Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Int Immunopharmacol ; 142(Pt B): 113165, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39303536

RESUMO

BACKGROUND: Neutrophil extracellular traps (NETs) being one of the predominant activities of neutrophils has become its key defense mechanism owing to its extensive role in inflammation and infection. However, the mechanisms regulating NET formation or NETosis still remains to be better understood. Our earlier whole genome transcriptomic data revealed two G-protein couple receptors (GPCRs) - complement component 5a receptor 1 (C5aR1) and leukotriene B4 receptor 1 (LTB4R1) were downregulated in term low birth weight (tLBW) newborns with deficient NET formation abilities. Neutrophils employ C5aR1 and LTB4R1 for mediating their immune responses, inflammation and antimicrobial activity. Hence, this study was aimed to explore the role of two GPCRs, C5aR1 and LTB4R1 including their downstream signaling molecules in NETs induction and regulation. METHODS: The validation of the transcriptomic data for C5aR1 and LTB4R1 was done using quantitative real time PCR. Pharmacological inhibition of C5aR1 and LTB4R1 using W-54011 and LY223982 on neutrophils of adults and newborns' was done to study their impact on NETosis. Extracellular DNA release, Reactive oxygen species (ROS) generation, expression of NET proteins, and signaling molecules downstream to C5aR1 and LTB4R1 were quantified using plate reader based assay, immunofluorescence, and western blotting. Myeloperoxidase (MPO)-DNA quantified by flow cytometry. Knockdown studies using siRNA against C5aR1 and LTB4R1 were done in HL-60 cells derived surrogate neutrophils and expression of downstream molecules of the two GPCRs, C5aR1 and LTB4R1 signaling axis along with NET proteins was quantified by western blotting. RESULTS: The expression of C5aR1 and LTB4R1, extracellular DNA, ROS and NET associated proteins (NE, CitH3, PAD4 and MPO) was notably increased upon NET induction in healthy adults and normal birth weight (NBW) newborns' neutrophils. Pharmacological inhibition of these two GPCRs led to substantial reduction in NETosis, extracellular DNA, ROS generation, and expression of NET associated proteins like CitH3, NE, PAD4, MPO along with downstream signaling molecules Rap1a, B-Raf and pERK. Our observations suggest a precise role of C5aR1 and LTB4R1 on induction of NETs via Rap1a/B-Raf/ERK signaling axis. CONCLUSION: The C5aR1 and LTB4R1 signaling via Rap1a/B-Raf/ERK axis acts as a signal-relay mechanism to regulate NET formation in neutrophils. Further, C5aR1 and LTB4R1 signaling cascade along with NET-associated proteins are remarkably downregulated in tLBW newborns' neutrophils leading to impaired NETosis in them. Therefore, C5aR1 and LTB4R1 and their signaling molecules could provide an effective therapeutic target for compromised NETosis like tLBW newborns.

2.
JID Innov ; 4(6): 100307, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39310808

RESUMO

RATIONALE: Experimental data support the role for C5a-C5aR1 axis activation in bullous pemphigoid. We assessed the efficacy and safety of avdoralimab, a specific anti-C5aR1 mAb, for treating bullous pemphigoid. METHODS: We conducted a phase 2 open-labeled randomized multicenter study. Patients with proven bullous pemphigoid were randomized (1:1) to receive superpotent topical steroids alone (group A) or with avdoralimab (group B). All patients received 0.05% clobetasol propionate cream until 15 days after the healing of lesions. Patients in group B additionally received 3 injections of avdoralimab every week for 12 weeks. The main criterion of evaluation was the proportion of patients with initial control of disease activity still in complete clinical remission at 3 months with no relapse during the study period. RESULTS: Fifteen patients were randomized: 7 to group A and 8 to group B. Two patients in group A and in group B achieved control of disease activity at week 4. Only 1 patient was still in complete clinical remission at week 12 in group B, and none was in group A. No adverse event related to the treatment was reported. CONCLUSIONS: This proof-of-concept pilot study did not show preliminary signal of additional avdoralimab efficiency compared with superpotent topical steroids alone.

3.
Int Immunopharmacol ; 141: 112940, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39154532

RESUMO

Alzheimer's disease (AD) is one of the most debilitating age-related disorders that affect people globally. It impacts social and cognitive behavior of the individual and is characterized by phosphorylated tau and Aß accumulation. Astrocytesmaintain a quiescent, anti-inflammatory state on anatomical level, expressing few cytokines and exhibit phagocytic activity to remove misfolded proteins. But in AD, in response to specific stimuli, astrocytes overstimulate their phagocytic character with overexpressing cytokine gene modules. Upon interaction with generated Aß and neurofibrillary tangle, astrocytes that are continuously activated release a large number of inflammatory cytokines. This cytokine storm leads to neuroinflammation which is also one of the recognizable features of AD. Astrogliosis eventually promotes cholinergic dysfunction, calcium imbalance, oxidative stress and excitotoxicity. Furthermore, C5aR1, Lcn2/, BDNF/TrkB and PPARα/TFEB signaling dysregulation has a major impact on the disease progression. This review clarifies numerous ways that lead to astrogliosis, which is stimulated by a variety of processes that exacerbate AD pathology and make it a suitable target for AD treatment. Drugs under clinical and preclinical investigations that target several pathways managing astrogliosis and are efficacious in ameliorating the pathology of the disease are also included in this study. D-ALA2GIP, TRAM-34, Genistein, L-serine, MW150 and XPro1595 are examples of few drugs targeting astrogliosis. Therefore, this study may aid in the development of a potent therapeutic agent for ameliorating astrogliosis mediated AD progression.


Assuntos
Doença de Alzheimer , Astrócitos , Gliose , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Humanos , Astrócitos/patologia , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Animais , Gliose/patologia , Gliose/metabolismo , Citocinas/metabolismo , Peptídeos beta-Amiloides/metabolismo
4.
J Struct Biol ; 216(3): 108117, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39153560

RESUMO

The complement system is a complex network of proteins that plays a crucial role in the innate immune response. One important component of this system is the C5a-C5aR1 complex, which is critical in the recruitment and activation of immune cells. In-depth investigation of the activation mechanism as well as biased signaling of the C5a-C5aR1 system will facilitate the elucidation of C5a-mediated pathophysiology. In this study, we determined the structure of C5a-C5aR1-Gi complex at a high resolution of 3 Å using cryo-electron microscopy (Cryo-EM). Our results revealed the binding site of C5a, which consists of a polar recognition region on the extracellular side and an amphipathic pocket within the transmembrane domain. Furthermore, we found that C5a binding induces conformational changes of C5aR1, which subsequently leads to the activation of G protein signaling pathways. Notably, a key residue (M265) located on transmembrane helix 6 (TM6) was identified to play a crucial role in regulating the recruitment of ß-arrestin driven by C5a. This study provides more information about the structure and function of the human C5a-C5aR1 complex, which is essential for the proper functioning of the complement system. The findings of this study can also provide a foundation for the design of new pharmaceuticals targeting this receptor with bias or specificity.


Assuntos
Complemento C5a , Microscopia Crioeletrônica , Receptor da Anafilatoxina C5a , Microscopia Crioeletrônica/métodos , Humanos , Receptor da Anafilatoxina C5a/química , Receptor da Anafilatoxina C5a/metabolismo , Sítios de Ligação , Complemento C5a/química , Complemento C5a/metabolismo , Ligação Proteica , Transdução de Sinais , Conformação Proteica , Modelos Moleculares
5.
Exp Cell Res ; 441(2): 114195, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39098466

RESUMO

Chondrocyte ferroptosis induces the occurrence of osteoarthritis (OA). As a key gene of OA, C5a receptor 1 (C5AR1) is related to ferroptosis. Here, we investigated whether C5AR1 interferes with chondrocyte ferroptosis during OA occurrence. C5AR1 was downregulated in PA-treated chondrocytes. Overexpression of C5AR1 increased the cell viability and decreased ferroptosis in chondrocytes. Moreover, Tumor necrosis factor superfamily member 13B (TNFSF13B) was downregulated in PA-treated chondrocytes, and knockdown of TNFSF13B eliminated the inhibitory effect of C5AR1 on ferroptosis in chondrocytes. More importantly, the PI3K/Akt/GSK3ß/Nrf2/HO-1 pathway inhibitor LY294002 reversed the inhibition of C5AR1 or TNFSF13B on ferroptosis in chondrocytes. Finally, we found that C5AR1 alleviated joint tissue lesions and ferroptosis in rats and inhibited the progression of OA in the rat OA model constructed by anterior cruciate ligament transection (ACLT), which was reversed by interfering with TNFSF13B. This study shows that C5AR1 reduces the progression of OA by upregulating TNFSF13B to activate the PI3K/Akt/GSK3ß/Nrf2/HO-1 pathway and thereby inhibiting chondrocyte sensitivity to ferroptosis, indicating that C5AR1 may be a potential therapeutic target for ferroptosis-related diseases.


Assuntos
Condrócitos , Ferroptose , Glicogênio Sintase Quinase 3 beta , Fator 2 Relacionado a NF-E2 , Osteoartrite , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Receptor da Anafilatoxina C5a , Animais , Ferroptose/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Condrócitos/metabolismo , Condrócitos/patologia , Condrócitos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Ratos , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Masculino , Receptor da Anafilatoxina C5a/metabolismo , Receptor da Anafilatoxina C5a/genética , Transdução de Sinais , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase (Desciclizante)
6.
Sci Rep ; 14(1): 17232, 2024 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060563

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has become the first major chronic liver disease in developed countries. 10-20% of NAFLD patients will progress to non-alcoholic steatohepatitis (NASH), and up to 25% of NASH patients may develop cirrhosis within 10 years. Therefore, it is critical to find key targets that may treat this disease. Here, we identified C5aR1 as a highly-expressed gene in NASH mouse model through analyzing Gene Expression Omnibus (GEO) database and confirmed its higher expression in livers of NASH patients than that of NAFL patients. Meanwhile, we verified its positive correlation with patients' serum alanine transaminase (ALT) and aspartate transaminase (AST) levels. In vivo and in vitro experiments revealed that knocking down C5aR1 in liver significantly reduced liver weight ratio and serum ALT and AST levels and attenuated inflammatory cell infiltration and cell apoptosis in the liver of NASH mice as well as enhanced the efferocytotic ability of liver macrophages, suggesting that C5aR1 may play a crucial role in the efferocytosis of liver macrophages. Furthermore, we also found that the expression levels of nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 (NLRP3), caspase-1, IL-1ß and other inflammation-related factors in the liver were significantly reduced. Our work demonstrates a potential mechanism of how C5aR1 deficiency protects against diet-induced NASH by coordinating the regulation of inflammatory factors and affecting hepatic macrophage efferocytosis.


Assuntos
Fígado , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Hepatopatia Gordurosa não Alcoólica , Fagocitose , Receptor da Anafilatoxina C5a , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Receptor da Anafilatoxina C5a/metabolismo , Receptor da Anafilatoxina C5a/genética , Camundongos , Macrófagos/metabolismo , Humanos , Fígado/metabolismo , Fígado/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Masculino , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Apoptose , Alanina Transaminase/sangue , Alanina Transaminase/metabolismo , Aspartato Aminotransferases/sangue , Aspartato Aminotransferases/metabolismo , Eferocitose
7.
Mol Carcinog ; 63(10): 1938-1952, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38934768

RESUMO

This study aimed to elucidate the role and mechanisms of Complement C5a receptor 1 (C5AR1) in driving the malignant progression of anaplastic thyroid carcinoma (ATC). C5AR1 expression was assessed in ATC tissues and cell lines. Functional assays evaluated the effects of C5AR1 knockdown on the malignant features of ATC cells. The interaction between C5AR1 and miR-335-5p was confirmed using a luciferase reporter assay and Fluorescence in situ hybridization, and the impact of C5AR1 knockdown on the Toll-like receptor (TLR) 1/2 signaling pathway was examined. In vivo studies evaluated the effects of C5AR1 modulation on tumor growth and metastasis. C5AR1 levels were elevated in ATC tumor samples and associated with poor survival in ATC patients. C5AR1 knockdown impeded ATC cell proliferation, migration, and invasion in vitro. MiR-335-5p was identified as an upstream regulator of C5AR1, which negatively modulates C5AR1 expression. C5AR1 knockdown diminished TLR1, TLR2, and myeloid differentiation primary response 88 (MyD88) levels, while C5AR1 overexpression activated this pathway. Blocking TLR1/2 signaling abrogated the oncogenic effects of C5AR1 overexpression. C5AR1 silencing inhibited tumor growth and lung metastasis of ATC cells in nude mice. C5AR1 contributes to ATC tumorigenesis and metastasis by activating the TLR1/2 pathway, and is negatively regulated by miR-335-5p. Targeting the miR-335-5p/C5AR1/TLR1/2 axis represents a potential therapeutic strategy for ATC.


Assuntos
Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , MicroRNAs , Receptor da Anafilatoxina C5a , Transdução de Sinais , Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Receptor 1 Toll-Like , Receptor 2 Toll-Like , Humanos , Animais , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Carcinoma Anaplásico da Tireoide/patologia , Carcinoma Anaplásico da Tireoide/genética , Carcinoma Anaplásico da Tireoide/metabolismo , Camundongos , Receptor da Anafilatoxina C5a/metabolismo , Receptor da Anafilatoxina C5a/genética , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Linhagem Celular Tumoral , MicroRNAs/genética , Receptor 1 Toll-Like/genética , Receptor 1 Toll-Like/metabolismo , Movimento Celular , Masculino , Feminino , Metástase Neoplásica , Pessoa de Meia-Idade
8.
Inflammation ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884700

RESUMO

Acute pancreatitis (AP) is one of the most common gastrointestinal emergencies, often resulting in self-digestion, edema, hemorrhage, and even necrosis of pancreatic tissue. When AP progresses to severe acute pancreatitis (SAP), it often causes multi-organ damage, leading to a high mortality rate. However, the molecular mechanisms underlying SAP-mediated organ damage remain unclear. This study aims to systematically mine SAP data from public databases and combine experimental validation to identify key molecules involved in multi-organ damage caused by SAP. Retrieve transcriptomic data of mice pancreatic tissue for AP, lung and liver tissue for SAP, and corresponding normal tissue from the Gene Expression Omnibus (GEO) database. Conduct gene differential analysis using Limma and DEseq2 methods. Perform enrichment analysis using the clusterProfiler package in R software. Score immune cells and immune status in various organs using single-sample gene set enrichment analysis (ssGSEA). Evaluate mRNA expression levels of core genes using reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. Validate serum amylase, TNF-α, IL-1ß, and IL-6 levels in peripheral blood using enzyme-linked immunosorbent assay (ELISA), and detect the formation of neutrophil extracellular traps (NETs) in mice pancreatic, liver, and lung tissues using immunofluorescence. Differential analysis reveals that 46 genes exhibit expression dysregulation in mice pancreatic tissue for AP, liver and lung tissue for SAP, as well as peripheral blood in humans. Functional enrichment analysis indicates that these genes are primarily associated with neutrophil-related biological processes. ROC curve analysis indicates that 12 neutrophil-related genes have diagnostic potential for SAP. Immune infiltration analysis reveals high neutrophil infiltration in various organs affected by SAP. Single-cell sequencing analysis shows that these genes are predominantly expressed in neutrophils and macrophages. FPR1, ITGAM, and C5AR1 are identified as key genes involved in the formation of NETs and activation of neutrophils. qPCR and IHC results demonstrate upregulation of FPR1, ITGAM, and C5AR1 expression in pancreatic, liver, and lung tissues of mice with SAP. Immunofluorescence staining shows increased levels of neutrophils and NETs in SAP mice. Inhibition of NETs formation can alleviate the severity of SAP as well as the levels of inflammation in the liver and lung tissues. This study identified key genes involved in the formation of NETs, namely FPR1, ITGAM, and C5AR1, which are upregulated during multi-organ damage in SAP. Inhibition of NETs release effectively reduces the systemic inflammatory response and liver-lung damage in SAP. This research provides new therapeutic targets for the multi-organ damage associated with SAP.

9.
Fish Shellfish Immunol ; 151: 109706, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38897310

RESUMO

The complement component 5a/complement component 5 receptor 1 (C5a/C5aR1) pathway plays a crucial role in the onset and development of inflammation, but relevant studies in fish are lacking. In this study, we successfully characterized the relationship between half-smooth tongue sole (Cynoglossus semilaevis) C5aR1 (CsC5aR1) and bacterial inflammation. First, we showed that the overexpression of CsC5aR1 significantly increased bacterial pathological damage in the liver and intestine, whereas inhibition attenuated the damage. The in vitro experiments suggested that CsC5aR1 was able to positively regulate the phagocytic activity and respiratory burst of tongue sole macrophages. In terms of both transcriptional and translational levels, overexpression/inhibition of CsC5aR1 was followed by a highly consistent up-regulation/decrease of its downstream canonical inflammatory factor interleukin-6 (CsIL-6). Furthermore, we stimulated macrophages by lipopolysaccharide (LPS) and lipoteichoic acid (LTA) and found a broad-spectrum response to bacterial infections by the C5a/C5aR1 complement pathway together with the downstream inflammatory factor CsIL-6. Subsequently, we directly elucidated that CsIL-6 is an indicator of C5a/C5aR1-mediated inflammation at different infection concentrations, different infectious bacteria (Vibrio anguillarum and Mycobacterium marinum), and different detection levels. These results might provide a new inflammation bio-marker for early warning of bacteria-induced hyperinflammation leading to fish mortality and a promising target for the treatment of bacterial inflammation in teleost.


Assuntos
Doenças dos Peixes , Proteínas de Peixes , Linguados , Interleucina-6 , Receptor da Anafilatoxina C5a , Animais , Linguados/imunologia , Linguados/genética , Receptor da Anafilatoxina C5a/genética , Receptor da Anafilatoxina C5a/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-6/metabolismo , Vibrioses/veterinária , Vibrioses/imunologia , Vibrio/fisiologia , Inflamação/imunologia , Inflamação/veterinária , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética
10.
Acta Biochim Biophys Sin (Shanghai) ; 56(4): 538-550, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38425243

RESUMO

Neutrophil extracellular traps (NETs) are implicated in gastric cancer (GC) growth, metastatic dissemination, cancer-associated thrombosis, etc. This work is conducted to elucidate the heterogeneity of NETs in GC. The transcriptome heterogeneity of NETs is investigated in TCGA-STAD via a consensus clustering algorithm, with subsequent external verification in the GSE88433 and GSE88437 cohorts. Clinical and molecular traits, the immune microenvironment, and drug response are characterized in the identified NET-based clusters. Based upon the feature genes of NETs, a classifier is built for estimating NET-based clusters via machine learning. Multiple experiments are utilized to verify the expressions and implications of the feature genes in GC. A novel NET-based classification system is proposed for reflecting the heterogeneity of NETs in GC. Two NET-based clusters have unique and heterogeneous clinical and molecular features, immune microenvironments, and responses to targeted therapy and immunotherapy. A logistic regression model reliably differentiates the NET-based clusters. The feature genes C5AR1, CSF1R, CSF2RB, CYBB, HCK, ITGB2, LILRB2, MNDA, MPEG1, PLEK, SRGN, and STAB1 are proven to be aberrantly expressed in GC cells. Specific knockdown of C5AR1 effectively hinders GC cell growth and elicits intracellular ROS accumulation. In addition, its suppression suppresses the aggressiveness and EMT phenotype of GC cells. In all, NETs are the main contributors to intratumoral heterogeneity and differential drug sensitivity in GC, and C5AR1 has been shown to trigger GC growth and metastatic spread. These findings collectively provide a theoretical basis for the use of anti-NETs in GC treatment.


Assuntos
Armadilhas Extracelulares , Neoplasias Gástricas , Humanos , Armadilhas Extracelulares/metabolismo , Neutrófilos , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Fenótipo , Microambiente Tumoral/genética
11.
Mol Ther ; 32(5): 1540-1560, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38449312

RESUMO

Podocytes are essential to maintaining the integrity of the glomerular filtration barrier, but they are frequently affected in lupus nephritis (LN). Here, we show that the significant upregulation of Drp1S616 phosphorylation in podocytes promotes mitochondrial fission, leading to mitochondrial dysfunction and podocyte injury in LN. Inhibition or knockdown of Drp1 promotes mitochondrial fusion and protects podocytes from injury induced by LN serum. In vivo, pharmacological inhibition of Drp1 reduces the phosphorylation of Drp1S616 in podocytes in lupus-prone mice. Podocyte injury is reversed when Drp1 is inhibited, resulting in the alleviation of proteinuria. Mechanistically, complement component C5a (C5a) upregulates the phosphorylation of Drp1S616 and promotes mitochondrial fission in podocytes. Moreover, the expression of C5a receptor 1 (C5aR1) is notably upregulated in podocytes in LN. C5a-C5aR1 axis-controlled phosphorylation of Drp1S616 and mitochondrial fission are substantially suppressed when C5aR1 is knocked down by siRNA. Moreover, lupus-prone mice treated with C5aR inhibitor show reduced phosphorylation of Drp1S616 in podocytes, resulting in significantly less podocyte damage. Together, this study uncovers a novel mechanism by which the C5a-C5aR1 axis promotes podocyte injury by enhancing Drp1-mediated mitochondrial fission, which could have significant implications for the treatment of LN.


Assuntos
Complemento C5a , Dinaminas , Nefrite Lúpica , Dinâmica Mitocondrial , Podócitos , Receptor da Anafilatoxina C5a , Podócitos/metabolismo , Podócitos/patologia , Nefrite Lúpica/metabolismo , Nefrite Lúpica/patologia , Nefrite Lúpica/etiologia , Animais , Receptor da Anafilatoxina C5a/metabolismo , Receptor da Anafilatoxina C5a/genética , Camundongos , Dinaminas/metabolismo , Dinaminas/genética , Complemento C5a/metabolismo , Humanos , Fosforilação , Modelos Animais de Doenças , Mitocôndrias/metabolismo , Transdução de Sinais , Feminino
12.
Transplant Rev (Orlando) ; 38(2): 100839, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412598

RESUMO

The complement system is part of innate immunity and is pivotal in protecting the body against pathogens and maintaining host homeostasis. Activation of the complement system is triggered through multiple pathways, including antibody deposition, a mannan-binding lectin, or activated complement deposition. C3 glomerulopathy (C3G) is a rare glomerular disease driven by complement dysregulation with high post-transplantation recurrence rates. Its treatment is mainly based on immunosuppressive therapies, specifically mycophenolate mofetil and glucocorticoids. Recent years have seen significant progress in understanding complement biology and its role in C3G pathophysiology. New complement-tergeting treatments have been developed and initial trials have shown promising results. However, challenges persist in C3G, with recurrent post-transplantation cases leading to suboptimal outcomes. This review discusses the pathophysiology and management of C3G, with a focus on its recurrence after kidney transplantation.


Assuntos
Glomerulonefrite Membranoproliferativa , Nefropatias , Transplante de Rim , Humanos , Transplante de Rim/efeitos adversos , Complemento C3 , Glomerulonefrite Membranoproliferativa/terapia , Ácido Micofenólico
13.
J Biomol Struct Dyn ; : 1-16, 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38247266

RESUMO

The complement component fragment 5a (C5a) binds and activates two complement receptors like C5aR1 and C5aR2, which play a significant role in orchestrating the proinflammatory function of C5a in tissues through the recruitment of heterotrimeric G-proteins and ß-arrestins. Dysregulation of the complement induces excessive production of C5a, which triggers aberrant activation of the C5a-C5aR1-G-protein and C5a-C5aR2-ß-arrestin signalling axes in tissues, contributing to the pathology of numerous immune-inflammatory diseases. Thus, understanding the interaction of C5a with C5aR1 and C5aR2, as well as the interaction of G-protein and ß-arrestins, respectively, with C5a-C5aR1 and C5a-C5aR2, holds tremendous therapeutic value. In the absence of structural data, we have previously elaborated the binary complexes of C5a-C5aR1 and C5a-C5aR2, as well as the ternary complex of C5a-C5aR2-ß-arrestin1, in highly refined model structures. While our ternary model complex of C5a-C5aR1-G-protein was in progress, two cryo-electron microscopy-based ternary structural complexes of C5aR1 were made available by others. However, it is observed that the interaction of the crucial NT-peptide of C5aR1 with C5a, including the portion of the G⍺i-subunit that harbors the switch-I region, is not fully resolved in both complexes. The current study addresses the issues and provides two highly refined alternative model ternary complexes of C5a-C5aR1-G-protein. The study highlights the conformational heterogeneity in C5aR1 by comparing the two conformational variants of the model ternary complex in the context of C5a-C5aR2-ß-arrestin1 for further devising methods and molecules targeting both surface and intracellular C5aR1/C5aR2 for effectively mitigating the proinflammatory role of C5a in various disease settings.Communicated by Ramaswamy H. Sarma.

14.
Trends Biochem Sci ; 49(4): 280-282, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38233283

RESUMO

Recent advances in cryo-electron microscopy (Cryo-EM) have revolutionized our understanding of the complement C5a/C3a receptors that are crucial in inflammation. A recent report by Yadav et al. has elucidated the activation, ligand binding, selectivity, and signaling bias of these receptors, thereby enhancing structure-guided drug discovery. This paves the way for more effective anti-inflammatory therapies that target these receptors with unprecedented precision.


Assuntos
Anafilatoxinas , Complemento C5a , Anafilatoxinas/química , Anafilatoxinas/metabolismo , Complemento C5a/metabolismo , Complemento C3a/metabolismo , Microscopia Crioeletrônica , Receptores de Complemento/metabolismo
15.
Alzheimers Dement ; 20(3): 2173-2190, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38278523

RESUMO

INTRODUCTION: Synaptic loss is a hallmark of Alzheimer's disease (AD) that correlates with cognitive decline in AD patients. Complement-mediated synaptic pruning has been associated with this excessive loss of synapses in AD. Here, we investigated the effect of C5aR1 inhibition on microglial and astroglial synaptic pruning in two mouse models of AD. METHODS: A combination of super-resolution and confocal and tridimensional image reconstruction was used to assess the effect of genetic ablation or pharmacological inhibition of C5aR1 on the Arctic48 and Tg2576 models of AD. RESULTS: Genetic ablation or pharmacological inhibition of C5aR1 partially rescues excessive pre-synaptic pruning and synaptic loss in an age and region-dependent fashion in two mouse models of AD, which correlates with improved long-term potentiation (LTP). DISCUSSION: Reduction of excessive synaptic pruning is an additional beneficial outcome of the suppression of C5a-C5aR1 signaling, further supporting its potential as an effective targeted therapy to treat AD. HIGHLIGHTS: C5aR1 ablation restores long-term potentiation in the Arctic model of AD. C5aR1 ablation rescues region specific excessive pre-synaptic loss. C5aR1 antagonist, PMX205, rescues VGlut1 loss in the Tg2576 model of AD. C1q tagging is not sufficient to induce VGlut1 microglial ingestion. Astrocytes contribute to excessive pre-synaptic loss at late stages of the disease.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Humanos , Doença de Alzheimer/genética , Sinapses , Potenciação de Longa Duração , Modelos Animais de Doenças
16.
Proteins ; 92(4): 449-463, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37933678

RESUMO

Human complement fragment 5a (C5a) is one of the most potent glycoproteins generated downstream of C3a and C4a during late-stage activation of the complement signaling cascade. C5a recruits receptors like C5aR1 and C5aR2 and is established to play a critical role in complement-mediated inflammation. Thus, excessive C5a in the plasma due to aberrant activation of the complement contributes to the pathophysiology of several chronic inflammatory diseases. Therefore, restricting the excessive interaction of C5a with its receptors by neutralizing C5a has been one of the most effective therapeutic strategies for the management of inflammatory diseases. Indeed, antibodies targeting C5 (Eculizumab), the precursor of C5a, and C5a (Vilobelimab) have already been approved by the FDA. Still, small designer peptides that work like antibodies and can target and stop C5a from interacting with its receptors seem to be a possible therapeutic alternative to antibodies because they are smaller, cheaper to make, more specific to their target, and can get through membrane barriers. As a proof-of-principle, the current study describes the computational design and evaluation of a pair of peptides that are able to form stable high-affinity complexes with the epitope regions of C5a that are important for the recruitment of C5aR1 and C5aR2. The computational data further supports the potential of designer peptides for mimicking the function of antibodies targeting C5a. However, further experimental studies will be required to establish the structure-function relationship of the designer peptides and also to establish the hypothesis of antibody-like peptides targeting C5a.


Assuntos
Complemento C5a , Transdução de Sinais , Humanos , Complemento C5a/metabolismo , Inflamação , Epitopos , Peptídeos
17.
Cell Signal ; 113: 110944, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37890688

RESUMO

The complement system constitutes an integral component of the innate immune system and plays a critical role in adaptive immunity. Activation of this system engenders the production of complement peptide fragments, including C5a, which engage G-protein coupled receptors predominantly expressed in immune-associated cells, such as neutrophils, initiating pro-inflammatory responses. Intriguingly, our investigation has unveiled the presence of C5a receptor 1 (C5aR1) expression within skeletal muscle, a key metabolic tissue and primary target of insulin. Herein, we demonstrate that C5aR1 activation by C5a in differentiated human skeletal muscle cells elicits acute suppression of insulin signalling. This suppression manifests as impaired insulin-dependent association between IRS1 and the p85 subunit of PI3-kinase, a 50% reduction in Akt phosphorylation, and a 60% decline in insulin-stimulated glucose uptake. This impairment in insulin signalling is associated with a three-fold elevation in intramyocellular diacylglycerol (DAG) levels and a two-fold increase in cytosolic calcium content, which promote PKC-mediated IRS1 inhibition via enhanced phosphorylation at IRS1 Ser1101. Significantly, our findings demonstrate that structurally diverse C5aR1 antagonists, along with genetic deletion or stable silencing of C5aR1 by 80% using short-hairpin RNA, effectively attenuate repression of insulin signalling by C5a in LHCN-M2 human skeletal myotubes. These results underscore the potential of heightened C5aR1 activation, characteristic of obesity and chronic inflammatory conditions, to detrimentally impact insulin function within skeletal muscle cells. Additionally, the study suggests that agents targeting the C5a-C5aR axis, originally devised for mitigating complement-dependent inflammatory conditions, may offer therapeutic avenues to ameliorate immune-driven insulin resistance in key peripheral metabolic tissues, including skeletal muscle.


Assuntos
Fatores Imunológicos , Insulina , Receptor da Anafilatoxina C5a , Humanos , Fatores Imunológicos/metabolismo , Insulina/fisiologia , Músculo Esquelético/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Transdução de Sinais
18.
Biomedicines ; 11(11)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38002057

RESUMO

Heterogeneity is a critical basis for understanding how the tumor microenvironment (TME) contributes to tumor progression. However, an understanding of the specific characteristics and functions of TME subtypes (subTMEs) in the progression of cancer is required for further investigations into single-cell resolutions. Here, we analyzed single-cell RNA sequencing data of 250 clinical samples with more than 200,000 cells analyzed in each cancer datum. Based on the construction of an intercellular infiltration model and unsupervised clustering analysis, four, three, three, and four subTMEs were revealed in breast, colorectal, esophageal, and pancreatic cancer, respectively. Among the subTMEs, the immune-suppressive subTME (subTME-IS) and matrix remodeling with malignant cells subTME (subTME-MRM) were highly enriched in tumors, whereas the immune cell infiltration subTME (subTME-ICI) and precancerous state of epithelial cells subTME (subTME-PSE) were less in tumors, compared with paracancerous tissues. We detected and compared genes encoding cytokines, chemokines, cytotoxic mediators, PD1, and PD-L1. The results showed that these genes were specifically overexpressed in different cell types, and, compared with normal tissues, they were upregulated in tumor-derived cells. In addition, compared with other subTMEs, the expression levels of PDCD1 and TGFB1 were higher in subTME-IS. The Cox proportional risk regression model was further constructed to identify possible prognostic markers in each subTME across four cancer types. Cell-cell interaction analysis revealed the distinguishing features in molecular pairs among different subTMEs. Notably, ligand-receptor gene pairs, including COL1A1-SDC1, COL6A2-SDC1, COL6A3-SDC1, and COL4A1-ITGA2 between stromal and tumor cells, associated with tumor invasion phenotypes, poor patient prognoses, and tumor advanced progression, were revealed in subTME-MRM. C5AR1-RPS19, LGALS9-HAVCR2, and SPP1-PTGER4 between macrophages and CD8+ T cells, associated with CD8+ T-cell dysfunction, immunosuppressive status, and tumor advanced progression, were revealed in subTME-IS. The spatial co-location information of cellular and molecular interactions was further verified by spatial transcriptome data from colorectal cancer clinical samples. Overall, our study revealed the heterogeneity within the TME, highlighting the potential pro-invasion and pro-immunosuppressive functions and cellular infiltration characteristics of specific subTMEs, and also identified the key cellular and molecular interactions that might be associated with the survival, invasion, immune escape, and classification of cancer patients across four cancer types.

19.
J Innate Immun ; 15(1): 836-849, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37952515

RESUMO

INTRODUCTION: The complement system anaphylatoxin C5a is a critical player in inflammation. By binding to complement C5a receptor 1 (C5aR1/CD88), C5a regulates many cellular functions, mainly as a potent pro-inflammatory inducer. We describe the generation and selection of a potent antagonistic C5aR1 mouse monoclonal antibody (mAb). METHODS: Initial C5aR1 hybridoma clone selection was performed with a cell-binding study in human whole blood. In-house C5aR1 mAb assessment for C5aR1 inhibition was done via the iLite® C5a assay. C5aR1 mAb specificity was investigated on C5aR1his- and C5aR2his-expressing Flp-In™-CHO cells. Physiological C5aR1 inhibition was assessed via a C5a-driven calcium flux assay and stimulation assay based on isolated polymorphonuclear leukocytes (PMNs) and a whole blood model stimulated with Escherichia coli. RESULTS: The supernatant of hybridoma clones targeting the N-terminal section of C5aR1 displayed efficient binding to C5aR1 in whole blood, which was confirmed for purified mAbs. The C5aR1 mAb 18-41-6 was selected following the assay of in-house C5aR1 mAbs via the iLite® C5a assay. The mAb 18-41-6 was specific for C5aR1. Full-size and/or F(ab')2 preparations of mAb 18-41-6 were found to efficiently abrogate C5a-induced calcium flux in neutrophils and to significantly reduce the upregulation of the activation markers CD11b (neutrophils, monocytes) and CD66b (neutrophils). CONCLUSION: Our results demonstrate that mAb 18-41-6 is a valuable tool for investigating the C5a-C5aR1 axis and a potential therapeutic candidate for inflammatory disease treatment.


Assuntos
Anticorpos Monoclonais , Cálcio , Cricetinae , Animais , Camundongos , Humanos , Cricetulus , Complemento C5a/metabolismo , Transdução de Sinais , Receptor da Anafilatoxina C5a
20.
Int Immunopharmacol ; 125(Pt B): 111112, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37948857

RESUMO

Previous studies have shown that silica nanoparticles (SiNPs) exposure can affect the respiratory, cardiovascular, reproductive and other systems, with the lung being the primary target organ for the direct effect, causing damage with a central feature of pulmonary inflammation and fibrosis. However, the underlying mechanisms of pulmonary fibrosis due to SiNPs are not fully understood. The aim of the study was to investigate the role of complement anaphylatoxin C5a in SiNPs-induced pulmonary fibrosis. A mouse model of SiNPs-induced pulmonary fibrosis was established, and pulmonary fibrosis-related indicators, epithelial-to-mesenchymal transition (EMT), C5a/C5aR1 and high mobility group protein B1 (HMGB1) proteins were measured. An in vitro study using the human lung epithelial cell line BEAS-2B investigated whether C5a leads to epithelial-to-mesenchymal trans-differentiation. In vivo studies revealed that SiNPs-induced pulmonary fibrosis mainly manifested as EMT trans-differentiation in airway epithelial cells, which subsequently led to excessive deposition of extracellular matrix (ECM). Furthermore, we found that C5a and C5aR1 proteins were also increased in SiNPs-induced pulmonary fibrosis tissue. In vitro studies also showed that C5a directly activated HMGB1/RAGE signaling and induced EMT in BEAS-2B cells. Finally, treatment of SiNPs-exposed mice with the C5aR1 inhibitor PMX205 effectively reduced C5aR1 levels and inhibited the activation of HMGB1/RAGE signaling and the expression of EMT-related proteins, culminating in a significant alleviation of pulmonary fibrosis. Taken together, our results suggest that C5a/C5aR1 is the main signaling pathway for SiNPs-induced pulmonary fibrosis, which induces EMT in airway epithelial cells via the HMGB1/RAGE axis.


Assuntos
Proteína HMGB1 , Nanopartículas , Fibrose Pulmonar , Humanos , Animais , Camundongos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Proteína HMGB1/metabolismo , Dióxido de Silício/toxicidade , Células Epiteliais/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Complemento C5a/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA