths of the geopolymer products GP-1, GP-2, and GP-3 developed at 28 days from brick powder and metakaolin/lime with the activator solution were found to be 8.35, 21.30, and 25.0 MPa respectively, 2.55 and 2.99 times higher when metakaolin and lime were added. FTIR spectra and SEM-EDX micrographs of the reaction products showed structural changes and formation of aluminosilicate hydrate and calcium silicate hydrate gel with Al2O3/Na2O ratios of 0.75, 1.67, and 1.98 respectively. The reaction products containing SiO2/(SiO2 + Al2O3 + Fe2O3) ratios of 0.70 and 0.76 were found to be desirable. The geopolymer product GP-3 was found to have a higher bulk density and mechanical strength than those of GP-1 and GP-2. These products are found to be very hard, with potential applications in construction industries to conserve the environment.

3.
Materials (Basel) ; 17(19)2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39410289

RESUMO

This article emphasizes the significance of understanding the actual thermal properties of thermal insulation materials, which are crucial for avoiding errors in building design and estimating heat losses within the energy balance. The aim of this study was to analyse the thermal parameters of selected thermal insulation materials, particularly in the context of their stability after a period of storage under specific conditions. The materials chosen for this study include commonly used construction insulations such as polystyrene and mineral wool, as well as modern options like rigid foam composites. Experimental studies were conducted, including the determination of the thermal conductivity coefficient λ, as well as numerical analyses and analytical calculations of heat flow through a double-layer external wall with a window. The numerical analyses were performed using the TRISCO software version 12.0w, based on the finite element method (FEM). A macrostructural analysis of the investigated materials was also performed. The findings indicated that improper storage conditions adversely affect the thermal properties of insulation materials. Specifically, storing materials outdoors led to a deterioration in insulating properties, with an average reduction of about 4% for the standard materials and as much as 19% for the tested composite material. Insufficient understanding of the true thermal properties of insulation materials can result in incorrect insulation layer thickness, degrading the fundamental thermal parameters of external walls. This, in turn, increases heat loss through major building surfaces, raises heating costs, and indirectly contributes to greenhouse gas emissions.

4.
Materials (Basel) ; 17(19)2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39410306

RESUMO

Concrete with good mechanical properties and durability has always been a necessity in engineering. The addition of fibers and supplementary cementitious materials to concrete can enhance its mechanical and durability performance through a series of chemical and physical interactions. This study aims to investigate the effects of key parameters on the compressive strength, splitting tensile strength, and chloride penetration resistance of concrete combined with ground granulate blast furnace slag (GGBS) and macro polypropylene synthetic fiber (MSF). Based on the Taguchi method, a total of eighteen mixtures were evaluated, considering the effects of GGBS content, MSF content, water-to-binder (w/b) ratio, and chloride solution concentration on concrete properties. The results showed that the w/b ratio has a significant impact on the properties of concrete, which are enhanced by a decrease in w/b ratio. The GGBS content had little effect on the 28-day strength of concrete, which even decreased with a large GGBS content, but GGBS had a positive effect on the long-term strength of concrete. Moreover, the chloride penetration resistance of concrete was enhanced by an increase in the GGBS content. The MSF content had no obvious effects on the compressive strength and chloride penetration resistance of concrete, but it could enhance the splitting tensile strength to some extent, and this enhancement was more obvious over time. The chloride diffusion coefficient of concrete changed with the concentration of chloride solution, and the two increased simultaneously.

5.
Materials (Basel) ; 17(19)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39410474

RESUMO

In this article, the results of studies testing the anisotropy of autoclaved aerated concrete in terms of water and heat transport are presented. Using image analysis techniques, a study was conducted on four different samples of concrete produced in the same process. To ensure the comparability of results, the pictures were taken from a fixed distance with the same lens settings trimmed to a set size. Cross-sectional profiles of the material were examined and were arranged in two directions: perpendicular and parallel to the growth direction occurring in the autoclave. For each block, approximately 4750 objects were obtained, with an average of 2700 objects along the wall and 2050 across it. As a result of the comparative analysis, metrics concerning pores, significantly distinguishing the profile direction, were identified. These included the pore area (area), the maximum and minimum distance between points on the perimeter (Feret, MinFeret), lengths of the major and minor axes of the fitted ellipse (major, minor), and the ratio of the area of selection to its convex hull (solidity). As a reference, standard investigations were conducted for moisture transport using the time domain reflectometry setup and for thermal conductivity values using the steady-state heat flow plate apparatus.

6.
Materials (Basel) ; 17(19)2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39410482

RESUMO

The growing demand for sustainable building materials has boosted research on plant-based composite materials, including hemp shives bound with biodegradable binders. This study investigates the enhancement of potato-starch-based binders with sodium metasilicate and glycerol to produce eco-friendly bio-composites incorporating hemp shives. Potato starch, while renewable, often results in suboptimal mechanical properties and durability in its unmodified form. The addition of sodium metasilicate is known to improve the mechanical strength and thermal stability of starch-based materials, while glycerol acts as a plasticizer, potentially enhancing flexibility and workability. Bio-composites were produced with varying concentrations of sodium metasilicate (0-107% by mass of starch) and glycerol (0-133% by mass of starch), and their properties were evaluated through thermal analysis, density measurements, water absorption tests, compressive strength assessments, and thermal conductivity evaluations. The results demonstrate that sodium metasilicate significantly increases the bulk density, water resistance, and compressive strength of the bio-composites, with enhancements up to 19.3% in density and up to 2.3 times in compressive strength. Glycerol further improves flexibility and workability, though excessive amounts can reduce compressive strength. The combination of sodium metasilicate and glycerol provides optimal performance, achieving the best results with an 80% sodium metasilicate and 33% glycerol mixture by weight of starch. These modified bio-composites offer promising alternatives t2 o conventional building materials with improved mechanical properties and environmental benefits, making them suitable for sustainable construction applications.

7.
Sci Rep ; 14(1): 23416, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39379613

RESUMO

The ceramic industry produces a significant volume of ceramic waste (CW), representing around 20-30% of its the entire output. The waste mostly comes from challenges noticed in the manufacturing process, overproduction, and damage to products. Considering the substantial worldwide production of ceramics, it is crucial to efficiently handle and recycle this waste to promote sustainability efforts. This study explores the conversion of ceramic waste into fine aggregates suitable for the production of paver blocks. Currently, a variety of assessments are being conducted to determine the effectiveness of these enhanced paver blocks. The evaluations involve aspects like compressive strength, water absorption (WA), dry density, flow table measurements, ultrasonic pulse velocity (UPV), and rebound hammer tests. The results indicate that replacing natural aggregates with up to 30% CW significantly improves compressive strength (CS) and Rebound results from tests. This study provides useful information into optimising the content of CW in paver blocks, contributing to the development of sustainable and economical construction materials. Furthermore, it focusses on minimising landfill waste and preserving natural resources.

8.
J Environ Manage ; 371: 123068, 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39476676

RESUMO

This study proposed a data driven approach to predict the compressive strength (CS) of recycled aggregate concrete (RAC) for sustainable construction using an elite single genetic optimization algorithm-based cascade forward neural network (ESGA-CFNN) model. It was applied to 272 RAC samples under different conditions and compositions focusing on key parameters for CS prediction: water-to-cement ratio (WCR), water absorption (WA), recycled coarse aggregate (RCA) density, fine aggregate (FA) density, naturally occurring coarse aggregate (NCA) density and water-to-total material ratio (WTMR). These parameters were used to develop the ESGA-CFNN model which was then evaluated for its performance. To compare the ESGA-CFNN model, two other models were developed and compared: particle swarm optimization-based CFNN (PSO-CFNN) and artificial bee colony-based CFNN (ABC-CFNN). K-fold cross-validation was used during model development to prevent overfitting. Results showed that ESGA-CFNN model performed better with an RMSE (root-mean-squared error) of 1.144, R2 (determination coefficient) of 0.991 and a10-index of 1.000. ABC-CFNN model had an RMSE of 1.434, R2 of 0.987 and a10-index of 0.982 while PSO-CFNN had an RMSE of 1.561, R2 of 0.984 and a10-index of 0.982. Practical validation with 6 RAC samples confirmed the real world applicability of these models. The findings of this study showed that the proposed ESGA-CFNN model is important for quality control in RAC production and optimizing mix designs to achieve required compressive strength to meet standards and reduce cost and increase sustainability in concrete construction. This study introduces a novel hybrid approach combining ESGA-CFNN, PSO-CFNN, and ABC-CFNN algorithms for accurately predicting the compressive strength of RAC. These models outperform traditional methodologies by offering enhanced predictive accuracy and generalization capability, especially in complex, real-world datasets.

9.
Chemosphere ; : 143607, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39447774

RESUMO

Building materials are the major sources of Volatile and Semi-Volatile Organic Compounds (VOCs and SVOCs) in indoor air. Measurements of emission rates of these compounds are likely to be influenced by variation in certain environmental factors resulting in intra-specimen variability. This study aims to (i) evaluate the reproducibility of measurements between specimens and (ii) evaluate the impact of storage on VOC and SVOC emissions from antifungal acrylic paint (applied on polyester-cellulose). For this purpose, 15 discs of tested materials (1.63 ± 0.04 g) were prepared. From these, the emissions rates (ER) of 5 samples were analyzed simultaneously during three measurement campaigns (October 2021, January 2022 and March 2022). Between each campaign, specimens were stored in the dark at ambient temperature (25 ± 4 °C) and relative humidity (50 ± 20 %). Measurements were performed using the field and laboratory emission cell (FLEC) and characterized by gas chromatography (TD-GC-MS/FID) and liquid chromatography (HPLC). Intra-specimen reproducibility was assessed by comparing 5 ER of different specimens collected simultaneously. The impact of storage was evaluated by comparing the average VOC/SVOC ER between each campaign. The results show, concerning the reproducibility of the measurements, that the first measurement campaign provides ER with high variability (10 - 36 %) compared to the second and third measurement campaigns, which show lower intra-specimen variability (5 - 24 % and 8 - 20 % respectively). However, weakly emitted compounds (ER < 10 µg m-2 h-1) such as aromatics and aldehydes show large variabilities (6 - 100 % of variation) in all measurement campaigns. Regarding the effect of the 5-months storage a significant decrease in the ER of individual VOC/SVOCs (37 - 85 %) and of TVOCs (74 %) was noted, except for aldehydes, aromatic hydrocarbons, isopropylacetone and vinyl crotonate, which showed a stability or eventual increase (up to 100 %) in the ER over time, depending on the type of emitted compound.

10.
J Environ Radioact ; 280: 107562, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39471673

RESUMO

The present study aimed to develop a Monte Carlo model to estimate the annual effective dose due to radon exposure sourced by radon gas in the walls and floor of a standard model room. With the purpose of developing a tool for radon level assessment in dwellings and workplaces, Geant4 toolkit was used to simulate the energy deposited by gamma rays emitted by radioactive radon progeny in a water phantom positioned at three different locations within the model room. The energy deposition was then used to estimate the annual effective dose through a deterministic approach. The simulation outcomes showed good agreement with experimental data, with the ratio between the simulated and the experimental data displaying the overestimation by a factor of approximately 1.09. Both simulation and experimental data fell within the same range, with a relative deviation of 7.7%. Additionally, the influence of various parameters, such as receptor position in the room, wall, and floor thicknesses, wall cover, and building material bulk density, on the annual effective dose due to radon inhalation in the room was evaluated. Geant4 Monte Carlo toolkit proved to be a reliable tool for radon modeling in real exposure situations.

11.
Sci Rep ; 14(1): 21185, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261502

RESUMO

The paper presents examples of the consequences of the lack of negative pressure in the work zone during asbestos removal. The asbestos fibre concentrations generated in those work zones were relatively low. This was due to the leakage in barriers restricting the work zone. Therefore the asbestos content in the outside air, near the renovated rooms was increasing. In the cases discussed, these works resulted in short-term pollution of the building's outdoor air to a depth of up to 15 m. Such contamination can cover the entire interior of the building. This may lead to long-term retention of asbestos fibre in the facility, despite the completion of asbestos removal. For example, non-friable asbestos-cement sheets removal in those work conditions increased indoor air by contamination up to 3000 f/m3 (outside the work zone). In the case of removing friable asbestos inside the building type "LIPSK", indoor air contamination locally was up 21,000-51,000 f/m3, and outside the work zone to 18,000-28,900 f/m3. These values are above the average concentration of asbestos fibres in the same type of buildings (< 300-400 f/m3) in regular use.

12.
Sci Rep ; 14(1): 21508, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39277700

RESUMO

The global surge in glass waste generation, exceeding 130 million tons annually, presents a pressing environmental issue, compounded by inadequate recycling practices, it is concerning that the global recycling rate for glass waste is below 50%. This research investigates the utilization of WG as a FA substitute in paver block to mitigate the ecological footprint of conventional paver block while enhancing its mechanical properties. WG's unique characteristics, such as high silica content and impermeability, make it a promising alternative. A comprehensive experimental approach, including tests like water absorption, dry density, workability, compressive strength, ultrasonic pulse velocity, and rebound hammer, demonstrated WG's potential to improve concrete's durability and performance. For instance, a 40% WGA replacement reduced the absorption rate 12%, while 20% WGA incorporation-maintained strength properties close to the control mix, with compressive strengths up to 30.80 MPa at 28 days. Employing RSM as predictive models, the study showed R2 values of 0.9513, 0.9983, 0.9156, 0.9925, and 0.9895 for water absorption, dry density, compressive strength, ultrasonic pulse velocity, and rebound hammer, respectively. This study offers supporting global research efforts to advance sustainable and affordable construction materials, leading to a significant reduction in landfill waste and the conservation of precious natural resources worldwide.

13.
Environ Sci Pollut Res Int ; 31(49): 59320-59341, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39348018

RESUMO

This paper critically examines the carbon cycle and environmental impacts associated with building materials, encompassing diverse impact categories for both midpoint and endpoint scenarios. The research encompasses a comparative analysis of five distinct scenarios, contrasting the environmental performance of green against conventional counterparts. Notably, previous research endeavors did not investigate the effects of varying percentages with and without phase change materials (PCM). The primary objective is to assess the impact of integrating phase change materials (PCM) with varying percentages of fly ash (20% and 35%) on energy consumption and carbon emissions, particularly in cold climates like Norway. The study employs the ReCiPe2016 Midpoint (E) method, which offers a robust life cycle assessment (LCA) framework aligned with European standards, making it particularly suitable for this context. Energy Plus, within the Design Builder software, was used to simulate and calculate the impact of PCM on energy efficiency. The findings underscore those environmental impacts attributed to green buildings amount to 9.79 × 104 kg of CO2 equivalent, while conventional buildings account for 1.04 × 105 kg of CO2 equivalent. Furthermore, among the cases studied, the optimal scenario pertains to a green building utilizing 35% wind ash cement and PCM, resulting in the equivalent of 9.68 × 104 kg of CO2 emissions. Remarkably, the best-case scenario involves a green building boasting a robust steel interior structure and aluminum windows, whereas the worst-case scenario entails a typical building devoid of PCM implementation. Furthermore, energy consumption analysis indicates that scenario 5, which utilizes PCM and 35% fly ash, achieves a 15% reduction in cooling energy and a 6.9% reduction in heating energy compared to scenario 3, resulting in an annual energy consumption of 97,453.09 kWh.


Assuntos
Pegada de Carbono , Materiais de Construção , Noruega , Cinza de Carvão
14.
Sci Rep ; 14(1): 21299, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266592

RESUMO

High pulse discharge breakage has a vast prospect as a fresh crushing mechanism for it has the capability to enhance the comminuting effect, however, the breaking mechanism is not yet well studied. In this orthogonal designed research, 27 indoor tests of high voltage pulse discharge (HVPD) for breaking concrete together with the determination of dynamic elastic modulus of concrete based on three variables, i.e. applied voltage, pulse number, and discharge electrode gap, were carried out at three levels. The effects of these factors were studied by using significance and range analysis. The results showed that among these factors, the pulse number has the greatest impact on the dynamic elastic modulus loss (DEML) of concrete, while the applied voltage has the least influence. By changing the value of pulse number and applied voltage, the DEML can be increased to 12.9% and 26.7%, respectively. The impact of the factors' combination was experimentally proven, and the resulting DEML of concrete broken by HVPD was obtained as 219.73 ± 9.58 MPa, which was 25.19% higher than the maximum of the DEML of concrete broken by HVPD in the orthogonal experiment under various individual factors. These findings provide technical references for improving the crushing efficiency of concrete materials and the engineering application of HVPD crushing technology.

15.
Molecules ; 29(18)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39339440

RESUMO

Semi-volatile organic compounds (SVOCs) are modern chemical substances that are present in large quantities in indoor environments. Understanding the emission of SVOCs from building materials is essential to identify the main sources of indoor SVOCs and to improve indoor air quality. In this study, a reference method employing custom-designed microchambers (630 mL) was optimized by improving the structure of the gas path and adding polytetrafluoroethylene inner coating to the chamber. After optimization, the recoveries of the microchamber method were significantly improved (75.4-96.7%), and the background in the microchamber was greatly reduced (<0.02 µg/h). By using the microchamber method, 33 SVOCs (including two alkanes, one aromatic, one nitrogen compound, and twenty-nine oxygenated compounds) and 32 SVOCs (including seven alkanes, eight aromatics, and seventeen oxygenated compounds) were detected in the emissions of the architectural coating and the PVC flooring samples, respectively. The area-specific emission rates (SERa) of total SVOCs emitted from architectural coatings and PVC floorings were in the range of 4.09-1309 µg/m2/h) (median: 10.3 µg/m2/h) and 0.508-345 µg/m2/h (median: 11.9 µg/m2/h), respectively. Propanoic acid had the highest SERa (3143 µg/m2/h) in architectural coatings, while methylbenzene (345 µg/m2/h), 2-methylnaphthalene (65.2 µg/m2/h), and naphthalene (60.3 µg/m2/h) were main SVOCs emitted from PVC floorings. Meanwhile, the average second-stage (adsorbed phase) emission mass of the total SVOCs accounts for 66.3% and 47.3% in architectural coatings and PVC floorings, respectively, suggesting that the SVOCs emitted from building materials have a strong tendency to be absorbed on the surface of the room, e.g., the interior wall, the desk or even the skin.

16.
Int J Biol Macromol ; 279(Pt 1): 135111, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39208881

RESUMO

The Portland cement industry is continuously exploring new admixture alternatives to manipulate building materials properties, including mechanical, rheological, and durability properties. Cactus mucilage is such an admixture alternative. This study reviews the literature on the use of cactus mucilage (specifically, prickly pear cactus) as a bioadmixture in building materials, particularly Portland-cement-based materials. Moreover, the influences on mechanical strength, rheology, and durability are examined. The results show that cactus mucilage, which has been used since ancient times in America, could enhance materials like lime-, Portland-cement-, and earth-based building materials.


Assuntos
Cactaceae , Materiais de Construção , Mucilagem Vegetal , Reologia , Mucilagem Vegetal/química , Cactaceae/química , Materiais de Construção/análise , Fenômenos Químicos
17.
Des Monomers Polym ; 27(1): 51-61, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979124

RESUMO

To explore the effect of polycarboxylate superplasticizers on the strength and hydration performance of alkali slag building materials, this study prepared cross-linked polycarboxylate superplasticizers with different ratios of hydrogen peroxide, methyl allyl alcohol polyoxyethylene ether, acrylic acid, polyethylene glycol diacrylate, monomer aqueous solution, reducing agent, chain transfer agent, etc. according to certain ratios, and tested their effects on the hydration performance and strength of alkali slag building materials. Through experimental analysis, it was found that the higher the proportion of cross-linked polycarboxylate based high-efficiency water-reducing agents, the lower the initial flowability of building material slurry; The addition of cross-linked polycarboxylate water-reducing agent will prolong the initial and final setting time of alkali slag building materials, delaying the hydration time of building materials; Cross linked polycarboxylate superplasticizers can reduce the electrical conductivity of alkali slag building material slurry, delaying its hydration rate; Different ratios of water-reducing agents have a significant impact on the water reduction rate of alkali slag building materials, with V2 water-reducing agent having the highest water-reduction rate of 28.6%; Cross linked polycarboxylate superplasticizers can increase the flexural and compressive strength of alkali slag building materials. Therefore, cross-linked polycarboxylate water-reducing agents have shown great potential in regulating the properties of alkali slag building materials.

18.
Nanomaterials (Basel) ; 14(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39057857

RESUMO

This work discusses the applicability of lightweight aggregate-encapsulated n-octadecane with 1.0 wt.% of Cu nanoparticles, for enhanced thermal comfort in buildings by providing thermal energy storage functionality to no-fines concrete. A straightforward two-step procedure (impregnation and occlusion) for the encapsulation of the nano-additivated phase change material in lightweight aggregates is presented. Encapsulation efficiencies of 30-40% are achieved. Phase change behavior is consistent across cycles. Cu nanoparticles provide nucleation points for phase change and increase the rate of progression of phase change fronts due to the enhancement in the effective thermal conductivity of n-octadecane. The effective thermal conductivity of the composites remains like that of regular lightweight aggregates and can still fulfil thermal insulation requirements. The thermal response of no-fines concrete blocks prepared with these new aggregates is also studied. Under artificial sunlight, with a standard 1000 W·m-2 irradiance and AM1.5G filter, concrete samples with the epoxy-coated aggregate-encapsulated n-octadecane-based dispersion of Cu nanoparticles (with a phase change material content below 8% of the total concrete mass) can effectively maintain a significant 5 °C difference between irradiated and non-irradiated sides of the block for ca. 30 min.

19.
Polymers (Basel) ; 16(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000704

RESUMO

Buildings utilize both inorganic and organic insulation materials to conserve energy and prevent heat loss. However, while exhibiting excellent thermal insulation performance, organic insulation materials increase the risk of fire due to the emission of intense heat and toxic smoke in the event of a fire. Conversely, inorganic insulation materials are characterized by a lower thermal insulation performance, leading to an increase in the weight of the building with extensive use. Therefore, the necessity for research into new insulation materials that address the drawbacks of existing ones, including reducing weight, enhancing fire resistance, and improving thermal insulation performance, has been recognized. This study focuses on evaluating the enhancement of the thermal insulation performance using novel building materials compared to conventional ones. The research methodology involved the incorporation of porous aerogel powders into paper-based cellulose insulation to improve its insulating properties. Samples were prepared in standard 100 × 100 mm2 panel forms. Two control groups were utilized: a pure control group, where specimens were fabricated using 100% recycled cardboard for packaging, and a mixed control group, where specimens were produced using a mixture ratio of 30 wt% ceramic binder and 40 wt% expandable graphite. Experimental group specimens were prepared by increasing the aerogel content from 200 to 1000 mL under each condition of the control groups (pure and mixed) after mixing. The thermal insulation performance of the specimens was evaluated in terms of thermal conductivity and thermal diffusivity according to ISO 22007-2 (for solids, paste, and powders). Through this study, it was found that the thermal insulation performances of the pure control and experimental groups improved by 16.66%, while the mixed control and experimental groups demonstrated a 17.06% enhancement in thermal insulation performance with the addition of aerogel.

20.
Sci Total Environ ; 947: 174553, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38972424

RESUMO

The self-healing bioconcrete, or bioconcrete as concrete containing microorganisms with self-healing capacities, presents a transformative strategy to extend the service life of concrete structures. This technology harnesses the biological capabilities of specific microorganisms, such as bacteria and fungi, which are integral to the material's capacity to autonomously mend cracks, thereby maintaining structural integrity. This review highlights the complex biochemical pathways these organisms utilize to produce healing compounds like calcium carbonate, and how environmental parameters, such as pH, temperature, oxygen, and moisture critically affect the repair efficacy. A comprehensive analysis of recently published peer-reviewed literature, and contemporary experimental research forms the backbone of this review with a focus on microbiological aspects of the self-healing process. The review assesses the challenges facing self-healing bioconcrete, including the longevity of microbial spores and the cost implications for large-scale implementation. Further, attention is given to potential research directions, such as investigating alternative biological agents and optimizing the concrete environment to support microbial activity. The culmination of this investigation is a call to action for integrating self-healing bioconcrete in construction on a broader scale, thereby realizing its potential to fortify infrastructure resilience and sustainability.


Assuntos
Materiais de Construção , Materiais de Construção/microbiologia , Bactérias , Fungos/fisiologia , Carbonato de Cálcio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA