Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Ano de publicação
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2824: 105-120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39039409

RESUMO

The Rift Valley fever virus is one of the bunyaviruses on the WHO's priority list of pathogens that may cause future pandemics. A better understanding of disease progression and viral pathogenesis is urgently needed to develop treatments. The non-structural proteins NSs and NSm of human pathogenic bunyaviruses represent promising therapeutic targets, as they are often key virulence factors. However, their function is still poorly understood, and their structure is yet unknown, mainly because no successful production of these highly complex proteins has been reported. Here we propose a powerful combination of wheat germ cell-free protein synthesis and NMR to study the structure of these proteins and in particular detail cell-free synthesis and lipid reconstitution methods that can be applied to complex membrane proteins.


Assuntos
Sistema Livre de Células , Humanos , Espectroscopia de Ressonância Magnética/métodos , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/química , Triticum/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Biossíntese de Proteínas , Vírus da Febre do Vale do Rift , Proteínas Virais/metabolismo , Proteínas Virais/química
2.
Methods Mol Biol ; 2824: 147-164, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39039412

RESUMO

Single-domain antibodies, referred to as VHH (variable heavy chains of heavy chain-only antibodies) or in their commercial name as nanobodies, are potent tools for the detection of target proteins in biological samples. They have the advantage of being highly stable, specific, and sensitive, with affinities reaching the nanomolar range. We utilized this tool to develop a rapid detection method that discriminates cells infected with Rift Valley fever virus (RVFV), based on the intracellular detection of the viral nonstructural NSm protein localized on the outer membrane of mitochondria. Here we describe how NSm-specific VHHs have been produced, cloned, and characterized, highlighting their value in RVFV research and diagnosis. This work may also raise interest in other potential applications such as antiviral therapy.


Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Anticorpos de Domínio Único , Proteínas não Estruturais Virais , Vírus da Febre do Vale do Rift/imunologia , Anticorpos de Domínio Único/imunologia , Humanos , Febre do Vale de Rift/imunologia , Febre do Vale de Rift/diagnóstico , Febre do Vale de Rift/virologia , Proteínas não Estruturais Virais/imunologia , Animais , Anticorpos Antivirais/imunologia
3.
Diagn Microbiol Infect Dis ; 109(4): 116350, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38761614

RESUMO

BACKGROUND: Severe Fever with Thrombocytopenia Syndrome (SFTS) is a tick-borne disease caused by the SFTS virus (SFTSV) which has the potential to become a pandemic and is currently a major public health concern. CASE PRESENTATION: We present the case of a 74-year-old female from an urban area of Chongqing, with leukocytopenia, thrombocytopenia, organ function, inflammatory, blood coagulation, and immune abnormalities. SFTSV infection was confirmed through molecular detection and metagenomic next-generation sequencing (mNGS) analysis, indicating a diagnosis of SFTS due to the patient's history of tick bites. The patient received symptomatic and supportive therapy, including antibiotics, antiviral treatment, and antifungal therapy, and finally discharged from the hospital on day 18. CONCLUSIONS: This study highlights the need for increased awareness, early diagnosis, and prompt treatment for tick-borne SFTS. It also provides a comprehensive understanding of the disease's characteristics, pathogenesis, detection methods, and available treatments.


Assuntos
Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Humanos , Feminino , Phlebovirus/genética , Phlebovirus/isolamento & purificação , Febre Grave com Síndrome de Trombocitopenia/diagnóstico , Febre Grave com Síndrome de Trombocitopenia/tratamento farmacológico , Idoso , China , Sequenciamento de Nucleotídeos em Larga Escala , Picadas de Carrapatos/complicações , Doenças Transmitidas por Carrapatos/diagnóstico , Doenças Transmitidas por Carrapatos/virologia , Doenças Transmitidas por Carrapatos/tratamento farmacológico , Antivirais/uso terapêutico
4.
Eur J Med Chem ; 272: 116467, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38735150

RESUMO

The World Health Organization (WHO) identifies several bunyaviruses as significant threats to global public health security. Developing effective therapies against these viruses is crucial to combat future outbreaks and mitigate their impact on patient outcomes. Here, we report the synthesis of some isoindol-1-one derivatives and explore their inhibitory properties over an indispensable metal-dependent cap-snatching endonuclease (Cap-ENDO) shared among evolutionary divergent bunyaviruses. The compounds suppressed RNA hydrolysis by Cap-ENDOs, with IC50 values predominantly in the lower µM range. Molecular docking studies revealed the interactions with metal ions to be essential for the 2,3-dihydro-6,7-dihydroxy-1H-isoindol-1-one scaffold activity. Calorimetric analysis uncovered Mn2+ ions to have the highest affinity for sites within the targets, irrespective of aminoacidic variations influencing metal cofactor preferences. Interestingly, spectrophotometric findings unveiled sole dinuclear species formation between the scaffold and Mn2+. Moreover, the complexation of two Mn2+ ions within the viral enzymes appears to be favourable, as indicated by the binding of compound 11 to TOSV Cap-ENDO (Kd = 28 ± 3 µM). Additionally, the tendency of compound 11 to stabilize His+ more than His- Cap-ENDOs suggests exploitable differences in their catalytic pockets relevant to improving specificity. Collectively, our results underscore the isoindolinone scaffold's potential as a strategic starting point for the design of pan-antibunyavirus drugs.


Assuntos
Desenho de Fármacos , Endonucleases , Simulação de Acoplamento Molecular , Endonucleases/metabolismo , Endonucleases/antagonistas & inibidores , Isoindóis/síntese química , Isoindóis/farmacologia , Isoindóis/química , Relação Estrutura-Atividade , Estrutura Molecular , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Bunyaviridae/efeitos dos fármacos , Bunyaviridae/metabolismo , Relação Dose-Resposta a Droga , Humanos
5.
J Invertebr Pathol ; 204: 108118, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679369

RESUMO

Portunid crabs are distributed worldwide and highly valued in aquaculture. Viral infections are the main limiting factor for the survival of these animals and, consequently, for the success of commercial-scale cultivation. However, there is still a lack of knowledge about the viruses that infect cultured portunid crabs worldwide. Herein, the genome sequence and phylogeny of Callinectes sapidus reovirus 2 (CsRV2) are described, and the discovery of a new bunyavirus in Callinectes danae cultured in southern Brazil is reported. The CsRV2 genome sequence consists of 12 dsRNA segments (20,909 nt) encode 13 proteins. The predicted RNA-dependent RNA polymerase (RdRp) shows a high level of similarity with that of Eriocheir sinensis reovirus 905, suggesting that CsRV2 belongs to the genus Cardoreovirus. The CsRV2 particles are icosahedral, measuring approximately 65 nm in diameter, and exhibit typical non-turreted reovirus morphology. High throughput sequencing data revealed the presence of an additional putative virus genome similar to bunyavirus, called Callinectes danae Portunibunyavirus 1 (CdPBV1). The CdPBV1 genome is tripartite, consisting of 6,654 nt, 3,120 nt and 1,656 nt single-stranded RNA segments that each encode a single protein. Each segment has a high identity with European shore crab virus 1, suggesting that CdPBV1 is a new representative of the family Cruliviridae. The putative spherical particles of CdPBV1 measure ∼120 nm in diameter and present a typical bunyavirus morphology. The results of the histopathological analysis suggest that these new viruses can affect the health and, consequently, the survival of C. danae in captivity. Therefore, the findings reported here should be used to improve prophylactic and pathogen control practices and contribute to the development and optimization of the production of soft-shell crabs on a commercial scale in Brazil.


Assuntos
Braquiúros , Genoma Viral , Filogenia , Reoviridae , Animais , Braquiúros/virologia , Reoviridae/genética , Reoviridae/classificação , Orthobunyavirus/genética , Aquicultura
6.
IUCrJ ; 11(Pt 3): 374-383, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38656310

RESUMO

The large Bunyavirales order includes several families of viruses with a segmented ambisense (-) RNA genome and a cytoplasmic life cycle that starts by synthesizing viral mRNA. The initiation of transcription, which is common to all members, relies on an endonuclease activity that is responsible for cap-snatching. In La Crosse virus, an orthobunyavirus, it has previously been shown that the cap-snatching endonuclease resides in the N-terminal domain of the L protein. Orthobunyaviruses are transmitted by arthropods and cause diseases in cattle. However, California encephalitis virus, La Crosse virus and Jamestown Canyon virus are North American species that can cause encephalitis in humans. No vaccines or antiviral drugs are available. In this study, three known Influenza virus endonuclease inhibitors (DPBA, L-742,001 and baloxavir) were repurposed on the La Crosse virus endonuclease. Their inhibition was evaluated by fluorescence resonance energy transfer and their mode of binding was then assessed by differential scanning fluorimetry and microscale thermophoresis. Finally, two crystallographic structures were obtained in complex with L-742,001 and baloxavir, providing access to the structural determinants of inhibition and offering key information for the further development of Bunyavirales endonuclease inhibitors.


Assuntos
Antivirais , Endonucleases , Vírus La Crosse , Triazinas , Vírus La Crosse/efeitos dos fármacos , Vírus La Crosse/enzimologia , Antivirais/farmacologia , Antivirais/química , Endonucleases/antagonistas & inibidores , Endonucleases/metabolismo , Endonucleases/química , Dibenzotiepinas , Morfolinas/farmacologia , Morfolinas/química , Piridonas/farmacologia , Piridonas/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Transferência Ressonante de Energia de Fluorescência , Humanos , Animais , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/química , Proteínas Virais/metabolismo
7.
Viruses ; 16(3)2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543848

RESUMO

The Bunyavirales order includes at least fourteen families with diverse but related viruses, which are transmitted to vertebrate hosts by arthropod or rodent vectors. These viruses are responsible for an increasing number of outbreaks worldwide and represent a threat to public health. Infection in humans can be asymptomatic, or it may present with a range of conditions from a mild, febrile illness to severe hemorrhagic syndromes and/or neurological complications. There is a need to develop safe and effective vaccines, a process requiring better understanding of the adaptive immune responses involved during infection. This review highlights the most recent findings regarding T cell and antibody responses to the five Bunyavirales families with known human pathogens (Peribunyaviridae, Phenuiviridae, Hantaviridae, Nairoviridae, and Arenaviridae). Future studies that define and characterize mechanistic correlates of protection against Bunyavirales infections or disease will help inform the development of effective vaccines.


Assuntos
Arenaviridae , Vírus de RNA , Vacinas , Humanos , Imunidade Adaptativa
8.
Viruses ; 16(2)2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38400044

RESUMO

Determination of the infectious titer is a central requirement when working with pathogenic viruses. The plaque or focus assay is a commonly used but labor- and time-consuming approach for determining the infectious titer of orthohantavirus samples. We have developed an optimized virus quantification approach that relies on the fluorescence-based detection of the orthohantavirus nucleocapsid protein (N) in infected cells with high sensitivity. We present the use of flow cytometry but highlight fluorescence microscopy in combination with automated data analysis as an attractive alternative to increase the information retrieved from an infection experiment. Additionally, we offer open-source software equipped with a user-friendly graphical interface, eliminating the necessity for advanced programming skills.


Assuntos
Infecções por Hantavirus , Humanos , Citometria de Fluxo/métodos , Fluxo de Trabalho , Software
10.
Viruses ; 16(1)2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257790

RESUMO

One-third of the nine WHO shortlisted pathogens prioritized for research and development in public health emergencies belong to the Bunyavirales order. Several Bunyavirales species carry an NSm protein that acts as a virulence factor. We predicted the structures of these NSm proteins and unexpectedly found that in two families, their cytosolic domain was inferred to have a similar fold to that of the cytosolic domain of the viral envelope-forming glycoprotein N (Gncyto) encoded on the same genome fragment. We show that although the sequence identity between the NSmcyto and the Gncyto domains is low, the conservation of the two zinc finger-forming CysCysHisCys motifs explains the predicted structural conservation. Importantly, our predictions provide a first glimpse into the long-unknown structure of NSm. Also, these predictions suggest that NSm is the result of a gene duplication event in the Bunyavirales Nairoviridae and Peribunyaviridae families and that such events may be common in the recent evolutionary history of RNA viruses.


Assuntos
Duplicação Gênica , Vírus de RNA , Humanos , Evolução Biológica , Saúde Pública , Proteínas do Envelope Viral/genética , Fatores de Virulência/genética
11.
Acta Crystallogr D Struct Biol ; 80(Pt 2): 113-122, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38265877

RESUMO

Phenuiviridae nucleoprotein is the main structural and functional component of the viral cycle, protecting the viral RNA and mediating the essential replication/transcription processes. The nucleoprotein (N) binds the RNA using its globular core and polymerizes through the N-terminus, which is presented as a highly flexible arm, as demonstrated in this article. The nucleoprotein exists in an `open' or a `closed' conformation. In the case of the closed conformation the flexible N-terminal arm folds over the RNA-binding cleft, preventing RNA adsorption. In the open conformation the arm is extended in such a way that both RNA adsorption and N polymerization are possible. In this article, single-crystal X-ray diffraction and small-angle X-ray scattering were used to study the N protein of Toscana virus complexed with a single-chain camelid antibody (VHH) and it is shown that in the presence of the antibody the nucleoprotein is unable to achieve a functional assembly to form a ribonucleoprotein complex.


Assuntos
Nucleoproteínas , Vírus da Febre do Flebótomo Napolitano , Nucleoproteínas/química , Vírus da Febre do Flebótomo Napolitano/genética , Vírus da Febre do Flebótomo Napolitano/metabolismo , Proteínas do Nucleocapsídeo/química , Modelos Moleculares , RNA Viral/química , RNA Viral/metabolismo
12.
J Gen Virol ; 104(12)2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38116934

RESUMO

Tulasviridae is a family of ambisense RNA viruses with genomes of about 12.2 kb that have been found in fungi. The tulasvirid genome is nonsegmented and contains three open reading frames (ORFs) that encode a nucleoprotein (NP), a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain, and a protein of unknown function (X). This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Tulasviridae, which is available at ictv.global/report/tulasviridae.


Assuntos
Vírus de RNA , Vírus , Genoma Viral , Vírus/genética , Vírus de RNA/genética , Filogenia , Nucleoproteínas/genética , Replicação Viral
13.
Pharmaceutics ; 15(12)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38140109

RESUMO

The Oropouche virus (OROV) is a member of the family Peribunyaviridae (order Bunyavirales) and the cause of a dengue-like febrile illness transmitted mainly by biting midges and mosquitoes. In this study, we aimed to explore acylphloroglucinols and xanthohumol from hops (Humulus lupulus L.) as a promising alternative for antiviral therapies. The evaluation of the inhibitory potential of hops compounds on the viral cycle of OROV was performed through two complementary approaches. The first approach applies cell-based assay post-inoculation experiments to explore the inhibitory potential on the latest steps of the viral cycle, such as genome translation, replication, virion assembly, and virion release from the cells. The second part covers in silico methods evaluating the ability of those compounds to inhibit the activity of the endonuclease domain, which is essential for transcription, binding, and cleaving RNA. In conclusion, the beta acids showed strongest inhibitory potential in post-treatment assay (EC50 = 26.7 µg/mL). Xanthohumol had the highest affinity for OROV endonuclease followed by colupulone and cohumulone. This result contrasts with that observed for docking and MM/PBSA analysis, where cohumulone was found to have a higher affinity. Finally, among the three tested ligands, Lys92 and Arg33 exhibited the highest affinity with the protein.

14.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1422782

RESUMO

ABSTRACT Brazil is a great source of arbovirus diversity, mainly in the Amazon region. However, other biomes, especially the Atlantic Forest, may also be a hotspot for emerging viruses, including Bunyaviruses (Negarnaviricota: Bunyavirales). For instance, Vale do Ribeira, located in the Southeastern region, has been widely studied for virus surveillance, where Flavivirus, Alphavirus and Bunyaviruses were isolated during the last decades, including Bruconha virus (BRCV), a member of Orthobunyavirus genus Group C, in 1976. Recently, a new isolate of BRCV named Span321532 was obtained from an adult sentinel mouse placed in Iguape city in 2011, and a full-length genome was generated with nucleotide differences ranging between 1.5%, 5.3% and 5% (L, M and S segments, respectively) from the prototype isolated 35 years earlier. In addition, each segment placed BRCV into different clusters, showing the high variety within Bunyavirales. Although no evidence for reassortants was detected, this finding reiterates the need for new surveillance and genomic studies in the area considering the high mutation rates of arbovirus, and also to identify the hosts capable of supporting the continuous circulation of Orthobunyavirus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA