Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
1.
J Med Virol ; 96(10): e29941, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39350626

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is a widespread infectious disease with high mortality. Hence, identifying valuable biomarkers for detecting the early changes in SFTS is crucial. In this study, we investigated the relationship between the difference in hematocrit (HCT) and serum albumin (ALB) levels (HCT-ALB) and the prognosis of patients with SFTS virus infection. After excluding the patients who did not meet the SFTS diagnostic criteria, those with SFTS from the First Affiliated Hospital of Wannan Medical College were divided into a fatal and Nonfatal group based on their disease prognosis. A dynamic analysis of the daily laboratory data was conducted for 14 days following SFTS onset. A receiver operating characteristic (ROC) curve was used to evaluate the predictive value of HCT-ALB. Another sample of patients with SFTS admitted to the First Affiliated Hospital of Nanjing Medical University was utilized to verify the study conclusions. A total of 158 patients with SFTS were included. Among them, 126 patients were categorized in the Nonfatal group and 32 in the fatal group, leading to a mortality rate of 20.25% (32/158). Univariate analysis of the laboratory test findings and ROC curve analysis showed that alanine aminotransferase (ALT), aspartate aminotransferase (AST), HCT-ALB, and lactate dehydrogenase (LDH) had a relatively better ability to discriminate the disease condition of the patients with SFTS. Moreover, HCT-ALB served as a predictor of SFTS prognosis. Additionally, an area under the ROC curve (AUC) of 0.777 and a critical HCT-ALB value of 4.75 on day 7 were associated with a sensitivity of 83.3% and a specificity of 73.9%. On day 8 (AUC = 0.882), the critical value of HCT-ALB was 9.25, while the sensitivity was 100% and specificity was 76.5%. Further verification based on the data of 91 patients with SFTS admitted to the First Affiliated Hospital of Nanjing Medical University demonstrated a mortality rate of 51% (24/47) among those with HCT-ALB values >4.75 on day 7 of the disease course, highlighting the potential of the HCT-ALB value of >4.75 for predicting SFTS prognosis. High HCT-ALB values are closely related to the mortality of patients with SFTS. HCT-ALB is a sensitive and independent predictor of early disease in patients with SFTS.


Assuntos
Biomarcadores , Curva ROC , Albumina Sérica , Febre Grave com Síndrome de Trombocitopenia , Humanos , Masculino , Feminino , Prognóstico , Pessoa de Meia-Idade , Biomarcadores/sangue , Hematócrito , Idoso , Febre Grave com Síndrome de Trombocitopenia/diagnóstico , Febre Grave com Síndrome de Trombocitopenia/sangue , Febre Grave com Síndrome de Trombocitopenia/mortalidade , Albumina Sérica/análise , Adulto , Phlebovirus , Índice de Gravidade de Doença , Idoso de 80 Anos ou mais , Aspartato Aminotransferases/sangue
2.
J Med Virol ; 96(9): e29931, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39291826

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) and hemorrhagic fever with renal syndrome (HFRS) usually have different infection routes, and coinfection is relatively rare. This study examines the clinical and etiological characteristics of coinfection by these two pathogens to provide important references for clinical diagnosis and treatment. Blood samples from 22 clinically diagnosed patients with HFRS were collected for molecular detection of HFRS and common tick and mouse borne diseases. Inoculate the blood of six severe and critically patients into cells to isolate and proliferate potential viruses, and retest the cell culture to determine the pathogen. In addition, complete data were collected from these 22 HFRS and concurrent SFTS patients, and white blood cells (WBCs), platelet (PLT), blood urea nitrogen (BUN), creatinine (Cr) and other data were compared and analyzed. A total of 31 febrile patients, including 22 HFRS patients and 9 SFTS patients, were collected from September 2021 to October 2022. Among these HFRS patients, 11 were severe or critical. Severe and critical HFRS patients were characterized by rodent exposure history, pharyngeal and conjunctival hyperemia, abnormal WBC and PLT counts, and elevated BUN and Cr values. Virus isolation and molecular detection on blood samples from 6 patients showed that three of the six severe patients were positive for hantaan virus (HTNV), and two of the three HTNV positives were also positive for SFTS bunyavirus (SFTSV). The two coinfected patients exhibited different clinical and laboratory characteristics compared to those infected by either virus alone. Coinfection of HTNV and SFTSV leads to severe and complex hemorrhagic fever. Laboratory characteristics, such as the indicators of WBC, PLT, BUN, and Cr, may differ between HFRS and SFTS. These findings have implications and provide references for the diagnosis and treatment of coinfected cases.


Assuntos
Coinfecção , Vírus Hantaan , Febre Hemorrágica com Síndrome Renal , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Humanos , Coinfecção/virologia , Vírus Hantaan/isolamento & purificação , Vírus Hantaan/genética , Vírus Hantaan/patogenicidade , Masculino , Feminino , Pessoa de Meia-Idade , Febre Grave com Síndrome de Trombocitopenia/virologia , Febre Grave com Síndrome de Trombocitopenia/sangue , Adulto , Phlebovirus/genética , Phlebovirus/isolamento & purificação , Febre Hemorrágica com Síndrome Renal/virologia , Febre Hemorrágica com Síndrome Renal/sangue , Febre Hemorrágica com Síndrome Renal/diagnóstico , Febre Hemorrágica com Síndrome Renal/complicações , Idoso , Animais , Adulto Jovem
3.
Viruses ; 16(9)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39339911

RESUMO

Oropouche virus (OROV) is an emerging arbovirus endemic in Latin America and the Caribbean that causes Oropouche fever, a febrile illness that clinically resembles some other arboviral infections. It is currently spreading through Brazil and surrounding countries, where, from 1 January to 1 August 2024, more than 8000 cases have been identified in Bolivia, Brazil, Columbia, and Peru and for the first time in Cuba. Travelers with Oropouche fever have been identified in the United States and Europe. A significant occurrence during this epidemic has been the report of pregnant women infected with OROV who have had miscarriages and stillborn fetuses with placental, umbilical blood and fetal somatic organ samples that were RT-PCR positive for OROV and negative for other arboviruses. In addition, there have been four cases of newborn infants having microcephaly, in which the cerebrospinal fluid tested positive for IgM antibodies to OROV and negative for other arboviruses. This communication examines the biology, epidemiology, and clinical features of OROV, summarizes the 2023-2024 Oropouche virus epidemic, and describes the reported cases of vertical transmission and congenital infection, fetal death, and microcephaly in pregnant women with Oropouche fever, addresses experimental animal infections and potential placental pathology findings of OROV, and reviews other bunyavirus agents that can cause vertical transmission. Recommendations are made for pregnant women travelling to the regions affected by the epidemic.


Assuntos
Infecções por Bunyaviridae , Transmissão Vertical de Doenças Infecciosas , Microcefalia , Orthobunyavirus , Placenta , Complicações Infecciosas na Gravidez , Natimorto , Gravidez , Feminino , Humanos , Microcefalia/virologia , Microcefalia/epidemiologia , Orthobunyavirus/genética , Orthobunyavirus/isolamento & purificação , Complicações Infecciosas na Gravidez/virologia , Complicações Infecciosas na Gravidez/epidemiologia , Placenta/virologia , Infecções por Bunyaviridae/transmissão , Infecções por Bunyaviridae/epidemiologia , Infecções por Bunyaviridae/virologia , Recém-Nascido , Feto/virologia , Animais
4.
J Virol ; : e0106924, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39303014

RESUMO

Prior to 2017, the family Bunyaviridae included five genera of arthropod and rodent viruses with tri-segmented negative-sense RNA genomes related to the Bunyamwera virus. In 2017, the International Committee on Taxonomy of Viruses (ICTV) promoted the family to order Bunyavirales and subsequently greatly expanded its composition by adding multiple families for non-segmented to polysegmented viruses of animals, fungi, plants, and protists. The continued and accelerated discovery of bunyavirals highlighted that an order would not suffice to depict the evolutionary relationships of these viruses. Thus, in April 2024, the order was promoted to class Bunyaviricetes. This class currently includes two major orders, Elliovirales (Cruliviridae, Fimoviridae, Hantaviridae, Peribunyaviridae, Phasmaviridae, Tospoviridae, and Tulasviridae) and Hareavirales (Arenaviridae, Discoviridae, Konkoviridae, Leishbuviridae, Mypoviridae, Nairoviridae, Phenuiviridae, and Wupedeviridae), for hundreds of viruses, many of which are pathogenic for humans and other animals, plants, and fungi.

5.
Trop Med Infect Dis ; 9(9)2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39330894

RESUMO

The order Bunyavirales belongs to the class of Ellioviricetes and is classified into fourteen families. Some species of the order Bunyavirales pose potential threats to human health. The continuously increasing research reveals that various viruses within this order achieve immune evasion in the host through suppressing interferon (IFN) response. As the types and nodes of the interferon response pathway are continually updated or enriched, the IFN suppression mechanisms and target points of different virus species within this order are also constantly enriched and exhibit variations. For instance, Puumala virus (PUUV) and Tula virus (TULV) can inhibit IFN response through their functional NSs inhibiting downstream factor IRF3 activity. Nevertheless, the IFN suppression mechanisms of Dabie bandavirus (DBV) and Guertu virus (GTV) are mostly mediated by viral inclusion bodies (IBs) or filamentous structures (FSs). Currently, there are no effective drugs against several viruses belonging to this order that pose significant threats to society and human health. While the discovery, development, and application of antiviral drugs constitute a lengthy process, our focus on key targets in the IFN response suppression process of the virus leads to potential antiviral strategies, which provide references for both basic research and practical applications.

6.
Autophagy ; : 1-18, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39189526

RESUMO

Severe fever with thrombocytopenia syndrome is an emerging viral hemorrhagic fever caused by a tick-borne bunyavirus, severe fever with thrombocytopenia syndrome virus (SFTSV), with a high case fatality. We previously found that SFTSV nucleoprotein (NP) induces macroautophagy/autophagy to facilitate virus replication. However, the role of NP in antagonizing host innate immunity remains unclear. Mitophagy, a selected form of autophagy, eliminates damaged mitochondria to maintain mitochondrial homeostasis. Here, we demonstrate that SFTSV NP triggers mitophagy to degrade MAVS (mitochondrial antiviral signaling protein), thereby blocking MAVS-mediated antiviral signaling to escape the host immune response. Mechanistically, SFTSV NP translocates to mitochondria by interacting with TUFM (Tu translation elongation factor, mitochondrial), and mediates mitochondrial sequestration into phagophores through interacting with LC3, thus inducing mitophagy. Notably, the N-terminal LC3-interacting region (LIR) motif of NP is essential for mitophagy induction. Collectively, our results demonstrated that SFTSV NP serves as a novel virulence factor, inducing TUFM-mediated mitophagy to degrade MAVS and evade the host immune response.Abbreviation: 3-MA: 3-methyladenine; ACTB: actin beta; co-IP: co-immunoprecipitation; CQ: chloroquine; DAPI: 4',6-diamidino-2-phenylindole, dihydrochloride; DMSO: dimethyl sulfoxide; FCCP: carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone; GFP: green fluorescent protein; HTNV: Hantan virus; IAV: influenza A virus; IFN: interferon; LAMP1: lysosomal associated membraneprotein 1; LIR: LC3-interacting region; MAP1LC3B/LC3B: microtubule associatedprotein 1 light chain 3 beta; MAVS: mitochondrial antiviral signaling protein; Mdivi-1: mitochondrial division inhibitor 1; MOI: multiplicity of infection; MT-CO2/COXII: mitochondrially encoded cytochrome C oxidase II; NP: nucleoprotein; NSs: nonstructural proteins; poly(I:C): polyinosinic:polycytidylic acid; RIGI: RNA sensor RIG-I; RLR: RIGI-like receptor; SFTSV: severe fever withthrombocytopenia syndrome virus; TCID50: 50% tissue culture infectiousdose; TIMM23: translocase of inner mitochondrial membrane 23; TOMM20:translocase of outer mitochondrial membrane 20; TUFM: Tu translation elongationfactor, mitochondrial.

7.
J Virol ; 98(9): e0089324, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39194249

RESUMO

Oropouche fever caused by Oropouche virus (OROV) is a significant zoonosis in Central and South America. Despite its public health significance, we lack high-throughput diagnostics, therapeutics, and a comprehensive knowledge of OROV biology. Reporter viruses are valuable tools to rapidly study virus dynamics and develop neutralization and antiviral screening assays. OROV is a tri-segmented bunyavirus, which makes generating a reporter virus challenging, as introducing foreign elements into the viral genome typically affects fitness. We previously demonstrated that the non-structural gene NSm on the OROV medium (M) segment is non-essential for replication in vitro. Taking advantage of this, we have now generated a recombinant OROV expressing fluorescent protein ZsGreen in place of NSm. This reporter OROV is both stable and pathogenic in IFNAR-/- mice and provides a powerful tool for OROV pathogenesis studies and assay development.IMPORTANCEEmerging and reemerging infectious agents such as zoonotic bunyaviruses are of global health concern. Oropouche virus (OROV) causes recurring outbreaks of acute febrile illness in the Central and South American human populations. Biting midges are the primary transmission vectors, whereas sloths and non-human primates are their reservoir hosts. As global temperatures increase, we will likely see an expansion in arthropod-borne pathogens such as OROV. Therefore, developing reagents to study pathogen biology to aid in identifying druggable targets is essential. Here, we demonstrate the feasibility and use of a fluorescent OROV reporter in mice to study viral dynamics and pathogenesis. We show that this reporter OROV maintains characteristics such as growth and pathogenicity similar to the wild-type virus. Using this reporter virus, we can now develop methods to assist OROV studies and establish various high-throughput assays.


Assuntos
Infecções por Bunyaviridae , Genes Reporter , Orthobunyavirus , Animais , Orthobunyavirus/genética , Orthobunyavirus/patogenicidade , Camundongos , Infecções por Bunyaviridae/virologia , Replicação Viral , Humanos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Camundongos Knockout
8.
Lancet Reg Health Am ; 37: 100836, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39100240

RESUMO

Background: In the United States (U.S.), hantavirus pulmonary syndrome (HPS) and non-HPS hantavirus infection are nationally notifiable diseases. Criteria for identifying human cases are based on clinical symptoms (HPS or non-HPS) and acute diagnostic results (IgM+, rising IgG+ titers, RT-PCR+, or immunohistochemistry (IHC)+). Here we provide an overview of diagnostic testing and summarize human Hantavirus disease occurrence and genotype distribution in the U.S. from 2008 to 2020. Methods: Epidemiological data from the national hantavirus registry was merged with laboratory diagnostic testing results performed at the CDC. Residual hantavirus-positive specimens were sequenced, and the available epidemiological and genetic data sets were linked to conduct a genomic epidemiological study of hantavirus disease in the U.S. Findings: From 1993 to 2020, 833 human hantavirus cases have been identified, and from 2008 to 2020, 335 human cases have occurred. Among New World (NW) hantavirus cases detected at the CDC diagnostic laboratory (representing 29.2% of total cases), most (85.0%) were detected during acute disease, however, some convalescent cases were detected in states not traditionally associated with hantavirus infections (Connecticut, Missouri, New Jersey, Pennsylvania, Tennessee, and Vermont). From 1993 to 2020, 94.9% (745/785) of U.S. hantaviruses cases were detected west of the Mississippi with 45.7% (359/785) in the Four Corners region of the U.S. From 2008 to 2020, 67.7% of NW hantavirus cases were detected between the months of March and August. Sequencing of RT-PCR-positive cases demonstrates a geographic separation of Orthohantavirus sinnombreense species [Sin Nombre virus (SNV), New York virus, and Monongahela virus]; however, there is a large gap in viral sequence data from the Northwestern and Central U.S. Finally, these data indicate that commercial IgM assays are not concordant with CDC-developed assays, and that "concordant positive" (i.e., commercial IgM+ and CDC IgM+ results) specimens exhibit clinical characteristics of hantavirus disease. Interpretation: Hantaviral disease is broadly distributed in the contiguous U.S, viral variants are localised to specific geographic regions, and hantaviral disease infrequently detected in most Southeastern states. Discordant results between two diagnostic detection methods highlight the need for an improved standardised testing plan in the U.S. Hantavirus surveillance and detection will continue to improve with clearly defined, systematic reporting methods, as well as explicit guidelines for clinical characterization and diagnostic criteria. Funding: This work was funded by core funds provided to the Viral Special Pathogens Branch at CDC.

9.
J Med Virol ; 96(8): e29845, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39119969

RESUMO

Hemorrhagic fever with renal syndrome (HFRS) and severe fever with thrombocytopenia syndrome (SFTS) are both endemic in rural areas and some characteristics are similar between HFRS and SFTS, which usually lead to misdiagnosis. In this study, we summarized and compared some characteristics of HFRS and SFTS which will provide scientific information for differential diagnosis. From 2011 to 2022, a total of 4336 HFRS cases and 737 SFTS cases were reported in Zhejiang Province. Compared to SFTS, there was a higher proportion of males among HFRS cases (72.46% [3142/4336] vs. 50.88% [375/737], p = 0.000). The median age of all 4336 HFRS cases was 49 (39, 59), while the median age of SFTS cases was 66 (57, 74). In addition, the involved counties of HFRS were more than SFTS, but the number of counties affected by SFTS increased from 2011 to 2022. The majority of SFTS cases occurred in summer (from May to July), but besides summer, HFRS cases also showed a peak in winter. Finally, our results showed that the case fatality rate of SFTS was significantly higher than that of HFRS. Although there were some similarities between HFRS and SFTS, our study found several differences between them, such as gender distribution, age distribution, and seasonal distribution, which will provide scientific information for differential diagnosis of HFRS and SFTS. Further studies should be carried out to explore the mechanism of these differences.


Assuntos
Febre Hemorrágica com Síndrome Renal , Estações do Ano , Febre Grave com Síndrome de Trombocitopenia , Humanos , Febre Hemorrágica com Síndrome Renal/epidemiologia , Febre Hemorrágica com Síndrome Renal/diagnóstico , Masculino , Pessoa de Meia-Idade , Feminino , Adulto , Idoso , Febre Grave com Síndrome de Trombocitopenia/epidemiologia , Febre Grave com Síndrome de Trombocitopenia/virologia , Febre Grave com Síndrome de Trombocitopenia/diagnóstico , China/epidemiologia , Diagnóstico Diferencial
10.
Biochem Med (Zagreb) ; 34(3): 030801, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39171089

RESUMO

Blue-green neutrophilic inclusions (BGNI), also known as "death bodies," are bright green structures observed in the cytoplasm of neutrophils or monocytes and are closely associated with acute liver failure, lactic acidosis, and other serious diseases. Some studies suggested a potential association with phagocytic lipofuscin released by damaged liver cells. The presence of BGNI typically indicated a poor prognosis. We presented two cases. Case 1 was diagnosed with novel bunyavirus infection and exhibited severe hepatic impairment and coagulation dysfunction along with the presence of BGNI in neutrophils. Despite receiving comprehensive symptomatic treatment, the patient's condition rapidly deteriorated leading to eventual demise. Case 2 had severe liver injury caused by wasp stings, and BGNI was observed. Following active treatment measures, the patient eventually achieved recovery. Throughout the disease course of case 1, there was a progressive deepening in color and increase in quantity of BGNI. Conversely, case 2 demonstrated an opposite trend. Based on the comparison of clinical outcomes and variations in color and quantity of BGNI between these two patients, it was found that an increase in the number and deepening of BGNI color corresponded to worsening condition. Conversely, a decrease in quantity and lightening of color indicated improvement. Hence, these findings suggest a possible association between changes in BGNI characteristics and prognosis.


Assuntos
Corpos de Inclusão , Neutrófilos , Humanos , Neutrófilos/patologia , Corpos de Inclusão/patologia , Masculino , Pessoa de Meia-Idade , Feminino , Cor , Adulto , Prognóstico
11.
Methods Mol Biol ; 2824: 1-14, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39039402

RESUMO

Rift Valley fever virus (RVFV) is a pathogen transmitted to humans and livestock via mosquito bites. This virus, which was discovered in Kenya in 1930, is considered by the World Health Organization (WHO) and the World Organisation for Animal Health (WOAH) to be associated with a high risk of causing large-scale epidemics. However, means dedicated to fighting RVFV have been limited, and despite recent research efforts, the virus remains poorly understood at both the molecular and cellular levels as well as at a broader scale of research in the field and in animal and human populations. In this introductory chapter of a methods book, we aim to provide readers with a concise overview of RVFV, from its ecology and transmission to the structural and genomic organization of virions and its life cycle in host cells.


Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Vírus da Febre do Vale do Rift/genética , Febre do Vale de Rift/transmissão , Febre do Vale de Rift/virologia , Animais , Humanos , Genoma Viral
12.
Methods Mol Biol ; 2824: 67-80, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39039406

RESUMO

RT-qPCR allows the detection of viruses and the monitoring of viral replication. This technique was extensively employed during the SARS-CoV-2 pandemic, where it demonstrated its efficiency and robustness. Here we describe the analysis of Rift Valley fever and Toscana virus infections over time, achieved through the RT-qPCR quantification of the viral genome. We further elaborate on the method to discriminate between genomic and antigenomic viral RNAs by using primers specific for each strand during the reverse transcription step.


Assuntos
RNA Viral , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Vírus da Febre do Vale do Rift/genética , RNA Viral/genética , Febre do Vale de Rift/virologia , Febre do Vale de Rift/diagnóstico , Humanos , Genoma Viral , Reação em Cadeia da Polimerase em Tempo Real/métodos , Replicação Viral/genética , Animais
13.
Methods Mol Biol ; 2824: 241-258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39039417

RESUMO

Transmission electron microscopy significantly contributed to unveil the course of virus entry, replication, morphogenesis, and egress. For these studies, the most widely used approach is imaging ultrathin sections of virus-infected cells embedded in a plastic resin that is transparent to electrons. Before infiltration in a resin, cells must be processed to stabilize their components under the observation conditions in an electron microscope, such as high vacuum and irradiation with electrons. For conventional sample preparation, chemical fixation and dehydration are followed by infiltration in the resin and polymerization to produce a hard block that can be sectioned with an ultramicrotome. Another method that provides a superior preservation of cell components is high-pressure freezing (HPF) followed by freeze substitution (FS) before resin infiltration and polymerization. This chapter describes both procedures with cells infected with Bunyamwera virus (BUNV), a well characterized member of the Bunyavirales, and compares the morphological details of different viral structures imaged in the two types of samples. Advantages, disadvantages, and applications of conventional processing and HPF/FS are also presented and discussed.


Assuntos
Substituição ao Congelamento , Microscopia Eletrônica de Transmissão , Substituição ao Congelamento/métodos , Microscopia Eletrônica de Transmissão/métodos , Orthobunyavirus , Animais , Congelamento , Humanos , Manejo de Espécimes/métodos , Linhagem Celular
14.
Methods Mol Biol ; 2824: 165-188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39039413

RESUMO

Rift Valley fever virus (RVFV) is a mosquito-borne pathogen that represents a significant threat to both human and veterinary public health. Since its discovery in the Great Rift Valley of Kenya in the 1930s, the virus has spread across Africa and beyond, now posing a risk of introduction into Southern Europe and Asia. Despite recent progresses, early RVFV-host cell interactions remain largely uncharacterized. In this method chapter, we delineate the procedure for labeling RVFV particles with fluorescent organic dyes. This approach makes it feasible to visualize single viral particles in both fixed and living cells and study RVFV entry into host cells. We provide additional examples with two viruses closely related to RVFV, namely, Toscana virus and Uukuniemi virus. Furthermore, we illustrate how to utilize fluorescent viral particles to examine and quantify each step of the cell entry program of RVFV, which includes state-of-the-art fluorescence-based detection techniques such as fluorescence microscopy, flow cytometry, and fluorimetry.


Assuntos
Corantes Fluorescentes , Microscopia de Fluorescência , Vírus da Febre do Vale do Rift , Vírion , Vírus da Febre do Vale do Rift/isolamento & purificação , Humanos , Vírion/isolamento & purificação , Animais , Corantes Fluorescentes/química , Microscopia de Fluorescência/métodos , Citometria de Fluxo/métodos , Internalização do Vírus , Febre do Vale de Rift/virologia , Febre do Vale de Rift/diagnóstico , Coloração e Rotulagem/métodos , Linhagem Celular
15.
Methods Mol Biol ; 2824: 347-360, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39039422

RESUMO

The genome of most bunyaviruses is divided over three (S, M, and L) single-stranded RNA segments of negative polarity. The three viral RNA segments are essential to establish a productive infection. RNA fluorescence in situ hybridization (FISH) enables the detection, localization, and quantification of RNA molecules at single-molecule resolution. This chapter describes an RNA FISH method to directly visualize individual segment-specific bunyavirus RNAs in fixed infected cells and in mature virus particles, using Rift Valley fever virus as an example. Imaging of bunyavirus RNA segments is a valuable experimental tool to investigate fundamental aspects of the bunyavirus life cycle, such as virus replication, genome packaging, and virion assembly, among others.


Assuntos
Genoma Viral , Hibridização in Situ Fluorescente , RNA Viral , Hibridização in Situ Fluorescente/métodos , RNA Viral/genética , Imagem Individual de Molécula/métodos , Animais , Replicação Viral/genética , Vírus da Febre do Vale do Rift/genética , Orthobunyavirus/genética , Humanos
16.
Methods Mol Biol ; 2824: 397-408, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39039426

RESUMO

The NSs protein is a major virulence factor in bunyaviruses, crucial for viral pathogenesis. However, assessing NSs protein function can be challenging due to its inhibition of cellular RNA polymerase II, impacting NSs protein expression from plasmid DNA. The recombinant Rift Valley fever virus (RVFV) MP-12 strain (rMP-12), a highly attenuated vaccine strain, can be safely manipulated under biosafety level 2 conditions. Leveraging a reverse genetics system, we can engineer rMP-12 variants expressing heterologous NSs genes, enabling functional testing in cultured cells. Human macrophages hold a central role in viral pathogenesis, making them an ideal model for assessing NSs protein functions. Consequently, we can comprehensively compare and analyze the functional significance of various NSs proteins in human macrophages using rMP-12 NSs variants. In this chapter, we provide a detailed overview of the preparation process for rMP-12 NSs variants and introduce two distinct human macrophage models: THP-1 cells and primary macrophages. This research framework promises valuable insights into the virulence mechanisms of RVFV and other bunyaviruses and the potential for vaccine development.


Assuntos
Macrófagos , Vírus da Febre do Vale do Rift , Proteínas não Estruturais Virais , Humanos , Macrófagos/virologia , Macrófagos/imunologia , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/patogenicidade , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Células THP-1
17.
Virulence ; 15(1): 2384563, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39072499

RESUMO

Phenuiviruses are a class of segmented negative-sense single-stranded RNA viruses, typically consisting of three RNA segments that encode four distinct proteins. The emergence of pathogenic phenuivirus strains, such as Rift Valley fever phlebovirus (RVFV) in sub-Saharan Africa, Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV) in East and Southeast Asia, and Heartland Virus (HRTV) in the United States has presented considerable challenges to global public health in recent years. The innate immune system plays a crucial role as the initial defense mechanism of the host against invading pathogens. In addition to continued research aimed at elucidating the epidemiological characteristics of phenuivirus, significant advancements have been made in investigating its viral virulence factors (glycoprotein, non-structural protein, and nucleoprotein) and potential host-pathogen interactions. Specifically, efforts have focused on understanding mechanisms of viral immune evasion, viral assembly and egress, and host immune networks involving immune cells, programmed cell death, inflammation, nucleic acid receptors, etc. Furthermore, a plethora of technological advancements, including metagenomics, metabolomics, single-cell transcriptomics, proteomics, gene editing, monoclonal antibodies, and vaccines, have been utilized to further our understanding of phenuivirus pathogenesis and host immune responses. Hence, this review aims to provide a comprehensive overview of the current understanding of the mechanisms of host recognition, viral immune evasion, and potential therapeutic approaches during human pathogenic phenuivirus infections focusing particularly on RVFV and SFTSV.


Assuntos
Interações Hospedeiro-Patógeno , Imunidade Inata , Humanos , Interações Hospedeiro-Patógeno/imunologia , Phlebovirus/imunologia , Phlebovirus/genética , Phlebovirus/patogenicidade , Evasão da Resposta Imune , Fatores de Virulência/genética , Fatores de Virulência/imunologia , Vírus da Febre do Vale do Rift/imunologia , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/patogenicidade , Sistema Imunitário/virologia , Sistema Imunitário/imunologia
18.
Microbiol Resour Announc ; 13(9): e0030124, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39083695

RESUMO

Complete sequences of RNA1 and RNA2 of tulip streak virus (TuSV) were already reported, but other segments were not yet. In this study, we reported RNA3 and RNA4 of TuSV, which shared around 69% nucleotide identity with those of closely related virus, suggesting that these are additional RNA segments.

19.
J Virol ; 98(8): e0098324, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39016561

RESUMO

Rift Valley fever virus (RVFV) infection causes abortions in ruminant livestock and is associated with an increased likelihood of miscarriages in women. Using sheep and human placenta explant cultures, we sought to identify tissues at the maternal-fetal interface targeted by RVFV. Sheep villi and fetal membranes were highly permissive to RVFV infection resulting in markedly higher virus titers than human cultures. Sheep cultures were most permissive to wild-type RVFV and ΔNSm infection, while live-attenuated RVFV vaccines (LAVs; MP-12, ΔNSs, and ΔNSs/ΔNSm) exhibited reduced replication. The human fetal membrane restricted wild-type and LAV replication, and when infection occurred, it was prominent on the maternal-facing side. Type I and type III interferons were induced in human villi exposed to LAVs lacking the NSs protein. This study supports the use of sheep and human placenta explants to understand vertical transmission of RVFV in mammals and whether LAVs are attenuated at the maternal-fetal interface.IMPORTANCEA direct comparison of replication of Rift Valley fever virus (RVFV) in sheep and human placental explants reveals comparative efficiencies and permissivity to infection and replication. Vaccine strains of RVFV demonstrated reduced infection and replication capacity in the mammalian placenta. This study represents the first direct cross-host comparison of the vertical transmission capacity of this high-priority emerging mosquito-transmitted virus.


Assuntos
Transmissão Vertical de Doenças Infecciosas , Placenta , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Vacinas Atenuadas , Vacinas Virais , Replicação Viral , Vírus da Febre do Vale do Rift/fisiologia , Vírus da Febre do Vale do Rift/imunologia , Animais , Feminino , Gravidez , Ovinos , Placenta/virologia , Humanos , Febre do Vale de Rift/virologia , Febre do Vale de Rift/transmissão , Vacinas Virais/imunologia , Doenças dos Ovinos/virologia
20.
Viruses ; 16(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38932172

RESUMO

Rift Valley fever (RVF) in ungulates and humans is caused by a mosquito-borne RVF phlebovirus (RVFV). Live attenuated vaccines are used in livestock (sheep and cattle) to control RVF in endemic regions during outbreaks. The ability of two or more different RVFV strains to reassort when co-infecting a host cell is a significant veterinary and public health concern due to the potential emergence of newly reassorted viruses, since reassortment of RVFVs has been documented in nature and in experimental infection studies. Due to the very limited information regarding the frequency and dynamics of RVFV reassortment, we evaluated the efficiency of RVFV reassortment in sheep, a natural host for this zoonotic pathogen. Co-infection experiments were performed, first in vitro in sheep-derived cells, and subsequently in vivo in sheep. Two RVFV co-infection groups were evaluated: group I consisted of co-infection with two wild-type (WT) RVFV strains, Kenya 128B-15 (Ken06) and Saudi Arabia SA01-1322 (SA01), while group II consisted of co-infection with the live attenuated virus (LAV) vaccine strain MP-12 and a WT strain, Ken06. In the in vitro experiments, the virus supernatants were collected 24 h post-infection. In the in vivo experiments, clinical signs were monitored, and blood and tissues were collected at various time points up to nine days post-challenge for analyses. Cell culture supernatants and samples from sheep were processed, and plaque-isolated viruses were genotyped to determine reassortment frequency. Our results show that RVFV reassortment is more efficient in co-infected sheep-derived cells compared to co-infected sheep. In vitro, the reassortment frequencies reached 37.9% for the group I co-infected cells and 25.4% for the group II co-infected cells. In contrast, we detected just 1.7% reassortant viruses from group I sheep co-infected with the two WT strains, while no reassortants were detected from group II sheep co-infected with the WT and LAV strains. The results indicate that RVFV reassortment occurs at a lower frequency in vivo in sheep when compared to in vitro conditions in sheep-derived cells. Further studies are needed to better understand the implications of RVFV reassortment in relation to virulence and transmission dynamics in the host and the vector. The knowledge learned from these studies on reassortment is important for understanding the dynamics of RVFV evolution.


Assuntos
Vírus Reordenados , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Doenças dos Ovinos , Animais , Ovinos , Vírus da Febre do Vale do Rift/genética , Febre do Vale de Rift/virologia , Vírus Reordenados/genética , Doenças dos Ovinos/virologia , Coinfecção/virologia , Coinfecção/veterinária , Vacinas Atenuadas/genética , Vacinas Virais/imunologia , Vacinas Virais/genética , Anticorpos Antivirais/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA